2001-10-28 10:16:18 +00:00
|
|
|
/*
|
|
|
|
graph.c -- graph algorithms
|
2013-01-20 20:03:22 +00:00
|
|
|
Copyright (C) 2001-2013 Guus Sliepen <guus@tinc-vpn.org>,
|
2006-04-26 13:52:58 +00:00
|
|
|
2001-2005 Ivo Timmermans
|
2001-10-28 10:16:18 +00:00
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
2009-09-24 22:01:00 +00:00
|
|
|
You should have received a copy of the GNU General Public License along
|
|
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
2001-10-28 10:16:18 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
/* We need to generate two trees from the graph:
|
|
|
|
|
|
|
|
1. A minimum spanning tree for broadcasts,
|
|
|
|
2. A single-source shortest path tree for unicasts.
|
2001-10-29 13:14:57 +00:00
|
|
|
|
2001-10-28 10:16:18 +00:00
|
|
|
Actually, the first one alone would suffice but would make unicast packets
|
|
|
|
take longer routes than necessary.
|
2001-10-29 13:14:57 +00:00
|
|
|
|
2001-10-28 10:16:18 +00:00
|
|
|
For the MST algorithm we can choose from Prim's or Kruskal's. I personally
|
|
|
|
favour Kruskal's, because we make an extra AVL tree of edges sorted on
|
|
|
|
weights (metric). That tree only has to be updated when an edge is added or
|
|
|
|
removed, and during the MST algorithm we just have go linearly through that
|
2002-03-12 16:30:15 +00:00
|
|
|
tree, adding safe edges until #edges = #nodes - 1. The implementation here
|
|
|
|
however is not so fast, because I tried to avoid having to make a forest and
|
|
|
|
merge trees.
|
2001-10-28 10:16:18 +00:00
|
|
|
|
2001-10-28 22:42:49 +00:00
|
|
|
For the SSSP algorithm Dijkstra's seems to be a nice choice. Currently a
|
|
|
|
simple breadth-first search is presented here.
|
2002-02-10 21:57:54 +00:00
|
|
|
|
|
|
|
The SSSP algorithm will also be used to determine whether nodes are directly,
|
|
|
|
indirectly or not reachable from the source. It will also set the correct
|
|
|
|
destination address and port of a node if possible.
|
2001-10-28 10:16:18 +00:00
|
|
|
*/
|
|
|
|
|
2003-07-17 15:06:27 +00:00
|
|
|
#include "system.h"
|
2001-10-28 22:42:49 +00:00
|
|
|
|
2001-10-28 10:16:18 +00:00
|
|
|
#include "connection.h"
|
2002-07-10 11:27:06 +00:00
|
|
|
#include "device.h"
|
2003-07-17 15:06:27 +00:00
|
|
|
#include "edge.h"
|
2011-05-28 21:36:52 +00:00
|
|
|
#include "graph.h"
|
2012-10-07 19:59:53 +00:00
|
|
|
#include "list.h"
|
2003-07-06 22:11:37 +00:00
|
|
|
#include "logger.h"
|
2013-01-17 15:39:02 +00:00
|
|
|
#include "names.h"
|
2003-07-17 15:06:27 +00:00
|
|
|
#include "netutl.h"
|
|
|
|
#include "node.h"
|
2010-02-02 00:02:40 +00:00
|
|
|
#include "protocol.h"
|
2013-08-23 17:24:36 +00:00
|
|
|
#include "script.h"
|
2004-12-01 20:06:39 +00:00
|
|
|
#include "subnet.h"
|
2003-07-17 15:06:27 +00:00
|
|
|
#include "utils.h"
|
2009-09-08 16:18:36 +00:00
|
|
|
#include "xalloc.h"
|
2011-05-28 01:56:06 +00:00
|
|
|
#include "graph.h"
|
2001-10-28 10:16:18 +00:00
|
|
|
|
2002-03-12 16:30:15 +00:00
|
|
|
/* Implementation of Kruskal's algorithm.
|
2013-01-17 10:21:18 +00:00
|
|
|
Running time: O(EN)
|
2002-03-12 16:30:15 +00:00
|
|
|
Please note that sorting on weight is already done by add_edge().
