open-ameba/sdk/component/common/video/v4l2/inc/v4l2-osdep.h

846 lines
22 KiB
C
Raw Normal View History

2016-11-22 04:48:09 +00:00
#ifndef _V4L2_OSDEP_H_
#define _V4L2_OSDEP_H_
#include "platform/platform_stdlib.h"
#include "basic_types.h"
#include "osdep_api.h"
#include "usb_defs.h"
#include "errno.h"
//#include "hal_util.h"
#include "dlist.h"
#define V4L2_LAYER_DEBUG 0
#if V4L2_LAYER_DEBUG
#define V4L2_PRINTF(fmt, args...) printf("\n\r%s: " fmt, __FUNCTION__, ## args)
#define V4L2_ERROR(fmt, args...) printf("\n\r%s: " fmt, __FUNCTION__, ## args)
#else
#define V4L2_PRINTF(fmt, args...)
#define V4L2_ERROR(fmt, args...) printf("\n\r%s: " fmt, __FUNCTION__, ## args)
#endif
/* misc items */
#ifndef ssize_t
#define ssize_t SSIZE_T
#endif
#ifndef size_t
#define size_t SIZE_T
#endif
#ifndef __user
#define __user
#endif
#ifndef loff_t
#define loff_t long
#endif
#ifndef __u8
#define __u8 u8
#endif
#ifndef __u16
#define __u16 u16
#endif
#ifndef __u32
#define __u32 u32
#endif
#ifndef __u64
#define __u64 u64
#endif
#ifndef __s8
#define __s8 s8
#endif
#ifndef __s16
#define __s16 s16
#endif
#ifndef __s32
#define __s32 s32
#endif
#ifndef __s64
#define __s64 s64
#endif
#ifndef spinlock_t
#define spinlock_t _Lock
#endif
#ifndef gfp_t
#define gfp_t u32
#endif
#ifndef _atomic_spin_lock_irqsave
#define _atomic_spin_lock_irqsave(p, flags) SaveAndCli()
#endif
#ifndef _atomic_spin_unlock_irqrestore
#define _atomic_spin_unlock_irqrestore(p, flags) RestoreFlags()
#endif
#ifndef local_irq_save
#define local_irq_save(flags) SaveAndCli()
#endif
#ifndef local_irq_restore
#define local_irq_restore(flags) RestoreFlags()
#endif
#ifndef cris_atomic_save
#define cris_atomic_save(addr, flags) local_irq_save(flags)
#endif
#ifndef cris_atomic_restore
#define cris_atomic_restore(addr, flags) local_irq_restore(flags)
#endif
/*
* abs() handles unsigned and signed longs, ints, shorts and chars. For all
* input types abs() returns a signed long.
* abs() should not be used for 64-bit types (s64, u64, long long) - use abs64()
* for those.
*/
#ifndef abs
#define abs(x) ((x >= 0) ? (x) : (x * -1))
#endif
#ifndef min
#define min(x, y) ((x) < (y) ? (x) : (y))
#endif
#ifndef max
#define max(x, y) ((x) > (y) ? (x) : (y))
#endif
#ifndef min_t
#define min_t(type, x, y) ({ \
type __min1 = (x); \
type __min2 = (y); \
(__min1 < __min2) ? (__min1) : (__min2); })
#endif
#ifndef max_t
#define max_t(type, x, y) ({ \
type __max1 = (x); \
type __max2 = (y); \
(__max1 > __max2) ? (__max1) : (__max2); })
#endif
#ifndef max_tt
#define max_tt(ret,type,x,y) do{ \
type __max1 = (x); \
type __max2 = (y); \
ret = (__max1 > __max2) ? (__max1) : (__max2); }while(0)
#endif
#ifndef min_tt
#define min_tt(ret,type, x, y) do{ \
type __min1 = (x); \
type __min2 = (y); \
ret = (__min1 < __min2) ? (__min1) : (__min2); }while(0)
#endif
/**
* container_of - cast a member of a structure out to the containing structure
* @p(ptr): the pointer to the member.
* @t(type): the type of the container struct this is embedded in.
* @m(member): the name of the member within the struct.
*
*/
#ifndef container_of
#define container_of(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
#endif
/**
* list_next_entry - get the next element in list
* @pos: the type * to cursor
* @member: the name of the list_struct within the struct.
*/
#define list_next_entry(pos, member, type) \
list_entry((pos)->member.next, type, member)
/**
* list_for_each_entry_continue - continue iteration over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*
* Continue to iterate over list of given type, continuing after
* the current position.
