This prevents the date and time shown in version information from
getting stale because of partial builds. With these changes, date and
time information is written to a dedicated object file that gets rebuilt
every time make is run, even if there are no changes.
This adds a new option, BroadcastSubnet, that allows the user to
declare broadcast subnets, i.e. subnets which are considered broadcast
addresses by the tinc routing layer. Previously only the global IPv4
and IPv6 broadcast addresses were supported by virtue of being
hardcoded.
This is useful when using tinc in router mode with Ethernet virtual
devices, as it can be used to provide broadcast support for a local
broadcast address (e.g. 10.42.255.255) instead of just the global
address (255.255.255.255).
This is implemented by removing hardcoded broadcast addresses and
introducing "broadcast subnets", which are subnets with a NULL owner.
By default, behavior is unchanged; this is accomplished by adding
the global broadcast addresses for Ethernet, IPv4 and IPv6 at start
time.
Implementation of sptps_verify_datagram() was left as a TODO. This
causes problems when using SPTPS in tinc, because this function is
used in try_mac(), which itself is used in try_harder() to locate
nodes sending UDP packets from unexpected addresses. In the current
state this function always returns true, resulting in UDP addresses
of random nodes getting changed which makes UDP communication
fragile and unreliable. In addition, this makes UDP communication
impossible through port translation and local discovery.
This commit adds the missing implementation, thus fixing the issue.
Recent improvements to the local discovery mechanism makes it cheaper,
more network-friendly, and now it cannot make things worse (as opposed
to the old mechanism). Thus there is no reason not to enable it by
default.
The new local address based local discovery mechanism is technically
superior to the old broadcast-based one. In fact, the old algorithm
can technically make things worse by e.g. sending broadcasts over the
VPN itself and then selecting the VPN address as the node's UDP
address. This cannot happen with the new mechanism.
Note that this means old nodes that don't send their local addresses in
ADD_EDGE messages can't be discovered, because there is no address to
send discovery packets to. Old nodes can still discover new nodes by
sending them broadcasts, though.
This introduces a new way of doing local discovery: when tinc has
local address information for the recipient node, it will send local
discovery packets directly to the local address of that node, instead
of using broadcast packets.
This new way of doing local discovery provides numerous advantages compared to
using broadcasts:
- No broadcast packets "polluting" the local network;
- Reliable even if the sending host has multiple network interfaces (in
contrast, broadcasts will only be sent through one unpredictable
interface)
- Works even if the two hosts are not on the same broadcast domain. One
example is a large LAN where the two hosts might be on different local
subnets. In fact, thanks to UDP hole punching this might even work if
there is a NAT sitting in the middle of the LAN between the two nodes!
- Sometimes a node is reachable through its "normal" address, and via a
local subnet as well. One might think the local subnet is the best route
to the node in this case, but more often than not it's actually worse -
one example is where the local segment is a third party VPN running in
parallel, or ironically it can be the local segment formed by the tinc
VPN itself! Because this new algorithm only checks the addresses for
which an edge is already established, it is less likely to fall into
these traps.
In addition to the remote address, each edge now stores the local address from
the point of view of the "from" node. This information is then made available
to other nodes through a backwards-compatible extension to ADD_EDGE messages.
This information can be used in future code to improve packet routing.
tinc is using a separate thread to read from the TAP device on Windows.
The rationale was that the notification mechanism for packets arriving
on the virtual network device is based on Win32 events, and the event
loop did not support listening to these events.
Thanks to recent improvements, this event loop limitation has been
lifted. Therefore we can get rid of the separate thread and simply add
the Win32 "incoming packet" event to the event loop, just like a socket.
The result is cleaner code that's easier to reason about.
Currently, when the tinc service handler callback (which runs in a
separate thread) receives a service shutdown request, it calls
event_exit() to request the event loop to exit.
This approach has a few issues:
- The event loop will only notice the exit request when the next event
fires. This slows down tinc service shutdown. In some extreme cases
(DeviceStandby enabled, long PingTimeout and no connections),
shutdown can take ages.
- Strictly speaking, because of the absence of memory barriers, there
is no guarantee that the event loop will even notice an exit request
coming from another thread. I suppose marking the "running" variable
as "volatile" is supposed to alleviate that, but it's unclear whether
that provides any guarantees with modern systems and compilers.
This commit fixes the issue by leveraging the new event loop Windows
interface, using a custom Windows event that is manually set when
shutdown is requested.
This commit changes the event loop to use WSAEventSelect() and
WSAWaitForMultipleEvents() on Windows. This paves the way for making the
event loop more flexible on Windows by introducing the required
infrastructure to make the event loop wait on any Win32 event.