|
2001-10-28 10:16:18 +00:00
|
|
|
*/
|
|
|
|
|
2012-02-25 22:03:09 +00:00
|
|
|
static void mst_kruskal(void) {
|
2002-09-09 21:25:28 +00:00
|
|
|
/* Clear MST status on connections */
|
|
|
|
|
2012-10-07 22:35:38 +00:00
|
|
|
for list_each(connection_t, c, connection_list)
|
2003-07-22 20:55:21 +00:00
|
|
|
c->status.mst = false;
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2012-02-26 17:37:36 +00:00
|
|
|
logger(DEBUG_SCARY_THINGS, LOG_DEBUG, "Running Kruskal's algorithm:");
|
2002-09-09 21:25:28 +00:00
|
|
|
|
|
|
|
/* Clear visited status on nodes */
|
|
|
|
|
2012-10-07 22:35:38 +00:00
|
|
|
for splay_each(node_t, n, node_tree)
|
2003-07-22 20:55:21 +00:00
|
|
|
n->status.visited = false;
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2013-01-17 10:21:18 +00:00
|
|
|
/* Starting point */
|
|
|
|
|
|
|
|
for splay_each(edge_t, e, edge_weight_tree) {
|
|
|
|
if(e->from->status.reachable) {
|
|
|
|
e->from->status.visited = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2002-09-09 21:25:28 +00:00
|
|
|
/* Add safe edges */
|
|
|
|
|
2013-01-17 10:21:18 +00:00
|
|
|
bool skipped = false;
|
|
|
|
|
2012-10-07 22:35:38 +00:00
|
|
|
for splay_each(edge_t, e, edge_weight_tree) {
|
2013-01-17 10:21:18 +00:00
|
|
|
if(!e->reverse || (e->from->status.visited == e->to->status.visited)) {
|
|
|
|
skipped = true;
|
2002-09-09 21:25:28 +00:00
|
|
|
continue;
|
2013-01-17 10:21:18 +00:00
|
|
|
}
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2003-07-22 20:55:21 +00:00
|
|
|
e->from->status.visited = true;
|
|
|
|
e->to->status.visited = true;
|
2002-09-09 21:25:28 +00:00
|
|
|
|
|
|
|
if(e->connection)
|
2003-07-22 20:55:21 +00:00
|
|
|
e->connection->status.mst = true;
|
2002-09-09 21:25:28 +00:00
|
|
|
|
|
|
|
if(e->reverse->connection)
|
2003-07-22 20:55:21 +00:00
|
|
|
e->reverse->connection->status.mst = true;
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2013-01-17 10:21:18 +00:00
|
|
|
logger(DEBUG_SCARY_THINGS, LOG_DEBUG, " Adding edge %s - %s weight %d", e->from->name, e->to->name, e->weight);
|
|
|
|
|
|
|
|
if(skipped) {
|
|
|
|
skipped = false;
|
|
|
|
next = edge_weight_tree->head;
|
|
|
|
}
|
2008-12-11 18:07:26 +00:00
|
|
|
}
|
|
|
|
}
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2001-10-28 22:42:49 +00:00
|
|
|
/* Implementation of a simple breadth-first search algorithm.