*/
#define list_for_each_entry_continue(pos, head, member, type) \
for (pos = list_next_entry(pos, member, type); \
&pos->member != (head); \
pos = list_next_entry(pos, member, type))
/* spin lock */
#ifndef spin_lock_init
#define spin_lock_init(plock) RtlSpinlockInit((plock))
#endif
#ifndef spin_lock_free
#define spin_lock_free(plock) RtlSpinlockFree((plock))
#endif
#ifndef spin_lock
#define spin_lock(plock) RtlSpinlock((plock))
#endif
#ifndef spin_unlock
#define spin_unlock(plock) RtlSpinunlock((plock))
#endif
/* mutex */
#ifndef Mutex
#define Mutex _Mutex
#endif
#ifndef mutex_init
#define mutex_init(pmutex) RtlMutexInit((pmutex))
#endif
#ifndef mutex_lock
#define mutex_lock(pmutex) RtlDownSema((pmutex))
#endif
#ifndef mutex_unlock
#define mutex_unlock(pmutex) RtlUpSema((pmutex))
#endif
#ifndef mutex_destory
#define mutex_destory(pmutex) RtlMutexFree((pmutex))
#endif
/* semaphore */
#ifndef Sema
#define Sema _Sema
#endif
#ifndef Sema_Init
#define Sema_Init(pmutex, pval) RtlInitSema(pmutex, pval)
#endif
#ifndef Sema_Free
#define Sema_Free(pmutex) RtlFreeSema(pmutex)
#endif
#ifndef Sema_Up
#define Sema_Up(pmutex) RtlUpSema(pmutex)
#endif
#ifndef Sema_Down
#define Sema_Down(pmutex) RtlDownSema(pmutex)
#endif
#ifndef Sema_Sown_WithTimeout
#define Sema_Down_WithTimeout(pmutex,ptimeout) RtlDownSemaWithTimeout(pmutex,ptimeout) //
#endif
/* Atomic integer operations */
#ifndef atomic_set
#define atomic_set(v, i) RTL_ATOMIC_SET((v), (i))
#endif
#ifndef atomic_read
#define atomic_read(v) RTL_ATOMIC_READ((v))
#endif
#ifndef atomic_add
#define atomic_add(v, i) RTL_ATOMIC_ADD((v), (i))
#endif
#ifndef atomic_sub
#define atomic_sub(v, i) RTL_ATOMIC_SUB((v), (i))
#endif
#ifndef atomic_inc
#define atomic_inc(v) RTL_ATOMIC_INC((v))
#endif
#ifndef atomic_dec
#define atomic_dec(v) RTL_ATOMIC_DEC((v))
#endif
// IOCTL ...
#ifndef _IOC_NRBITS
#define _IOC_NRBITS (8)
#endif
#ifndef _IOC_TYPEBITS
#define _IOC_TYPEBITS (8)
#endif
#ifndef _IOC_SIZEBITS
#define _IOC_SIZEBITS (14)
#endif
#ifndef _IOC_DIRBITS
#define _IOC_DIRBITS (2)
#endif
#ifndef _IOC_NRMASK
#define _IOC_NRMASK ((1 << _IOC_NRBITS) - 1)
#endif
#ifndef _IOC_TYPEMASK
#define _IOC_TYPEMASK ((1 << _IOC_TYPEBITS) - 1)
#endif
#ifndef _IOC_SIZEMASK
#define _IOC_SIZEMASK ((1 << _IOC_SIZEBITS) - 1)
#endif
#ifndef _IOC_DIRMASK
#define _IOC_DIRMASK ((1 << _IOC_DIRBITS) - 1)
#endif
#ifndef _IOC_NRSHIFT
#define _IOC_NRSHIFT (0)
#endif
#ifndef _IOC_TYPESHIFT
#define _IOC_TYPESHIFT (_IOC_NRSHIFT + _IOC_NRBITS)
#endif
#ifndef _IOC_SIZESHIFT
#define _IOC_SIZESHIFT (_IOC_TYPESHIFT + _IOC_TYPEBITS)
#endif
#ifndef _IOC_DIRSHIFT
#define _IOC_DIRSHIFT (_IOC_SIZESHIFT + _IOC_SIZEBITS)
#endif
/*
* Direction bits.
