tinc/src/protocol_key.c

482 lines
15 KiB
C
Raw Normal View History

2002-02-11 10:05:58 +00:00
/*
protocol_key.c -- handle the meta-protocol, key exchange
Copyright (C) 1999-2005 Ivo Timmermans,
2000-2014 Guus Sliepen <guus@tinc-vpn.org>
2002-02-11 10:05:58 +00:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
2002-02-11 10:05:58 +00:00
*/
#include "system.h"
2002-02-11 10:05:58 +00:00
#include "cipher.h"
#include "connection.h"
#include "crypto.h"
#include "logger.h"
2002-02-11 10:05:58 +00:00
#include "net.h"
#include "netutl.h"
#include "node.h"
2011-07-03 13:59:49 +00:00
#include "prf.h"
#include "protocol.h"
#include "sptps.h"
#include "utils.h"
#include "xalloc.h"
2002-02-11 10:05:58 +00:00
static bool mykeyused = false;
2002-02-11 10:05:58 +00:00
void send_key_changed(void) {
send_request(everyone, "%d %x %s", KEY_CHANGED, rand(), myself->name);
2002-09-09 21:25:28 +00:00
/* Immediately send new keys to directly connected nodes to keep UDP mappings alive */
2002-09-09 21:25:28 +00:00
2012-10-07 22:35:38 +00:00
for list_each(connection_t, c, connection_list)
if(c->edge && c->node && c->node->status.reachable && !c->node->status.sptps)
2012-10-07 22:35:38 +00:00
send_ans_key(c->node);
/* Force key exchange for connections using SPTPS */
if(experimental) {
2012-10-07 22:35:38 +00:00
for splay_each(node_t, n, node_tree)
if(n->status.reachable && n->status.validkey && n->status.sptps)
sptps_force_kex(&n->sptps);
}
2002-02-11 10:05:58 +00:00
}
bool key_changed_h(connection_t *c, const char *request) {
2002-09-09 21:25:28 +00:00
char name[MAX_STRING_SIZE];
node_t *n;
if(sscanf(request, "%*d %*x " MAX_STRING, name) != 1) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got bad %s from %s (%s)", "KEY_CHANGED",
2002-09-09 21:25:28 +00:00
c->name, c->hostname);
2003-07-22 20:55:21 +00:00
return false;
2002-09-09 21:25:28 +00:00
}
if(seen_request(request))
2003-07-22 20:55:21 +00:00
return true;
2002-09-09 21:25:28 +00:00
n = lookup_node(name);
if(!n) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got %s from %s (%s) origin %s which does not exist",
2002-09-09 21:25:28 +00:00
"KEY_CHANGED", c->name, c->hostname, name);
return true;
2002-09-09 21:25:28 +00:00
}
if(!n->status.sptps) {
n->status.validkey = false;
n->last_req_key = 0;
}
2002-09-09 21:25:28 +00:00
/* Tell the others */
if(!tunnelserver)
forward_request(c, request);
2002-09-09 21:25:28 +00:00
2003-07-22 20:55:21 +00:00
return true;
2002-02-11 10:05:58 +00:00
}
static bool send_initial_sptps_data(void *handle, uint8_t type, const void *data, size_t len) {
node_t *to = handle;
to->sptps.send_data = send_sptps_data;
char buf[len * 4 / 3 + 5];
b64encode(data, buf, len);
return send_request(to->nexthop->connection, "%d %s %s %d %s", REQ_KEY, myself->name, to->name, REQ_KEY, buf);
}
bool send_req_key(node_t *to) {
if(to->status.sptps) {
if(!node_read_ecdsa_public_key(to)) {
2014-05-18 18:47:04 +00:00
logger(DEBUG_PROTOCOL, LOG_DEBUG, "No Ed25519 key known for %s (%s)", to->name, to->hostname);
send_request(to->nexthop->connection, "%d %s %s %d", REQ_KEY, myself->name, to->name, REQ_PUBKEY);
return true;
}
if(to->sptps.label)
logger(DEBUG_ALWAYS, LOG_DEBUG, "send_req_key(%s) called while sptps->label != NULL!", to->name);
2012-10-10 15:17:49 +00:00
char label[25 + strlen(myself->name) + strlen(to->name)];
snprintf(label, sizeof label, "tinc UDP key expansion %s %s", myself->name, to->name);
2012-08-02 15:23:51 +00:00
sptps_stop(&to->sptps);
to->status.validkey = false;
to->status.waitingforkey = true;
to->last_req_key = now.tv_sec;
to->incompression = myself->incompression;
2012-10-10 15:17:49 +00:00
return sptps_start(&to->sptps, to, true, true, myself->connection->ecdsa, to->ecdsa, label, sizeof label, send_initial_sptps_data, receive_sptps_record);
