If the result of an RSA encryption or decryption operation can be represented
in less bytes than given, gcry_mpi_print() will not add leading zero bytes. Fix
this by adding those ourself.
This wasn't working at all, since we didn't do HMAC but just a plain hash.
Also, verification of packets failed because it was checking the whole packet,
not the packet minus the HMAC.
We clear the cached address used for UDP connections when a node becomes
unreachable. This also prevents host-up scripts from passing the old, cached
address from when the host becomes reachable again from a different address.
Before it would check all addresses, and not learn an address if another node
already claimed that address. This caused fast roaming to fail, the code from
commit 6f6f426b35 was never triggered.
The control socket code was completely different from how meta connections are
handled, resulting in lots of extra code to handle requests. Also, not every
operating system has UNIX sockets, so we have to resort to another type of
sockets or pipes for those anyway. To reduce code duplication and make control
sockets work the same on all platforms, we now just connect to the TCP port
where tincd is already listening on.
To authenticate, the program that wants to control a running tinc daemon must
send the contents of a cookie file. The cookie is a random 256 bits number that
is regenerated every time tincd starts. The cookie file should only be readable
by the same user that can start a tincd.
Instead of the binary-ish protocol previously used, we now use an ASCII
protocol similar to that of the meta connections, but this can still change.
Since event.h is not part of tinc, we include it in have.h were all other
system header files are included. We also ensure -levent comes before -lgdi32
when compiling with MinGW, apparently it doesn't work when the order is
reversed.
UNIX domain sockets, of course, don't exist on Windows. For now, when compiling
tinc in a MinGW environment, try to use a TCP socket bound to localhost as an
alternative.
In switch mode, if a known MAC address is claimed by a second node before it
expired at the first node, it is likely that this is because a computer has
roamed from the LAN of the first node to that of the second node. To ensure
packets for that computer are routed to the second node, the first node should
delete its corresponding Subnet as soon as possible, without waiting for the
normal expiry timeout.
If MTU probing discovered a node was not reachable via UDP, packets for it were
forwarded to the next hop, but always via TCP, even if the next hop was
reachable via UDP. This is now fixed by retrying to send the packet using
send_packet() if the destination is not the same as the nexthop.
Options should have a fixed width anyway, but this also fixes a possible MinGW
compiler bug where %lx tries to print a 64 bit value, even though a long int is
only 32 bits.
We now handle MAC Subnets in exactly the same way as IPv4 and IPv6 Subnets.
This also fixes a problem that causes unncessary broadcasting of unicast
packets in VPNs where some daemons run 1.0.10 and some run other versions.
When the HUP signal is sent while some outgoing connections have not been made
yet, or are being retried, a NULL pointer could be dereferenced resulting in
tinc crashing. We fix this by more careful handling of outgoing_ts, and by
deleting all connections that have not been fully activated yet at the HUP
signal is received.
This device works like /dev/tun on Linux, automatically creating a new tap
interface when a program opens it. We now pass the actual name of the newly
created interface in $INTERFACE.