*/
#ifndef _IOC_NONE
#define _IOC_NONE (0U)
#endif
#ifndef _IOC_WRITE
#define _IOC_WRITE (1U)
#endif
#ifndef _IOC_READ
#define _IOC_READ (2U)
#endif
/*
* combine the four dir<EFBFBD>Atype<EFBFBD>Anr<EFBFBD>Asize parameters to one cmd parameter
*
*/
#ifndef _IOC
#define _IOC(dir,type,nr,size) \
(((dir) << _IOC_DIRSHIFT) | \
((type) << _IOC_TYPESHIFT) | \
((nr) << _IOC_NRSHIFT) | \
((size) << _IOC_SIZESHIFT))
#endif
/*
* used to create IOCTL cmd
*/
#ifndef _IO
#define _IO(type,nr) _IOC(_IOC_NONE,(type), (nr), 0)
#endif
#ifndef _IOR
#define _IOR(type,nr,size) _IOC(_IOC_READ,(type), (nr), sizeof(size))
#endif
#ifndef _IOW
#define _IOW(type,nr,size) _IOC(_IOC_WRITE,(type), (nr), sizeof(size))
#endif
#ifndef _IOWR
#define _IOWR(type,nr,size) _IOC(_IOC_READ|_IOC_WRITE, (type), (nr), sizeof(size))
#endif
/*
* used to decode ioctl infoations..
*/
#ifndef _IOC_DIR
#define _IOC_DIR(nr) (((nr) >> _IOC_DIRSHIFT) & _IOC_DIRMASK)
#endif
#ifndef _IOC_TYPE
#define _IOC_TYPE(nr) (((nr) >> _IOC_TYPESHIFT) & _IOC_TYPEMASK)
#endif
#ifndef _IOC_NR
#define _IOC_NR(nr) (((nr) >> _IOC_NRSHIFT) & _IOC_NRMASK)
#endif
#ifndef _IOC_SIZE
#define _IOC_SIZE(nr) (((nr) >> _IOC_SIZESHIFT) & _IOC_SIZEMASK)
#endif
/* ...and for the drivers/sound files... */
#ifndef IOC_IN
#define IOC_IN (_IOC_WRITE << _IOC_DIRSHIFT)
#endif
#ifndef IOC_OUT
#define IOC_OUT (_IOC_READ << _IOC_DIRSHIFT)
#endif
#ifndef IOC_INOUT
#define IOC_INOUT ((_IOC_WRITE|_IOC_READ) << _IOC_DIRSHIFT)
#endif
#ifndef IOCSIZE_MASK
#define IOCSIZE_MASK (_IOC_SIZEMASK << _IOC_SIZESHIFT)
#endif
#ifndef IOCSIZE_SHIFT
#define IOCSIZE_SHIFT (_IOC_SIZESHIFT)
#endif
#ifndef DIV_ROUND_UP
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
#endif
#ifndef BITS_PER_LONG
#define BITS_PER_LONG (32)
#endif
#ifndef BITS_PER_LONG_LONG
#define BITS_PER_LONG_LONG (32)
#endif
#ifndef BIT
#define BIT(nr) (1UL << (nr))
#endif
#ifndef BIT_ULL
#define BIT_ULL(nr) (1ULL << (nr))
#endif
#ifndef BIT_MASK
#define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#endif
#ifndef BIT_WORD
#define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
#endif
#ifndef BIT_ULL_MASK
#define BIT_ULL_MASK(nr) (1ULL << ((nr) % BITS_PER_LONG_LONG))
#endif
#ifndef BIT_ULL_WORD
#define BIT_ULL_WORD(nr) ((nr) / BITS_PER_LONG_LONG)
#endif
#ifndef BITS_PER_BYTE
#define BITS_PER_BYTE (8)
#endif
#ifndef BITS_TO_LONGS
#define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
#endif
/* __ffs to find out the first exist 1 offset, from bit 0 ~ 31 */
#ifndef ffz
#define ffz(x) __ffs(~(x))
#endif
/* __builtin_constant_p is gcc build-in function to check the parameter is const or not */
#ifndef small_const_nbits
#define small_const_nbits(nbits) \
(__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG)
#endif
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static inline unsigned long __ffs(unsigned long word)
{
int num = 0;
#if BITS_PER_LONG == 64
if ((word & 0xffffffff) == 0) {
num += 32;
word >>= 32;
}
#endif
if ((word & 0xffff) == 0) {
num += 16;
word >>= 16;
}
if ((word & 0xff) == 0) {
num += 8;
word >>= 8;
}
if ((word & 0xf) == 0) {
num += 4;
word >>= 4;
}
if ((word & 0x3) == 0) {
num += 2;
word >>= 2;
}
if ((word & 0x1) == 0)
num += 1;
return num;
}
/**
* __fls - find last (most-significant) set bit in a long word
* @word: the word to search
*
* Undefined if no set bit exists, so code should check against 0 first.
