This removes a bunch of variables that are never actually used anywhere.
This fixes the following compiler warning when building for Windows:
mingw/device.c:46:17: error: ‘device_total_in’ defined but not used [-Werror=unused-variable]
static uint64_t device_total_in = 0;
^
This fixes the following compiler warning when building for Windows:
mingw/device.c: In function ‘setup_device’:
mingw/device.c:92:9: error: unused variable ‘thread’ [-Werror=unused-variable]
HANDLE thread;
^
This fixes the following compiler warning when building for Windows:
mingw/device.c: In function ‘setup_device’:
mingw/device.c:186:2: error: passing argument 2 of ‘io_add_event’ from incompatible pointer type [-Werror]
io_add_event(&device_read_io, device_handle_read, NULL, CreateEvent(NULL, TRUE, FALSE, NULL));
^
In file included from mingw/../net.h:27:0,
from mingw/../subnet.h:24,
from mingw/../conf.h:34,
from mingw/device.c:26:
mingw/../event.h:61:13: note: expected ‘io_cb_t’ but argument is of type ‘void (*)(void *)’
extern void io_add_event(io_t *io, io_cb_t cb, void* data, WSAEVENT event);
tinc is using a separate thread to read from the TAP device on Windows.
The rationale was that the notification mechanism for packets arriving
on the virtual network device is based on Win32 events, and the event
loop did not support listening to these events.
Thanks to recent improvements, this event loop limitation has been
lifted. Therefore we can get rid of the separate thread and simply add
the Win32 "incoming packet" event to the event loop, just like a socket.
The result is cleaner code that's easier to reason about.
Besides controlling when tinc-up and tinc-down get called, this commit makes
DeviceStandby control when the virtual network interface "cable" is "plugged"
on Windows. This is more user-friendly as the status of the tinc network can
be seen just by looking at the state of the network interface, and it makes
Windows behave better when isolated.
Before, the tapreader thread would just exit immediately after encountering the
first error, without notifying the main thread. Now, the tapreader thead never
exits itself, but tells the main thread to stop when more than ten errors are
encountered in a row.
This allows tincctl to receive log messages from a running tincd,
independent of what is logged to syslog or to file. Tincctl can receive
debug messages with an arbitrary level.
Apart from the platform specific tun/tap driver, link with the dummy and
raw_socket devices, and optionally with support for UML and VDE devices.
At runtime, the DeviceType option can be used to select which driver to
use.
This feature is not necessary anymore since we have tools like valgrind today
that can catch stack overflow errors before they make a backtrace in gdb
impossible.
The TAP-Win32 device is not a socket, and select() under Windows only works
with sockets. Tinc used a separate thread to read from the TAP-Win32 device,
and passed this via a local socket to the main thread which could then select()
from it. We now use a global mutex, which is only unlocked when the main thread
is waiting for select(), to allow the TAP reader thread to process packets
directly.
It's a wonder it ever worked before. The socket that is created is not of a
datagram type, therefore packet boundaries were not preserved, which becomes
a problem as soon as the TAP-Win32 device receives packets in fast succession.