}
return send_request(to->nexthop->connection, "%d %s %s", REQ_KEY, myself->name, to->name);
}
/* REQ_KEY is overloaded to allow arbitrary requests to be routed between two nodes. */
static bool req_key_ext_h(connection_t *c, const char *request, node_t *from, int reqno) {
switch(reqno) {
case REQ_PUBKEY: {
if(!node_read_ecdsa_public_key(from)) {
/* Request their key *before* we send our key back. Otherwise the first SPTPS packet from them will get dropped. */
logger(DEBUG_PROTOCOL, LOG_DEBUG, "Preemptively requesting Ed25519 key for %s (%s)", from->name, from->hostname);
send_request(from->nexthop->connection, "%d %s %s %d", REQ_KEY, myself->name, from->name, REQ_PUBKEY);
}
char *pubkey = ecdsa_get_base64_public_key(myself->connection->ecdsa);
send_request(from->nexthop->connection, "%d %s %s %d %s", REQ_KEY, myself->name, from->name, ANS_PUBKEY, pubkey);
free(pubkey);
return true;
}
case ANS_PUBKEY: {
if(node_read_ecdsa_public_key(from)) {
2012-09-28 15:51:48 +00:00
logger(DEBUG_PROTOCOL, LOG_WARNING, "Got ANS_PUBKEY from %s (%s) even though we already have his pubkey", from->name, from->hostname);
return true;
}
char pubkey[MAX_STRING_SIZE];
if(sscanf(request, "%*d %*s %*s %*d " MAX_STRING, pubkey) != 1 || !(from->ecdsa = ecdsa_set_base64_public_key(pubkey))) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got bad %s from %s (%s): %s", "ANS_PUBKEY", from->name, from->hostname, "invalid pubkey");
return true;
}
2014-05-18 18:47:04 +00:00
logger(DEBUG_PROTOCOL, LOG_INFO, "Learned Ed25519 public key from %s (%s)", from->name, from->hostname);
append_config_file(from->name, "Ed25519PublicKey", pubkey);
return true;
}
case REQ_KEY: {
if(!node_read_ecdsa_public_key(from)) {
2014-05-18 18:47:04 +00:00
logger(DEBUG_PROTOCOL, LOG_DEBUG, "No Ed25519 key known for %s (%s)", from->name, from->hostname);
send_request(from->nexthop->connection, "%d %s %s %d", REQ_KEY, myself->name, from->name, REQ_PUBKEY);
return true;
}
if(from->sptps.label)
logger(DEBUG_ALWAYS, LOG_DEBUG, "Got REQ_KEY from %s while we already started a SPTPS session!", from->name);
char buf[MAX_STRING_SIZE];
int len;
if(sscanf(request, "%*d %*s %*s %*d " MAX_STRING, buf) != 1 || !(len = b64decode(buf, buf, strlen(buf)))) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got bad %s from %s (%s): %s", "REQ_SPTPS_START", from->name, from->hostname, "invalid SPTPS data");
return true;
}
char label[25 + strlen(from->name) + strlen(myself->name)];
snprintf(label, sizeof label, "tinc UDP key expansion %s %s", from->name, myself->name);
2012-08-02 15:23:51 +00:00
sptps_stop(&from->sptps);
from->status.validkey = false;
from->status.waitingforkey = true;
from->last_req_key = now.tv_sec;
2012-10-10 15:17:49 +00:00
sptps_start(&from->sptps, from, false, true, myself->connection->ecdsa, from->ecdsa, label, sizeof label, send_sptps_data, receive_sptps_record);
sptps_receive_data(&from->sptps, buf, len);
Add MTU_INFO protocol message. In this commit, nodes use MTU_INFO messages to provide MTU information. The issue this code is meant to address is the non-trivial problem of finding the proper MTU when UDP SPTPS relays are involved. Currently, tinc has no idea what the MTU looks like beyond the first relay, and will arbitrarily use the first relay's MTU as the limit. This will fail miserably if the MTU decreases after the first relay, forcing relays to fall back to TCP. More generally, one should keep in mind that relay paths can be arbitrarily complex, resulting in packets taking "epic journeys" through the graph, switching back and forth between UDP (with variable MTUs) and TCP multiple times along the path. A solution that was considered consists in sending standard MTU probes through the relays. This is inefficient (if there are 3 nodes on one side of relay