*/
static inline unsigned long __fls(unsigned long word)
{
int num = BITS_PER_LONG - 1;
#if BITS_PER_LONG == 64
if (!(word & (~0ul << 32))) {
num -= 32;
word <<= 32;
}
#endif
if (!(word & (~0ul << (BITS_PER_LONG-16)))) {
num -= 16;
word <<= 16;
}
if (!(word & (~0ul << (BITS_PER_LONG-8)))) {
num -= 8;
word <<= 8;
}
if (!(word & (~0ul << (BITS_PER_LONG-4)))) {
num -= 4;
word <<= 4;
}
if (!(word & (~0ul << (BITS_PER_LONG-2)))) {
num -= 2;
word <<= 2;
}
if (!(word & (~0ul << (BITS_PER_LONG-1))))
num -= 1;
return num;
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static inline int test_bit(int nr, const volatile unsigned long *addr)
{
return ((1UL << (nr & 31)) & (addr[nr >> 5])) != 0;
}
/*
* Find the first cleared bit in a memory region.
*/
static inline unsigned long find_first_zero_bit(
const unsigned long *addr, unsigned long size)
{
const unsigned long *p = addr;
unsigned long result = 0;
unsigned long tmp;
while (size & ~(BITS_PER_LONG-1)) {
if (~(tmp = *(p++)))
goto found;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
tmp = (*p) | (~0UL << size);
if (tmp == ~0UL) /* Are any bits zero? */
return result + size; /* Nope. */
found:
return result + ffz(tmp);
//tmp = 0;
//return result;
}
static inline unsigned long find_next_zero_bit(
const unsigned long *addr,unsigned long size, unsigned long offset)
{
const unsigned long *p = addr + BIT_WORD(offset); // offset<65><74><EFBFBD>_p<5F><70><EFBFBD>V<EFBFBD><56>long<6E>a<EFBFBD>}32<33><32><EFBFBD><EFBFBD>?
unsigned long result = offset & ~(BITS_PER_LONG-1); // offset<65>O<EFBFBD><4F>result?4<>r?
unsigned long tmp;
if (offset >= size)
return size;
size -= result; // ?<3F><>32<33><32><EFBFBD>㭿?<3F>W
offset %= BITS_PER_LONG; // offset<65><74><EFBFBD>_32<33><EFBFBD>ĤL<C4A4><4C>
if (offset) { // offset<65><74><EFBFBD>b<EFBFBD>@?long?<3F>u<EFBFBD><75><EFBFBD><EFBFBD>0<EFBFBD><30><EFBFBD>W,<2C>b1-31<33>줤[luther.gliethttp]
tmp = *(p++);
tmp |= ~0UL >> (BITS_PER_LONG - offset); // ?0-offset?<3F>u<EFBFBD><75><EFBFBD>R<EFBFBD>W1.
if (size < BITS_PER_LONG) // <20><><EFBFBD><EFBFBD>32bits
goto found_first;
if (~tmp) // <20><><EFBFBD>D<EFBFBD>D0?<3F><><EFBFBD>t<EFBFBD><74>0<EFBFBD><30>
goto found_middle;
size -= BITS_PER_LONG; // <20>p<EFBFBD>G<EFBFBD>W<EFBFBD><57>~tmp<6D><70><EFBFBD>_0,<2C><><EFBFBD>\?<3F><>?*p?<3F>u?32<33><32><EFBFBD><EFBFBD>1.[luther.gliethttp]
result += BITS_PER_LONG;
}
while (size & ~(BITS_PER_LONG-1)) { // <20>n<EFBFBD>F,?<3F><><EFBFBD><EFBFBD>?<3F><>,<2C><>?<3F><>offset<65>w??<3F>b4<62>r?<3F><><EFBFBD><EFBFBD>0<EFBFBD><30><EFBFBD>W,<2C>U<EFBFBD><55>?<3F><>
if (~(tmp = *(p++))) // 4<>r?<3F>ֳt<D6B3>d?.<2E>p<EFBFBD>G~tmp<6D>D0,?<3F><>?32<33><32>?<3F>u<EFBFBD><75><EFBFBD>t<EFBFBD><74>0?<3F>u,<2C><><EFBFBD><EFBFBD>.[luther.gliethttp]
goto found_middle;
result += BITS_PER_LONG; // <20><><EFBFBD>U<EFBFBD>@?4<>r?<3F><>?
