There are several reasons for this:
- MacOS/X doesn't support polling the tap device using kqueue, requiring a
workaround to fall back to select().
- On Windows only sockets are properly handled, therefore tinc uses a second
thread that does a blocking ReadFile() on the TAP-Win32/64 device. However,
this does not mix well with libevent.
- Libevent, event just the core, is quite large, and although it is easy to get
and install on many platforms, it can be a burden.
- Libev is more lightweight and seems technically superior, but it doesn't
abstract away all the platform differences (for example, async events are not
supported on Windows).
When set to a non-zero value, tinc will try to maintain exactly that number of
meta connections to other nodes. If there are not enough connections, it will
periodically try to set up an outgoing connection to a random node. If there
are too many connections, it will periodically try to remove an outgoing
connection.
When the Proxy option is used, outgoing connections will be made via the
specified proxy. There is no support for authentication methods or for having
the proxy forward incoming connections, and there is no attempt to proxy UDP.
When the "Broadcast = direct" option is used, broadcast packets are not sent
and forwarded via the Minimum Spanning Tree to all nodes, but are sent directly
to all nodes that can be reached in one hop.
One use for this is to allow running ad-hoc routing protocols, such as OLSR, on
top of tinc.
When the Name starts with a $, the rest will be interpreted as the name of an
environment variable containing the real Name. When Name is $HOST, but this
environment variable does not exist, gethostname() will be used to set the
Name. In both cases, illegal characters will be converted to underscores.
DeviceType = multicast allows one to specify a multicast address and port with
a Device statement. Tinc will then read/send packets to that multicast group
instead of to a tun/tap device. This allows interaction with UML, QEMU and KVM
instances that are listening on the same group.
This allows tincctl to receive log messages from a running tincd,
independent of what is logged to syslog or to file. Tincctl can receive
debug messages with an arbitrary level.
This allows administrators who frequently want to work with one tinc
network to omit the -n option. Since the NETNAME variable is set by
tincd when executing scripts, this makes it slightly easier to use
tincctl from within scripts.
The Broadcast option can be used to cause tinc to drop all broadcast and
multicast packets. This option might be expanded in the future to selectively
allow only some broadcast packet types.
Tinc will now, by default, decrement the TTL field of incoming IPv4 and IPv6
packets, before forwarding them to the virtual network device or to another
node. Packets with a TTL value of zero will be dropped, and an ICMP Time
Exceeded message will be sent back.
This behaviour can be disabled using the DecrementTTL option.
Apart from the platform specific tun/tap driver, link with the dummy and
raw_socket devices, and optionally with support for UML and VDE devices.
At runtime, the DeviceType option can be used to select which driver to
use.
Instead of UNIX time, the log messages now start with the time in RFC3339
format, which human-readable and still easy for the computer to parse and sort.
The HUP signal will also cause the log file to be closed and reopened, which is
useful when log rotation is used. If there is an error while opening the log
file, this is logged to stderr.
With some exceptions, tinc only accepted host configuration options for the
local node from the corresponding host configuration file. Although this is
documented, many people expect that they can also put those options in
tinc.conf. Tinc now internally merges the contents of both tinc.conf and the
local host configuration file.
When this option is enabled, packets that cannot be sent directly to the destination node,
but which would have to be forwarded by an intermediate node, are dropped instead.
When combined with the IndirectData option,
packets for nodes for which we do not have a meta connection with are also dropped.
This determines if and how incoming packets that are not meant for the local
node are forwarded. It can either be off, internal (tinc forwards them itself,
as in previous versions), or kernel (packets are always sent to the TUN/TAP
device, letting the kernel sort them out).
When this option is enabled, tinc will not accept dynamic updates of Subnets
from other nodes, but will only use Subnets read from local host config files
to build its routing table.
Mention that TCPOnly is not necessary anymore since tinc will autodetect
whether it can send via UDP or not. Also mention the WEIGHT environment
variable and the new default value (2048 bits) of RSA keys.
The top node was made conditional with the @iftex command, since it should not
appear in PostScript and PDF output. However, it is still necessary for
texi2html, so we have to use @ifnottex instead.
Texi2html also complains about the use of @cindex in the copyright statement,
so we remove that.
This option can be set to low, normal or high. On UNIX flavours, this changes
the nice value of the process by +10, 0 and -10 respectively. On Windows, it
sets the priority to BELOW_NORMAL_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS and
HIGH_PRIORITY_CLASS respectively.
A high priority might help to reduce latency and packet loss on the VPN.
Add two options, -R/--chroot and -U/--user=user, to chroot to the
config directory (where tinc.conf is located) and to perform
setuid to the user specified, after all the initialization is done.
What's left is handling of pid file since we can't remove it anymore.
Tinc allows multiple nodes to own the same Subnet, but did not have a sensible
way to decide which one to send packets to. Tinc also did not check the
reachability of nodes when deciding where to route packets to, so it would not
automatically fail over to a reachable node.
Tinc now assigns a weight to each Subnet. The default weight is 10, with lower
weights having higher priority. The Subnets are now internally sorted in the
same way as the kernel's routing table, and the Subnets are search linearly,
skipping those of unreachable nodes. A small cache of recently used addresses
is used to speed up the lookup functions.