and 3 nodes on the other side, we end up with 3*3=9 MTU discoveries taking place at the same time, while technically only 3+3=6 are needed) and would involve eyebrow-raising behaviors such as probes being sent over TCP. This commit implements an alternative solution, which consists in the packet receiver sending MTU_INFO messages to the packet sender. The message contains an MTU value which is set to maximum when the message is originally sent. The message gets altered as it travels through the metagraph, such that when the message arrives to the destination, the MTU value contained in the message can be used to send packets while making sure no relays will be forced to fall back to TCP to deliver them. The operating principles behind such a protocol message are similar to how the UDP_INFO message works, but there is a key difference that prevents us from simply reusing the same message: the UDP_INFO message only cares about relay-to-relay links (i.e. it is sent between static relays and the information it contains only makes sense between two adjacent static relays), while the MTU_INFO cares about the end-to-end MTU, including the entire relay path. Therefore, UDP_INFO messages stop when they encounter static relays, while MTU_INFO messages don't stop until they get to the original packet sender. Note that, technically, the MTU that is obtained through this mechanism can be slightly pessimistic, because it can be lowered by an intermediate node that is not being used as a relay. Since nodes have no way of knowing whether they'll be used as dynamic relays or not (and have no say in the matter), this is not a trivial problem. That said, this is highly unlikely to result in noticeable issues in realistic scenarios.
2015-03-08 18:54:50 +00:00
send_mtu_info(myself, from, MTU);
return true;
}
case REQ_SPTPS: {
if(!from->status.validkey) {
logger(DEBUG_PROTOCOL, LOG_ERR, "Got REQ_SPTPS from %s (%s) but we don't have a valid key yet", from->name, from->hostname);
return true;
}
char buf[MAX_STRING_SIZE];
int len;
if(sscanf(request, "%*d %*s %*s %*d " MAX_STRING, buf) != 1 || !(len = b64decode(buf, buf, strlen(buf)))) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got bad %s from %s (%s): %s", "REQ_SPTPS", from->name, from->hostname, "invalid SPTPS data");
return true;
}
sptps_receive_data(&from->sptps, buf, len);
Add MTU_INFO protocol message. In this commit, nodes use MTU_INFO messages to provide MTU information. The issue this code is meant to address is the non-trivial problem of finding the proper MTU when UDP SPTPS relays are involved. Currently, tinc has no idea what the MTU looks like beyond the first relay, and will arbitrarily use the first relay's MTU as the limit. This will fail miserably if the MTU decreases after the first relay, forcing relays to fall back to TCP. More generally, one should keep in mind that relay paths can be arbitrarily complex, resulting in packets taking "epic journeys" through the graph, switching back and forth between UDP (with variable MTUs) and TCP multiple times along the path. A solution that was considered consists in sending standard MTU probes through the relays. This is inefficient (if there are 3 nodes on one side of relay and 3 nodes on the other side, we end up with 3*3=9 MTU discoveries taking place at the same time, while technically only 3+3=6 are needed) and would involve eyebrow-raising behaviors such as probes being sent over TCP. This commit implements an alternative solution, which consists in the packet receiver sending MTU_INFO messages to the packet sender. The message contains an MTU value which is set to maximum when the message is originally sent. The message gets altered as it travels through the metagraph, such that when the message arrives to the