size -= BITS_PER_LONG; // ?<3F><>4<EFBFBD>r??<3F>u
}
if (!size) // size<7A><65><EFBFBD>_0,?<3F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>size<7A><65><EFBFBD>_4<5F>r?<3F>㭿?,<2C><EFBFBD>Ҧ<EFBFBD>?<3F>u<EFBFBD>w?<3F>d<EFBFBD><64>,
return result; // <20>Ҧ<EFBFBD>?<3F>u<EFBFBD><75><EFBFBD><EFBFBD>?1,?<3F><>??0<><30>,result<6C><74><EFBFBD>_size.[luther.gliethttp]
tmp = *p; // size<7A><65><EFBFBD>O32<33><32><EFBFBD>㭿?,?<3F>ѤL?bit?<3F><>?<3F>d,???<3F><><EFBFBD>U<EFBFBD><55>?<3F>d<EFBFBD>u<EFBFBD>@.[luther.gliethtp]
found_first:
tmp |= ~0UL << size; // ?<3F>b0-size?<3F><><EFBFBD><EFBFBD>?<3F>u,size-31?<3F><><EFBFBD>ϥΪ<CFA5>?,<2C>ҥH<D2A5><48>?size-31<33>m<EFBFBD><6D><EFBFBD><EFBFBD>1.
if (tmp == ~0UL) /* Are any bits zero? */ // <20>p<EFBFBD>Gtmp<6D><70>1,<2C><><EFBFBD>\?<3F><><EFBFBD>N?<3F><><EFBFBD><EFBFBD>1?
return result + size; /* Nope. */ // result+size<7A>N<EFBFBD><4E><EFBFBD>_<EFBFBD><5F>??<3F>J<EFBFBD><4A>??size<7A>j<EFBFBD>p.[luther.gliethttp]
found_middle:
return result + ffz(tmp); // <20><>?<3F>b32<33><32>?<3F>u<EFBFBD><75>0-31<33><31>??<3F><><EFBFBD>w<EFBFBD>s<EFBFBD>b0<62><30><EFBFBD><EFBFBD>,?<3F><><EFBFBD>L<EFBFBD>O<EFBFBD>ĤL<C4A4><4C>.[luther.gliethttp]
}
//int find_next_zero_bit(const void * p, int size, int offset);
//int find_first_bit(const unsigned long *p, unsigned size);
//int find_next_bit(const unsigned long *p, int size, int offset);
/**
* set_bit - Atomically set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* This function is atomic and may not be reordered. See __set_bit()
* if you do not require the atomic guarantees.
*
* Note: there are no guarantees that this function will not be reordered
* on non x86 architectures, so if you are writing portable code,
* make sure not to rely on its reordering guarantees.
*
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static inline void set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long flags;
//taskENTER_CRITICAL();
_atomic_spin_lock_irqsave(p, flags);
*p |= mask;
_atomic_spin_unlock_irqrestore(p, flags);
//taskEXIT_CRITICAL();
}
/**
* clear_bit - Clears a bit in memory
* @nr: Bit to clear
* @addr: Address to start counting from
*
* clear_bit() is atomic and may not be reordered. However, it does
* not contain a memory barrier, so if it is used for locking purposes,
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*/
static inline void clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long flags;
_atomic_spin_lock_irqsave(p, flags);
//taskENTER_CRITICAL();
*p &= ~mask;
_atomic_spin_unlock_irqrestore(p, flags);
//taskEXIT_CRITICAL();
}
/**
* change_bit - Toggle a bit in memory
* @nr: Bit to change
* @addr: Address to start counting from
*
* change_bit() is atomic and may not be reordered. It may be
* reordered on other architectures than x86.
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
static inline void change_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long flags;
//taskENTER_CRITICAL();
_atomic_spin_lock_irqsave(p, flags);
*p ^= mask;
_atomic_spin_unlock_irqrestore(p, flags);
//taskEXIT_CRITICAL();
}
/**
* test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It may be reordered on other architectures than x86.
* It also implies a memory barrier.
*/
static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long old;
//unsigned long flags;
//taskENTER_CRITICAL();
_atomic_spin_lock_irqsave(p, flags);
old = *p;
*p = old | mask;
_atomic_spin_unlock_irqrestore(p, flags);
//taskEXIT_CRITICAL();
return (old & mask) != 0;
}
/**
* test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It can be reorderdered on other architectures other than x86.
* It also implies a memory barrier.