|
|
|
|
Running time: O(E)
|
|
|
|
*/
|
|
|
|
|
2012-02-25 22:03:09 +00:00
|
|
|
static void sssp_bfs(void) {
|
2012-10-07 22:35:38 +00:00
|
|
|
list_t *todo_list = list_alloc(NULL);
|
2002-09-09 21:25:28 +00:00
|
|
|
|
|
|
|
/* Clear visited status on nodes */
|
|
|
|
|
2012-10-07 22:35:38 +00:00
|
|
|
for splay_each(node_t, n, node_tree) {
|
2003-07-22 20:55:21 +00:00
|
|
|
n->status.visited = false;
|
|
|
|
n->status.indirect = true;
|
2012-07-20 18:35:07 +00:00
|
|
|
n->distance = -1;
|
2002-09-09 21:25:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Begin with myself */
|
|
|
|
|
2003-07-22 20:55:21 +00:00
|
|
|
myself->status.visited = true;
|
|
|
|
myself->status.indirect = false;
|
2002-09-09 21:25:28 +00:00
|
|
|
myself->nexthop = myself;
|
2012-02-22 22:17:43 +00:00
|
|
|
myself->prevedge = NULL;
|
2002-09-09 21:25:28 +00:00
|
|
|
myself->via = myself;
|
2012-07-20 18:35:07 +00:00
|
|
|
myself->distance = 0;
|
2004-12-01 20:06:39 +00:00
|
|
|
list_insert_head(todo_list, myself);
|
|
|
|
|
|
|
|
/* Loop while todo_list is filled */
|
|
|
|
|
2012-10-10 15:17:49 +00:00
|
|
|
for list_each(node_t, n, todo_list) { /* "n" is the node from which we start */
|
2012-10-07 22:35:38 +00:00
|
|
|
logger(DEBUG_SCARY_THINGS, LOG_DEBUG, " Examining edges from %s", n->name);
|
|
|
|
|
2012-07-20 18:35:07 +00:00
|
|
|
if(n->distance < 0)
|
|
|
|
abort();
|
2004-12-01 20:06:39 +00:00
|
|
|
|
2012-10-10 15:17:49 +00:00
|
|
|
for splay_each(edge_t, e, n->edge_tree) { /* "e" is the edge connected to "from" */
|
2004-12-01 20:06:39 +00:00
|
|
|
if(!e->reverse)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Situation:
|
|
|
|
|
|
|
|
/
|
|
|
|
/
|
|
|
|
----->(n)---e-->(e->to)
|
|
|
|
\
|
|
|
|
\
|
|
|
|
|
|
|
|
Where e is an edge, (n) and (e->to) are nodes.
|
|
|
|
n->address is set to the e->address of the edge left of n to n.
|
|
|
|
We are currently examining the edge e right of n from n:
|
|
|
|
|
|
|
|
- If edge e provides for better reachability of e->to, update
|
|
|
|
e->to and (re)add it to the todo_list to (re)examine the reachability
|
|
|
|
of nodes behind it.
|
|
|
|
*/
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2012-10-07 22:35:38 +00:00
|
|
|
bool indirect = n->status.indirect || e->options & OPTION_INDIRECT;
|
2004-12-01 20:06:39 +00:00
|
|
|
|
|
|
|
if(e->to->status.visited
|
2012-07-20 18:35:07 +00:00
|
|
|
&& (!e->to->status.indirect || indirect)
|
|
|
|
&& (e->to->distance != n->distance + 1 || e->weight >= e->to->prevedge->weight))
|
2004-12-01 20:06:39 +00:00
|
|
|
continue;
|
|
|
|
|
2014-05-06 10:58:25 +00:00
|
|
|
// Only update nexthop if it doesn't increase the path length
|
|
|
|
|
2015-04-24 16:07:12 +00:00
|
|
|
if(!e->to->status.visited || (e->to->distance == n->distance + 1 && e->weight <= e->to->prevedge->weight))
|
2014-05-06 10:58:25 +00:00
|
|
|
e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
|
|
|
|
|
2004-12-01 20:06:39 +00:00
|
|
|
e->to->status.visited = true;
|
|
|
|
e->to->status.indirect = indirect;
|
2012-02-22 22:17:43 +00:00
|
|
|
e->to->prevedge = e;
|
2004-12-01 20:06:39 +00:00
|
|
|
e->to->via = indirect ? n->via : e->to;
|
|
|
|
e->to->options = e->options;
|
2012-07-20 18:35:07 +00:00
|
|
|
e->to->distance = n->distance + 1;
|
2004-12-01 20:06:39 +00:00
|
|
|
|
2012-10-07 22:35:38 +00:00
|
|
|
if(!e->to->status.reachable || (e->to->address.sa.sa_family == AF_UNSPEC && e->address.sa.sa_family != AF_UNKNOWN))
|
2009-04-02 23:05:23 +00:00
|
|
|
update_node_udp(e->to, &e->address);
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2004-12-01 20:06:39 +00:00
|
|
|
list_insert_tail(todo_list, e->to);
|
2002-09-09 21:25:28 +00:00
|
|
|
}
|
2004-12-01 20:06:39 +00:00
|
|
|
|
2012-10-07 22:35:38 +00:00
|
|
|
next = node->next; /* Because the list_insert_tail() above could have added something extra for us! */