destination, the MTU value contained in the message can be used to send packets while making sure no relays will be forced to fall back to TCP to deliver them. The operating principles behind such a protocol message are similar to how the UDP_INFO message works, but there is a key difference that prevents us from simply reusing the same message: the UDP_INFO message only cares about relay-to-relay links (i.e. it is sent between static relays and the information it contains only makes sense between two adjacent static relays), while the MTU_INFO cares about the end-to-end MTU, including the entire relay path. Therefore, UDP_INFO messages stop when they encounter static relays, while MTU_INFO messages don't stop until they get to the original packet sender. Note that, technically, the MTU that is obtained through this mechanism can be slightly pessimistic, because it can be lowered by an intermediate node that is not being used as a relay. Since nodes have no way of knowing whether they'll be used as dynamic relays or not (and have no say in the matter), this is not a trivial problem. That said, this is highly unlikely to result in noticeable issues in realistic scenarios.
2015-03-08 18:54:50 +00:00
send_mtu_info(myself, from, MTU);
return true;
}
default:
logger(DEBUG_ALWAYS, LOG_ERR, "Unknown extended REQ_KEY request from %s (%s): %s", from->name, from->hostname, request);
return true;
}
2002-02-11 10:05:58 +00:00
}
bool req_key_h(connection_t *c, const char *request) {
2002-09-09 21:25:28 +00:00
char from_name[MAX_STRING_SIZE];
char to_name[MAX_STRING_SIZE];
node_t *from, *to;
int reqno = 0;
2002-09-09 21:25:28 +00:00
if(sscanf(request, "%*d " MAX_STRING " " MAX_STRING " %d", from_name, to_name, &reqno) < 2) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got bad %s from %s (%s)", "REQ_KEY", c->name,
2002-09-09 21:25:28 +00:00
c->hostname);
2003-07-22 20:55:21 +00:00
return false;
2002-09-09 21:25:28 +00:00
}
if(!check_id(from_name) || !check_id(to_name)) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got bad %s from %s (%s): %s", "REQ_KEY", c->name, c->hostname, "invalid name");
return false;
}
2002-09-09 21:25:28 +00:00
from = lookup_node(from_name);
if(!from) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got %s from %s (%s) origin %s which does not exist in our connection list",
2002-09-09 21:25:28 +00:00
"REQ_KEY", c->name, c->hostname, from_name);
return true;
2002-09-09 21:25:28 +00:00
}
to = lookup_node(to_name);
if(!to) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got %s from %s (%s) destination %s which does not exist in our connection list",
2002-09-09 21:25:28 +00:00
"REQ_KEY", c->name, c->hostname, to_name);
return true;
2002-09-09 21:25:28 +00:00
}
Add UDP_INFO protocol message. In this commit, nodes use UDP_INFO messages to provide UDP address information. The basic principle is that the node that receives packets sends UDP_INFO messages to the node that's sending the packets. The message originally contains no address information, and is (hopefully) updated with relevant address information as it gets relayed through the metagraph - specifically, each intermediate node will update the message with its best guess as to what the address is while forwarding it. When a node receives an UDP_INFO message, and it doesn't have a confirmed UDP tunnel with the originator node, it will update its records with the new address for that node, so that it always has the best possible guess as to how to reach that node. This applies to the destination node of course, but also to any intermediate nodes, because there's no reason they should pass on the free intel, and because it results in nice behavior in the presence of relay chains (multiple nodes in a path all trying to reach the same