*/
static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long old;
unsigned long flags;
//taskENTER_CRITICAL();
_atomic_spin_lock_irqsave(p, flags);
old = *p;
*p = old & ~mask;
_atomic_spin_unlock_irqrestore(p, flags);
//taskEXIT_CRITICAL();
return (old & mask) != 0;
}
/**
* test_and_change_bit - Change a bit and return its old value
* @nr: Bit to change
* @addr: Address to count from
*
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BIT_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
unsigned long old;
unsigned long flags;
_atomic_spin_lock_irqsave(p, flags);
old = *p;
*p = old ^ mask;
_atomic_spin_unlock_irqrestore(p, flags);
return (old & mask) != 0;
}
static inline int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, int bits)
{
int k;
int nr = BITS_TO_LONGS(bits);
unsigned long result = 0;
for (k = 0; k < nr; k++)
result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
return result != 0;
}
static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1,
const unsigned long *src2, int nbits)
{
// if (small_const_nbits(nbits))
// return (*dst = *src1 & ~(*src2)) != 0;
return __bitmap_andnot(dst, src1, src2, nbits);
}
static inline int atomic_inc_return(volatile atomic_t *v)
{
unsigned long flags;
int retval;
cris_atomic_save(v, flags);
retval = ++(v->counter);
cris_atomic_restore(v, flags);
return retval;
}
typedef __u16 __le16;
typedef __u16 __be16;
typedef __u32 __le32;
typedef __u32 __be32;
typedef __u64 __le64;
typedef __u64 __be64;
typedef __u16 __sum16;
typedef __u32 __wsum;
#ifndef __GFP_WAIT
#define __GFP_WAIT (0x10u)
#endif
#ifndef __GFP_HIGH
#define __GFP_HIGH (0x20u)
#endif
#ifndef __GFP_IO
#define __GFP_IO (0x40u)
#endif
#ifndef __GFP_FS
#define __GFP_FS (0x80u)
#endif
#ifndef GFP_NOIO
#define GFP_NOIO (0x10u)
#endif
#ifndef __GFP_NOWARN
#define __GFP_NOWARN (0x200u)
#endif
#ifndef GFP_KERNEL
#define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS)
#endif
#ifndef copy_from_user
#define copy_from_user(to, from, sz) _memcpy((to), (from), (sz))
#endif
#ifndef copy_to_user
#define copy_to_user(to, from, sz) _memcpy((to), (from), (sz))
#endif
#if 0 /*comment since we are not using polling*/
/* These are specified by iBCS2 */
#ifndef POLLIN
#define POLLIN 0x0001
#endif
#ifndef POLLPRI
#define POLLPRI 0x0002
#endif
#ifndef POLLOUT
#define POLLOUT 0x0004
#endif
#ifndef POLLERR
#define POLLERR 0x0008
#endif
#ifndef POLLHUP
#define POLLHUP 0x0010
#endif
#ifndef POLLNVAL
#define POLLNVAL 0x0020
#endif
/* The rest seem to be more-or-less nonstandard. Check them! */
#ifndef POLLRDNORM
#define POLLRDNORM 0x0040
#endif
#ifndef POLLRDBAND
#define POLLRDBAND 0x0080
#endif
#ifndef POLLWRNORM
#define POLLWRNORM 0x0100
#endif
#ifndef POLLWRBAND
#define POLLWRBAND 0x0200
#endif
#ifndef POLLMSG
#define POLLMSG 0x0400
#endif
#ifndef POLLREMOVE
#define POLLREMOVE 0x1000
#endif
#ifndef POLLRDHUP
#define POLLRDHUP 0x2000
#endif
#ifndef POLLFREE
#define POLLFREE 0x4000 /* currently only for epoll */
#endif
#ifndef POLL_BUSY_LOOP
#define POLL_BUSY_LOOP 0x8000
#endif
#endif
struct __wait_queue_head {
_Sema lock;
struct list_head task_list;
};
typedef struct __wait_queue_head wait_queue_head_t;
static inline void __init_waitqueue_head(wait_queue_head_t *q)
{
//spin_lock_init(&q->lock);
RtlInitSema(&q->lock,0);
INIT_LIST_HEAD(&q->task_list);
}
#ifndef init_waitqueue_head
#define init_waitqueue_head(q) \
do { \
__init_waitqueue_head((q)); \
} while (0)
#endif
#ifndef DEFAULT_POLLMASK
#define DEFAULT_POLLMASK (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM)
#endif
#endif /*_V4L2_OSDEP_H_*/