This commit only affects the internal implementation of the event
module. Externally visible behavior remains strictly unchanged (for
now).
Commit 86a99c6b99 changed the way we
handle connection events to protect against spurious event loop
callbacks. Unfortunately, it turns out that calling connect() twice on
the same socket results in different behaviors depending on the platform
(even though it seems well defined in POSIX). On Windows this resulted
in the connection handling code being unable to react to connection
errors (such as connection refused), always hitting the timeout; on
Linux this resulted in spurious error messages about connect() returning
success.
In POSIX and on Linux, using connect() on a socket where the previous
attempt failed will attempt to connect again, resulting in unnecessary
network activity. Using getsockopt(SO_ERROR) before connect() solves
that, but introduces a race condition if a connection failure happens
between the two calls.
For this reason, this commit switches from connect() to a zero-sized
send() call, which is more consistent (though not completely, see the
truth table in the comments) and simpler to use for that purpose. Note
that Windows explictly support empty send() calls; POSIX says nothing
on the subject, but testing shows it works at least on Linux.
(Surprisingly enough, Windows seems more POSIX-compliant than Linux on
this one!)
The event loop does not guarantee that spurious write I/O events do not
happen; in fact, they are guaranteed to happen on Windows when
event_flush_output() is called. Because handle_meta_io() does not check
for spurious events, a metaconnection socket might appear connected even
though it's not, and will fail immediately when sending the ID request.
This commit fixes this issue by making handle_meta_io() check the
connection status before assuming the socket is connected. It seems that
the only reliable way to do that is to try to call connect() again and
look at the error code, which will be EISCONN if the socket is
connected, or EALREADY if it's not.
When using socket functions, "sockerrno" is supposed to be used to
retrieve the error code as opposed to "errno", so that it is translated
to the correct call on Windows (WSAGetLastError() - Windows does not
update errno on socket errors). Unfortunately, the use of sockerrno is
inconsistent throughout the tinc codebase, as errno is often used
incorrectly on socket-related calls.
This commit fixes these oversights, which improves socket error
handling on Windows.
These Windows include lines are capitalized, which causes the build to fail
when cross-compiling from Linux to Windows using MinGW as the MinGW headers
are entirely lower case.
Besides controlling when tinc-up and tinc-down get called, this commit makes
DeviceStandby control when the virtual network interface "cable" is "plugged"
on Windows. This is more user-friendly as the status of the tinc network can
be seen just by looking at the state of the network interface, and it makes
Windows behave better when isolated.
This adds a new DeviceStandby option; when it is disabled (the default),
behavior is unchanged. If it is enabled, tinc-up will not be called during
tinc initialization, but will instead be deferred until the first node is
reachable, and it will be closed as soon as no nodes are reachable.
This is useful because it means the device won't be set up until we are fairly
sure there is something listening on the other side. This is more user-friendly,
as one can check on the status of the tinc network connection just by checking
the status of the network interface. Besides, it prevents the OS from thinking
it is connected to some network when it is in fact completely isolated.
In send_sptps_data(), the len variable contains the length of the whole
datagram that needs to be sent to the peer, including the overhead from SPTPS
itself.
When tinc runs the graph algorithms and updates the nexthop and via pointers,
it uses a breadth-first search, but it can sometimes revisit nodes that have
already been visited if the previous path is marked as being indirect, and
there is a longer path that is "direct". The via pointer should be updated in
this case, because this points to the closest hop to the destination that can
be reached directly. However, the nexthop pointer should not be updated.
This fixes a bug where there could potentially be a routing loop if a node in
the graph has an edge with the indirect flag set, and some other edge without
that flag, the indirect edge is part of the minimum spanning tree, and a
broadcast packet is being sent.
The main reason to switch from AES-256-GCM to ChaCha-Poly1305 is to remove a
dependency on OpenSSL, whose behaviour of the AES-256-GCM decryption function
changes between versions. The source code for ChaCha-Pol1305 is small and in
the public domain, and can therefore be easily included in tinc itself.
Moreover, it is very fast even without using any optimized assembler, easily
outperforming AES-256-GCM on platforms that don't have special AES instructions
in hardware.
This uses the portable Ed25519 library made by Orson Peters, which in turn uses
the reference implementation made by Daniel J. Bernstein.
This implementation also allows Ed25519 keys to be used for key exchange, so
there is no need to add a separate implementation of Curve25519.
- Try to prevent SIGPIPE from being sent for errors sending to the control
socket. We don't outright block the SIGPIPE signal because we still want the
tinc CLI to exit when its output is actually sent to a real (broken) pipe.
- Don't call exit() from top(), and properly detect when the control socket is
closed by the tincd.