destination). If, on the other hand, the node does have a confirmed UDP tunnel, it will ignore the address information contained in the message. In all cases, if the node that receives the message is not the destination node specified in the message, it will forward the message but not before overriding the address information with the one from its own records. If the node has a confirmed UDP tunnel, that means the message is updated with the address of the confirmed tunnel; if not, the message simply reflects the records of the intermediate node, which just happen to be the contents of the UDP_INFO message it just got, so it's simply forwarded with no modification. This is similar to the way ANS_KEY messages are currently overloaded to provide UDP address information, with two differences: - UDP_INFO messages are sent way more often than ANS_KEY messages, thereby keeping the address information fresh. Previously, if the UDP situation were to change after the ANS_KEY message was sent, the sender would virtually never get the updated information. - Once a node puts address information in an ANS_KEY message, it is never changed again as the message travels through the metagraph; in contrast, UDP_INFO messages behave the opposite way, as they get rewritten every time they travel through a node with a confirmed UDP tunnel. The latter behavior seems more appropriate because UDP tunnel information becomes more relevant as it moves closer to the destination node. The ANS_KEY behavior is not satisfactory in some cases such as multi-layered graphs where the first hop is located before a NAT. Ultimately, the rationale behind this whole process is to improve UDP hole punching capabilities when port translation is in effect, and more generally, to make tinc more reliable in (very) hostile network conditions (such as multi-layered NAT).
2015-01-03 17:46:33 +00:00
/* If this is a SPTPS packet, see if sending UDP info helps.
Note that we only do this if we're the destination or the static relay;
otherwise every hop would initiate its own UDP info message, resulting in elevated chatter. */
if(experimental && (reqno == REQ_KEY || reqno == REQ_SPTPS) && to->via == myself)
send_udp_info(myself, from);
2002-09-09 21:25:28 +00:00
/* Check if this key request is for us */
2012-10-10 15:17:49 +00:00
if(to == myself) { /* Yes */
/* Is this an extended REQ_KEY message? */
if(experimental && reqno)
return req_key_ext_h(c, request, from, reqno);
/* No, just send our key back */
send_ans_key(from);
2002-09-09 21:25:28 +00:00
} else {
if(tunnelserver)
return true;
if(!to->status.reachable) {
2012-09-28 15:51:48 +00:00
logger(DEBUG_PROTOCOL, LOG_WARNING, "Got %s from %s (%s) destination %s which is not reachable",
"REQ_KEY", c->name, c->hostname, to_name);
return true;
}
Add UDP datagram relay support to SPTPS. This commit changes the layout of UDP datagrams to include a 6-byte destination node ID at the very beginning of the datagram (i.e. before the source node ID and the seqno). Note that this only applies to SPTPS. Thanks to this new field, it is now possible to send SPTPS datagrams to nodes that are not the final recipient of the packets, thereby using these nodes as relay nodes. Previously SPTPS was unable to relay packets using UDP, and required a fallback to TCP if the final recipient could not be contacted directly using UDP. In that sense it fixes a regression that SPTPS introduced with regard to the legacy protocol. This change also updates tinc's low-level routing logic (i.e. send_sptps_data()) to automatically use this relaying facility if at all possible. Specifically, it will relay packets if we don't have a confirmed UDP link to the final recipient (but we have one with the next hop node), or if IndirectData is specified. This is