The tree functions were never used on the connection_tree, a list is more appropriate.
Also be more paranoid about connections disappearing while traversing the list.
Similar to old style key exchange requests, keep track of whether a key
exchange is already in progress and how long it took. If no key is known yet
or if key exchange takes too long, (re)start a new key exchange.
When two nodes which support SPTPS want to send packets to each other, they now
always use SPTPS. The node initiating the SPTPS session send the first SPTPS
packet via an extended REQ_KEY messages. All other handshake messages are sent
using ANS_KEY messages. This ensures that intermediate nodes using an older
version of tinc can still help with NAT traversal. After the authentication
phase is over, SPTPS packets are sent via UDP, or are encapsulated in extended
REQ_KEY messages instead of PACKET messages.
This allows tincctl to receive log messages from a running tincd,
independent of what is logged to syslog or to file. Tincctl can receive
debug messages with an arbitrary level.
REQ_KEY requests have an extra field indicating key exchange version.
If it is present and > 0, the sender supports ECDH. If the receiver also
does, then it will generate a new keypair and sends the public key in a
ANS_KEY request with "ECDH:" prefixed. The ans_key_h() function will
compute the shared secret, which, at the moment,is used as is to set the
cipher and HMAC keys. However, this must be changed to use a proper KDF.
In the future, the ECDH key exchange must also be signed.
Before, if MTU probes failed, tinc would stop sending probes until the next
time keys were regenerated (by default, once every hour). Now it continues to
send them every PingInterval, so it recovers faster from temporary failures.
To help peers that are behind NAT connect to each other directly via UDP, they
need to know the exact external address and port that they use. Keys exchanged
between NATted peers necessarily go via a third node, which knows this address
and port, and can append this information to the keys, which is in turned used
by the peers.
Since PMTU discovery will immediately trigger UDP communication from both sides
to each other, this should allow direct communication between peers behind
full, address-restricted and port-restricted cone NAT.
When we got a key request for or from a node we don't know, we disconnected the
node that forwarded us that request. However, especially in TunnelServer mode,
disconnecting does not help. We now ignore such requests, but since there is no
way of telling the original sender that the request was dropped, we now retry
sending REQ_KEY requests when we don't get an ANS_KEY back.
This wasn't working at all, since we didn't do HMAC but just a plain hash.
Also, verification of packets failed because it was checking the whole packet,
not the packet minus the HMAC.
This feature is not necessary anymore since we have tools like valgrind today
that can catch stack overflow errors before they make a backtrace in gdb
impossible.
We used both rand() and random() in our code. Since it returns an int, we have
to use %x in our format strings instead of %lx. This fixes a crash under
Windows when cross-compiling tinc with a recent version of MinGW.
Instead of a single, global decryption context, each node has its own context.
However, in send_ans_key(), the global context was initialised. This commit
fixes that and removes the global context completely.
Also only set status.validkey after all checks have been evaluated.
Previously, tinc used a fixed address and port for each node for UDP packet
exchange. The port was the one advertised by that node as its listening port.
However, due to NAT the port might be different. Now, tinc sends a different
session key to each node. This way, the sending node can be determined from
incoming packets by checking the MAC against all session keys. If a match is
found, the address and port for that node are updated.
When no session key is known for a node, or when it is doing PMTU discovery but
no MTU probes have returned yet, packets are sent via TCP. Some logic is added
to make sure intermediate nodes continue forwarding via TCP. The per-node
packet queue is now no longer necessary and has been removed.
(The new code is still segfaulting for me, and I'd like to proceed with other
work.)
This largely rolls back to the revision 1545 state of the existing code
(new crypto layer is still there with no callers), though I reintroduced
the segfault fix of revision 1562.
- Convert cp to cp(); so that automatic indenters work.
- Convert constructions like if(x == NULL) to if(!x).
- Move all assignments out of conditions.