|
|
|
|
list_delete_node(todo_list, node);
|
2002-09-09 21:25:28 +00:00
|
|
|
}
|
|
|
|
|
2004-12-01 20:06:39 +00:00
|
|
|
list_free(todo_list);
|
2008-12-11 18:07:26 +00:00
|
|
|
}
|
|
|
|
|
2011-05-28 01:57:20 +00:00
|
|
|
static void check_reachability(void) {
|
2002-09-09 21:25:28 +00:00
|
|
|
/* Check reachability status. */
|
|
|
|
|
2014-06-22 09:48:34 +00:00
|
|
|
int reachable_count = 0;
|
|
|
|
int became_reachable_count = 0;
|
|
|
|
int became_unreachable_count = 0;
|
2012-10-07 22:35:38 +00:00
|
|
|
for splay_each(node_t, n, node_tree) {
|
2002-09-09 21:25:28 +00:00
|
|
|
if(n->status.visited != n->status.reachable) {
|
|
|
|
n->status.reachable = !n->status.reachable;
|
2013-03-08 13:11:15 +00:00
|
|
|
n->last_state_change = now.tv_sec;
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2003-07-12 17:41:48 +00:00
|
|
|
if(n->status.reachable) {
|
2012-02-26 17:37:36 +00:00
|
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Node %s (%s) became reachable",
|
2003-07-06 22:11:37 +00:00
|
|
|
n->name, n->hostname);
|
2014-06-22 09:48:34 +00:00
|
|
|
if (n != myself)
|
|
|
|
became_reachable_count++;
|
2003-07-12 17:41:48 +00:00
|
|
|
} else {
|
2012-02-26 17:37:36 +00:00
|
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Node %s (%s) became unreachable",
|
2003-07-06 22:11:37 +00:00
|
|
|
n->name, n->hostname);
|
2014-06-22 09:48:34 +00:00
|
|
|
if (n != myself)
|
|
|
|
became_unreachable_count++;
|
2003-07-12 17:41:48 +00:00
|
|
|
}
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2012-07-31 19:43:49 +00:00
|
|
|
if(experimental && OPTION_VERSION(n->options) >= 2)
|
|
|
|
n->status.sptps = true;
|
|
|
|
|
2009-04-02 23:05:23 +00:00
|
|
|
/* TODO: only clear status.validkey if node is unreachable? */
|
|
|
|
|
2003-07-22 20:55:21 +00:00
|
|
|
n->status.validkey = false;
|
2012-10-07 11:31:19 +00:00
|
|
|
if(n->status.sptps) {
|
|
|
|
sptps_stop(&n->sptps);
|
|
|
|
n->status.waitingforkey = false;
|
|
|
|
}
|
2010-01-23 17:48:01 +00:00
|
|
|
n->last_req_key = 0;
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2012-10-10 12:46:22 +00:00
|
|
|
n->status.udp_confirmed = false;
|
2003-12-22 11:04:17 +00:00
|
|
|
n->maxmtu = MTU;
|
2015-01-11 15:10:58 +00:00
|
|
|
n->maxrecentlen = 0;
|
2003-12-22 11:04:17 +00:00
|
|
|
n->minmtu = 0;
|
|
|
|
n->mtuprobes = 0;
|
|
|
|
|
Add UDP discovery mechanism.
This adds a new mechanism by which tinc can determine if a node is
reachable via UDP. The new mechanism is currently redundant with the
PMTU discovery mechanism - that will be fixed in a future commit.
Conceptually, the UDP discovery mechanism works similarly to PMTU
discovery: it sends UDP probes (of minmtu size, to make sure the tunnel
is fully usable), and assumes UDP is usable if it gets replies. It
assumes UDP is broken if too much time has passed since the last reply.
The big difference with the current PMTU discovery mechanism, however,
is that UDP discovery probes are only triggered as part of the
packet TX path (through try_tx()). This is quite interesting, because
it means tinc will never send UDP pings more often than normal packets,
and most importantly, it will automatically stop sending pings as soon
as packets stop flowing, thereby nicely reducing network chatter.
Of course, there are small drawbacks in some edge cases: for example,
if a node only sends one packet every minute to another node, these
packets will only be sent over TCP, because the interval between packets
is too long for tinc to maintain the UDP tunnel. I consider this a
feature, not a bug: I believe it is appropriate to use TCP in scenarios
where traffic is negligible, so that we don't pollute the network with
pings just to maintain a UDP tunnel that's seeing negligible usage.