similar to how the legacy protocol forwards packets. When sending packets directly without any relaying, the sender node uses a special value for the destination node ID: instead of setting the field to the ID of the recipient node, it writes a zero ID instead. This allows the recipient node to distinguish between a relayed packet and a direct packet, which is important when determining the UDP address of the sending node. On the relay side, relay nodes will happily relay packets that have a destination ID which is non-zero *and* is different from their own, provided that the source IP address of the packet is known. This is to prevent abuse by random strangers, since a node can't authenticate the packets that are being relayed through it. This change keeps the protocol number from the previous datagram format change (source IDs), 17.4. Compatibility is still preserved with 1.0 and with pre-1.1 releases. Note, however, that nodes running this code won't understand datagrams sent from nodes that only use source IDs and vice-versa (not that we really care). There is one caveat: in the current state, there is no way for the original sender to know what the PMTU is beyond the first hop, and contrary to the legacy protocol, relay nodes can't apply MSS clamping because they can't decrypt the relayed packets. This leads to inefficient scenarios where a reduced PMTU over some link that's part of the relay path will result in relays falling back to TCP to send packets to their final destinations. Another caveat is that once a packet gets sent over TCP, it will use TCP over the entire path, even if it is technically possible to use UDP beyond the TCP-only link(s). Arguably, these two caveats can be fixed by improving the metaconnection protocol, but that's out of scope for this change. TODOs are added instead. In any case, this is no worse than before. In addition, this change increases SPTPS datagram overhead by another 6 bytes for the destination ID, on top of the existing 6-byte overhead from the source ID.
2014-09-28 11:38:06 +00:00
/* TODO: forwarding SPTPS packets in this way is inefficient because we send them over TCP without checking for UDP connectivity */
send_request(to->nexthop->connection, "%s", request);
2002-09-09 21:25:28 +00:00
}
2002-02-11 10:05:58 +00:00
2003-07-22 20:55:21 +00:00
return true;
2002-02-11 10:05:58 +00:00
}
bool send_ans_key(node_t *to) {
if(to->status.sptps)
abort();
#ifdef DISABLE_LEGACY
return false;
#else
size_t keylen = myself->incipher ? cipher_keylength(myself->incipher) : 1;
char key[keylen * 2 + 1];
2002-09-09 21:25:28 +00:00
randomize(key, keylen);
cipher_close(to->incipher);
digest_close(to->indigest);
2012-10-09 14:27:28 +00:00
if(myself->incipher) {
to->incipher = cipher_open_by_nid(cipher_get_nid(myself->incipher));
if(!to->incipher)
abort();
if(!cipher_set_key(to->incipher, key, false))
abort();
}
2002-09-09 21:25:28 +00:00
if(myself->indigest) {
to->indigest = digest_open_by_nid(digest_get_nid(myself->indigest), digest_length(myself->indigest));
if(!to->indigest)
abort();
if(!digest_set_key(to->indigest, key, keylen))
abort();
}
to->incompression = myself->incompression;
bin2hex(key, key, keylen);
2002-09-09 21:25:28 +00:00
// Reset sequence number and late packet window
mykeyused = true;
to->received_seqno = 0;
to->received = 0;
if(replaywin) memset(to->late, 0, replaywin);
to->status.validkey_in = true;
2012-07-21 10:51:53 +00:00
return send_request(to->nexthop->connection, "%d %s %s %s %d %d %d %d", ANS_KEY,
myself->name, to->name, key,
cipher_get_nid(to->incipher),
digest_get_nid(to->indigest),
(int)digest_length(to->indigest),
to->incompression);
#endif
2002-02-11 10:05:58 +00:00
}
bool ans_key_h(connection_t *c, const char *request) {
2002-09-09 21:25:28 +00:00
