There are several reasons for this:
- MacOS/X doesn't support polling the tap device using kqueue, requiring a
workaround to fall back to select().
- On Windows only sockets are properly handled, therefore tinc uses a second
thread that does a blocking ReadFile() on the TAP-Win32/64 device. However,
this does not mix well with libevent.
- Libevent, event just the core, is quite large, and although it is easy to get
and install on many platforms, it can be a burden.
- Libev is more lightweight and seems technically superior, but it doesn't
abstract away all the platform differences (for example, async events are not
supported on Windows).
We don't need to search the whole edge tree, we can use the node's own edge
tree since each edge has a pointer to its reverse. Also, we do need to make
sure we try the reflexive address often.
Before it would always use the first socket, and always send an IPv4 broadcast packet. That
works fine in a lot of situations, but it is better to try all sockets, and to send IPv6 packets
on IPv6 sockets. This is especially important for users that are on IPv6-only networks or that
have multiple physical network interfaces, although in the latter case it probably requires
them to use the ListenAddress variable to create a separate socket for each interface.
Only the very first packet of an SPTPS session should be send with REQ_KEY,
this signals the peer to abort any previous session and start a new one as
well.
The tree functions were never used on the connection_tree, a list is more appropriate.
Also be more paranoid about connections disappearing while traversing the list.
Similar to old style key exchange requests, keep track of whether a key
exchange is already in progress and how long it took. If no key is known yet
or if key exchange takes too long, (re)start a new key exchange.
When two nodes which support SPTPS want to send packets to each other, they now
always use SPTPS. The node initiating the SPTPS session send the first SPTPS
packet via an extended REQ_KEY messages. All other handshake messages are sent
using ANS_KEY messages. This ensures that intermediate nodes using an older
version of tinc can still help with NAT traversal. After the authentication
phase is over, SPTPS packets are sent via UDP, or are encapsulated in extended
REQ_KEY messages instead of PACKET messages.
When the "Broadcast = direct" option is used, broadcast packets are not sent
and forwarded via the Minimum Spanning Tree to all nodes, but are sent directly
to all nodes that can be reached in one hop.
One use for this is to allow running ad-hoc routing protocols, such as OLSR, on
top of tinc.
This allows tincctl to receive log messages from a running tincd,
independent of what is logged to syslog or to file. Tincctl can receive
debug messages with an arbitrary level.
Apart from the platform specific tun/tap driver, link with the dummy and
raw_socket devices, and optionally with support for UML and VDE devices.
At runtime, the DeviceType option can be used to select which driver to
use.
Probably due to a merge, the try_harder() function had duplicated the
rate-limiting code for detecting the sender node based on the HMAC of the
packet. This prevented this detection from running at all. The function is now
identical again to that in the 1.0 branch.
Because we don't want to keep track of that, and this will cause the node
structure from being relinked into the node tree, which results in myself
pointing to an invalid address.
When a UDP packet was received with an unknown source address/port, and if it
failed a HMAC check against known keys, it could still incorrectly assign that
UDP address to another node. This would temporarily cause outgoing UDP packets
to go to the wrong destination address, until packets from the correct address
were received again.
Before, if MTU probes failed, tinc would stop sending probes until the next
time keys were regenerated (by default, once every hour). Now it continues to
send them every PingInterval, so it recovers faster from temporary failures.
When we got a key request for or from a node we don't know, we disconnected the
node that forwarded us that request. However, especially in TunnelServer mode,
disconnecting does not help. We now ignore such requests, but since there is no
way of telling the original sender that the request was dropped, we now retry
sending REQ_KEY requests when we don't get an ANS_KEY back.
This wasn't working at all, since we didn't do HMAC but just a plain hash.
Also, verification of packets failed because it was checking the whole packet,
not the packet minus the HMAC.
If MTU probing discovered a node was not reachable via UDP, packets for it were
forwarded to the next hop, but always via TCP, even if the next hop was
reachable via UDP. This is now fixed by retrying to send the packet using
send_packet() if the destination is not the same as the nexthop.