2014-12-29 10:34:39 +00:00
|
|
|
timeout_del(&n->udp_ping_timeout);
|
2009-06-11 17:07:54 +00:00
|
|
|
|
2012-10-07 22:35:38 +00:00
|
|
|
char *name;
|
|
|
|
char *address;
|
|
|
|
char *port;
|
2013-07-05 19:36:51 +00:00
|
|
|
char *envp[8] = {NULL};
|
2012-10-07 22:35:38 +00:00
|
|
|
|
2009-09-08 16:18:36 +00:00
|
|
|
xasprintf(&envp[0], "NETNAME=%s", netname ? : "");
|
|
|
|
xasprintf(&envp[1], "DEVICE=%s", device ? : "");
|
|
|
|
xasprintf(&envp[2], "INTERFACE=%s", iface ? : "");
|
|
|
|
xasprintf(&envp[3], "NODE=%s", n->name);
|
2002-09-09 21:25:28 +00:00
|
|
|
sockaddr2str(&n->address, &address, &port);
|
2009-09-08 16:18:36 +00:00
|
|
|
xasprintf(&envp[4], "REMOTEADDRESS=%s", address);
|
|
|
|
xasprintf(&envp[5], "REMOTEPORT=%s", port);
|
2013-07-05 19:36:51 +00:00
|
|
|
xasprintf(&envp[6], "NAME=%s", myself->name);
|
2002-09-09 21:25:28 +00:00
|
|
|
|
2006-06-12 21:45:39 +00:00
|
|
|
execute_script(n->status.reachable ? "host-up" : "host-down", envp);
|
|
|
|
|
2012-10-07 22:35:38 +00:00
|
|
|
xasprintf(&name, n->status.reachable ? "hosts/%s-up" : "hosts/%s-down", n->name);
|
2002-09-09 21:25:28 +00:00
|
|
|
execute_script(name, envp);
|
|
|
|
|
|
|
|
free(name);
|
|
|
|
free(address);
|
|
|
|
free(port);
|
|
|
|
|
2013-07-05 19:36:51 +00:00
|
|
|
for(int i = 0; i < 7; i++)
|
2002-09-09 21:25:28 +00:00
|
|
|
free(envp[i]);
|
2004-12-01 20:06:39 +00:00
|
|
|
|
|
|
|
subnet_update(n, NULL, n->status.reachable);
|
2009-12-08 22:18:37 +00:00
|
|
|
|
2012-07-30 16:36:59 +00:00
|
|
|
if(!n->status.reachable) {
|
2009-12-08 22:18:37 +00:00
|
|
|
update_node_udp(n, NULL);
|
2012-10-11 20:21:30 +00:00
|
|
|
memset(&n->status, 0, sizeof n->status);
|
|
|
|
n->options = 0;
|
2015-01-11 12:51:55 +00:00
|
|
|
} else if(n->connection) {
|
|
|
|
// Speed up UDP probing by sending our key.
|
|
|
|
if(!n->status.sptps)
|
|
|
|
send_ans_key(n);
|
2012-07-30 16:36:59 +00:00
|
|
|
}
|
2002-09-09 21:25:28 +00:00
|
|
|
}
|
2014-06-22 09:48:34 +00:00
|
|
|
|
|
|
|
if(n->status.reachable && n != myself)
|
|
|
|
reachable_count++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (device_standby) {
|
|
|
|
if (reachable_count == 0 && became_unreachable_count > 0)
|
|
|
|
device_disable();
|
2014-09-06 09:43:15 +00:00
|
|
|
else if (reachable_count > 0 && reachable_count == became_reachable_count)
|
2014-06-22 09:48:34 +00:00
|
|
|
device_enable();
|
2002-09-09 21:25:28 +00:00
|
|
|
}
|
2002-02-10 21:57:54 +00:00
|
|
|
}
|
|
|
|
|
2007-05-18 10:00:00 +00:00
|
|
|
void graph(void) {
|
2009-11-07 22:43:25 +00:00
|
|
|
subnet_cache_flush();
|
2012-02-25 22:03:09 +00:00
|
|
|
sssp_bfs();
|
2008-12-11 18:07:26 +00:00
|
|
|
check_reachability();
|
2007-05-17 21:14:30 +00:00
|
|
|
mst_kruskal();
|
|
|
|
}
|