char from_name[MAX_STRING_SIZE];
char to_name[MAX_STRING_SIZE];
char key[MAX_STRING_SIZE];
2012-10-10 15:17:49 +00:00
char address[MAX_STRING_SIZE] = "";
char port[MAX_STRING_SIZE] = "";
int cipher, digest, maclength, compression, keylen;
2002-09-09 21:25:28 +00:00
node_t *from, *to;
2011-07-13 20:52:52 +00:00
if(sscanf(request, "%*d "MAX_STRING" "MAX_STRING" "MAX_STRING" %d %d %d %d "MAX_STRING" "MAX_STRING,
2002-09-09 21:25:28 +00:00
from_name, to_name, key, &cipher, &digest, &maclength,
&compression, address, port) < 7) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got bad %s from %s (%s)", "ANS_KEY", c->name,
2002-09-09 21:25:28 +00:00
c->hostname);
2003-07-22 20:55:21 +00:00
return false;
2002-02-11 10:05:58 +00:00
}
2002-09-09 21:25:28 +00:00
if(!check_id(from_name) || !check_id(to_name)) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got bad %s from %s (%s): %s", "ANS_KEY", c->name, c->hostname, "invalid name");
return false;
}
2002-09-09 21:25:28 +00:00
from = lookup_node(from_name);
if(!from) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got %s from %s (%s) origin %s which does not exist in our connection list",
2002-09-09 21:25:28 +00:00
"ANS_KEY", c->name, c->hostname, from_name);
return true;
2002-09-09 21:25:28 +00:00
}
to = lookup_node(to_name);
if(!to) {
logger(DEBUG_ALWAYS, LOG_ERR, "Got %s from %s (%s) destination %s which does not exist in our connection list",
2002-09-09 21:25:28 +00:00
"ANS_KEY", c->name, c->hostname, to_name);
return true;
2002-02-11 10:05:58 +00:00
}
2002-09-09 21:25:28 +00:00
/* Forward it if necessary */
if(to != myself) {
if(tunnelserver)
return true;
if(!to->status.reachable) {
logger(DEBUG_ALWAYS, LOG_WARNING, "Got %s from %s (%s) destination %s which is not reachable",
"ANS_KEY", c->name, c->hostname, to_name);
return true;
}
if(!*address && from->address.sa.sa_family != AF_UNSPEC) {
char *address, *port;
logger(DEBUG_PROTOCOL, LOG_DEBUG, "Appending reflexive UDP address to ANS_KEY from %s to %s", from->name, to->name);
sockaddr2str(&from->address, &address, &port);
send_request(to->nexthop->connection, "%s %s %s", request, address, port);
free(address);
free(port);
return true;
}
return send_request(to->nexthop->connection, "%s", request);
2002-02-11 10:05:58 +00:00
}
2002-09-09 21:25:28 +00:00
#ifndef DISABLE_LEGACY
/* Don't use key material until every check has passed. */
cipher_close(from->outcipher);
digest_close(from->outdigest);
#endif
from->status.validkey = false;
if(compression < 0 || compression > 11) {
logger(DEBUG_ALWAYS, LOG_ERR, "Node %s (%s) uses bogus compression level!", from->name, from->hostname);
return true;
}
from->outcompression = compression;
/* SPTPS or old-style key exchange? */
if(from->status.sptps) {
char buf[strlen(key)];
int len = b64decode(key, buf, strlen(key));
if(!len || !sptps_receive_data(&from->sptps, buf, len))
logger(DEBUG_ALWAYS, LOG_ERR, "Error processing SPTPS data from %s (%s)", from->name, from->hostname);
if(from->status.validkey) {
if(*address && *port) {
logger(DEBUG_PROTOCOL, LOG_DEBUG, "Using reflexive UDP address from %s: %s port %s", from->name, address, port);
sockaddr_t sa = str2sockaddr(address, port);
update_node_udp(from, &sa);
}
}
Add MTU_INFO protocol message. In this commit, nodes use MTU_INFO messages to provide MTU information. The issue this code is meant to address is the non-trivial problem of finding the proper MTU when UDP SPTPS relays are involved. Currently, tinc has no idea what the MTU looks like beyond the first relay, and will arbitrarily use the first relay's MTU as the limit. This will fail miserably if the MTU decreases after the first relay, forcing relays to fall back to TCP. More generally, one should keep in mind that relay paths can be arbitrarily complex, resulting in packets