This keeps NAT mappings for UDP alive, and will also detect when a node is not
reachable via UDP anymore or if the path MTU is decreasing. Tinc will fall back
to TCP if the node has become unreachable.
If UDP communication is impossible, we stop sending probes, but we retry if it
changes its keys.
We also decouple the UDP and TCP ping mechanisms completely, to ensure tinc
properly detects failure of either method.
This feature is not necessary anymore since we have tools like valgrind today
that can catch stack overflow errors before they make a backtrace in gdb
impossible.
During the path MTU discovery phase, we might not know the maximum MTU yet, but
we do know a safe minimum. If we encounter a packet that is larger than that
the minimum, we now send it via TCP instead to ensure it arrives. We also
allow large packets that we cannot fragment or create ICMP replies for to be
sent via TCP.
We used both rand() and random() in our code. Since it returns an int, we have
to use %x in our format strings instead of %lx. This fixes a crash under
Windows when cross-compiling tinc with a recent version of MinGW.
Although we select() before we call recvfrom(), it sometimes happens that
select() tells us we can read but a subsequent read fails anyway. This is
harmless.
If there is an outstanding MTU probe event for a node which is not reachable
anymore, a UDP packet would be sent to that node, which caused a key request to
be sent to that node, which triggered a NULL pointer dereference. Probes and
other UDP packets to unreachable nodes are now dropped.
First of all, the idea behind the TunnelServer option is to hide all other
nodes from each other, so we shouldn't forward broadcast packets from them
anyway. The other reason is that since edges from other nodes are ignored, the
calculated minimum spanning tree might not be correct, which can result in
routing loops.
Since compression can either grow or shrink a packet, the size of an MTU probe
after decompression might not reflect the real path MTU. Now we use the size
before decompression, which is independent of the compression algorithm, and
substract a safety margin such that the calculated path MTU will be safe even
for packets which grow as much as possible after compression.
Instead of a single, global decryption context, each node has its own context.
However, in send_ans_key(), the global context was initialised. This commit
fixes that and removes the global context completely.
Also only set status.validkey after all checks have been evaluated.
Previously, tinc used a fixed address and port for each node for UDP packet
exchange. The port was the one advertised by that node as its listening port.
However, due to NAT the port might be different. Now, tinc sends a different
session key to each node. This way, the sending node can be determined from
incoming packets by checking the MAC against all session keys. If a match is
found, the address and port for that node are updated.
When no session key is known for a node, or when it is doing PMTU discovery but
no MTU probes have returned yet, packets are sent via TCP. Some logic is added
to make sure intermediate nodes continue forwarding via TCP. The per-node
packet queue is now no longer necessary and has been removed.
(The new code is still segfaulting for me, and I'd like to proceed with other
work.)
This largely rolls back to the revision 1545 state of the existing code
(new crypto layer is still there with no callers), though I reintroduced
the segfault fix of revision 1562.
This is a quick initial conversion that doesn't yet show much advantage:
- We roll our own timeouts.
- We roll our own signal handling.
- We build up the meta connection fd events on each loop rather than
on state changes.
This relieves some confusion and problems during the libevent transition.
In particular, "event_add" was defined by both.
(The 't' stands for 'timeout', 'tinc', 'temporary', or some such.)
- Convert cp to cp(); so that automatic indenters work.
- Convert constructions like if(x == NULL) to if(!x).
- Move all assignments out of conditions.
- Remove checks for specific OS's, instead check for #defines/#includes.
- Use uint??_t where appropriate.
- Mask handling functions use void pointers to get rid of silly casts.
- Socket handling revamped to use sockaddr_t.
- tinc can now tunnel over IPv6.
- Handle all addresses and subnets in network byte order.
Only convert them when they need to be printed.
- IPv6 subnets bigger than /128 now work.
- Use %s and strerror(errno) instead of %m.