taking "epic journeys" through the graph, switching back and forth between UDP (with variable MTUs) and TCP multiple times along the path. A solution that was considered consists in sending standard MTU probes through the relays. This is inefficient (if there are 3 nodes on one side of relay and 3 nodes on the other side, we end up with 3*3=9 MTU discoveries taking place at the same time, while technically only 3+3=6 are needed) and would involve eyebrow-raising behaviors such as probes being sent over TCP. This commit implements an alternative solution, which consists in the packet receiver sending MTU_INFO messages to the packet sender. The message contains an MTU value which is set to maximum when the message is originally sent. The message gets altered as it travels through the metagraph, such that when the message arrives to the destination, the MTU value contained in the message can be used to send packets while making sure no relays will be forced to fall back to TCP to deliver them. The operating principles behind such a protocol message are similar to how the UDP_INFO message works, but there is a key difference that prevents us from simply reusing the same message: the UDP_INFO message only cares about relay-to-relay links (i.e. it is sent between static relays and the information it contains only makes sense between two adjacent static relays), while the MTU_INFO cares about the end-to-end MTU, including the entire relay path. Therefore, UDP_INFO messages stop when they encounter static relays, while MTU_INFO messages don't stop until they get to the original packet sender. Note that, technically, the MTU that is obtained through this mechanism can be slightly pessimistic, because it can be lowered by an intermediate node that is not being used as a relay. Since nodes have no way of knowing whether they'll be used as dynamic relays or not (and have no say in the matter), this is not a trivial problem. That said, this is highly unlikely to result in noticeable issues in realistic scenarios.
2015-03-08 18:54:50 +00:00
send_mtu_info(myself, from, MTU);
return true;
}
#ifdef DISABLE_LEGACY
logger(DEBUG_ALWAYS, LOG_ERR, "Node %s (%s) uses legacy protocol!", from->name, from->hostname);
return false;
#else
2002-09-09 21:25:28 +00:00
/* Check and lookup cipher and digest algorithms */
if(cipher) {
if(!(from->outcipher = cipher_open_by_nid(cipher))) {
logger(DEBUG_ALWAYS, LOG_ERR, "Node %s (%s) uses unknown cipher!", from->name, from->hostname);
return false;
}
} else {
from->outcipher = NULL;
}
if(digest) {
if(!(from->outdigest = digest_open_by_nid(digest, maclength))) {
logger(DEBUG_ALWAYS, LOG_ERR, "Node %s (%s) uses unknown digest!", from->name, from->hostname);
return false;
}
} else {
from->outdigest = NULL;
}
if(maclength != digest_length(from->outdigest)) {
logger(DEBUG_ALWAYS, LOG_ERR, "Node %s (%s) uses bogus MAC length!", from->name, from->hostname);
return false;
2002-09-09 21:25:28 +00:00
}
/* Process key */
keylen = hex2bin(key, key, sizeof key);
if(keylen != (from->outcipher ? cipher_keylength(from->outcipher) : 1)) {
logger(DEBUG_ALWAYS, LOG_ERR, "Node %s (%s) uses wrong keylength!", from->name, from->hostname);
return true;
}
/* Update our copy of the origin's packet key */
if(from->outcipher && !cipher_set_key(from->outcipher, key, true))
return false;
if(from->outdigest && !digest_set_key(from->outdigest, key, keylen))
return false;
from->status.validkey = true;
from->sent_seqno = 0;
2003-10-11 12:16:13 +00:00
if(*address && *port) {
logger(DEBUG_PROTOCOL, LOG_DEBUG, "Using reflexive UDP address from %s: %s port %s", from->name, address, port);
sockaddr_t sa = str2sockaddr(address, port);
update_node_udp(from, &sa);
}
2003-07-22 20:55:21 +00:00
return true;
#endif
2002-02-11 10:05:58 +00:00
}