esp-open-rtos/examples/l3gd20h/l3gd20h_example.c
2018-01-20 17:01:59 +05:00

334 lines
11 KiB
C

/**
* Simple example with one sensor connected to I2C or SPI. It demonstrates the
* different approaches to fetch the data. Either one of the interrupt signals
* for axis movement wake up *INT1* and data ready interrupt *INT2* is used
* or the new data are fetched periodically.
*
* Harware configuration:
*
* I2C
*
* +-----------------+ +----------+
* | ESP8266 / ESP32 | | L3GD20H |
* | | | |
* | GPIO 14 (SCL) ----> SCL |
* | GPIO 13 (SDA) <---> SDA |
* | GPIO 5 <---- INT1 |
* | GPIO 4 <---- DRDY/INT2|
* +-----------------+ +----------+
*
* SPI
*
* +---------------+ +----------+ +---------------+ +----------+
* | ESP8266 | | L3GD20H | | ESP32 | | L3GD20H |
* | | | | | | | |
* | GPIO 14 (SCK) ----> SCK | | GPIO 16 (SCK) ----> SCK |
* | GPIO 13 (MOSI)----> SDI | | GPIO 17 (MOSI)----> SDI |
* | GPIO 12 (MISO)<---- SDO | | GPIO 18 (MISO)<---- SDO |
* | GPIO 2 (CS) ----> CS | | GPIO 19 (CS) ----> CS |
* | GPIO 5 <---- INT1 | | GPIO 5 <---- INT1 |
* | GPIO 4 <---- DRDY/INT2| | GPIO 4 <---- DRDY/INT2|
* +---------------+ +---------+ +---------------+ +----------+
*/
/* -- use following constants to define the example mode ----------- */
// #define SPI_USED // if defined SPI is used, otherwise I2C
// #define FIFO_MODE // multiple sample read mode
// #define INT_DATA // data interrupts used (data ready and FIFO status)
// #define INT_EVENT // event interrupts used (axis movement and wake up)
#if defined(INT_EVENT) || defined(INT_DATA)
#define INT_USED
#endif
/* -- includes -------------------------------------------------- */
#include "l3gd20h.h"
/* -- platform dependent definitions ---------------------------- */
#ifdef ESP_PLATFORM // ESP32 (ESP-IDF)
// user task stack depth
#define TASK_STACK_DEPTH 2048
// define SPI interface for L3GD20H sensors
#define SPI_BUS HSPI_HOST
#define SPI_SCK_GPIO 16
#define SPI_MOSI_GPIO 17
#define SPI_MISO_GPIO 18
#define SPI_CS_GPIO 19
#else // ESP8266 (esp-open-rtos)
// user task stack depth
#define TASK_STACK_DEPTH 256
// define SPI interface for L3GD20H sensors
#define SPI_BUS 1
#define SPI_SCK_GPIO 14
#define SPI_MOSI_GPIO 13
#define SPI_MISO_GPIO 12
#define SPI_CS_GPIO 2 // GPIO 15, the default CS of SPI bus 1, can't be used
#endif // ESP_PLATFORM
// define I2C interfaces for L3GD20H sensors
#define I2C_BUS 0
#define I2C_SCL_PIN 14
#define I2C_SDA_PIN 13
#define I2C_FREQ I2C_FREQ_100K
// define GPIOs for interrupt
#define INT1_PIN 5
#define INT2_PIN 4
/* -- user tasks ---------------------------------------------- */
static l3gd20h_sensor_t* sensor;
/**
* Common function used to get sensor data.
*/
void read_data (void)
{
#ifdef FIFO_MODE
l3gd20h_float_data_fifo_t data;
if (l3gd20h_new_data (sensor))
{
uint8_t num = l3gd20h_get_float_data_fifo (sensor, data);
printf("%.3f L3GD20H num=%d\n", (double)sdk_system_get_time()*1e-3, num);
for (int i = 0; i < num; i++)
// max. full scale is +-2000 dps and best sensitivity is 1 mdps, i.e. 7 digits
printf("%.3f L3GD20H (xyz)[dps]: %+9.3f %+9.3f %+9.3f\n",
(double)sdk_system_get_time()*1e-3, data[i].x, data[i].y, data[i].z);
}
#else // !FIFO_MODE
l3gd20h_float_data_t data;
if (l3gd20h_new_data (sensor) &&
l3gd20h_get_float_data (sensor, &data))
// max. full scale is +-2000 dps and best sensitivity is 1 mdps, i.e. 7 digits
printf("%.3f L3GD20H (xyz)[dps]: %+9.3f %+9.3f %+9.3f\n",
(double)sdk_system_get_time()*1e-3, data.x, data.y, data.z);
#endif // FIFO_MODE
}
#ifdef INT_USED
/**
* In this case, axes movement wake up interrupt *INT1* and/or data ready
* interrupt *INT2* are used. While data ready interrupt *INT2* is generated
* every time new data are available or the FIFO status changes, the axes
* movement wake up interrupt *INT1* is triggered when output data across
* defined thresholds.
*
* When interrupts are used, the user has to define interrupt handlers that
* either fetches the data directly or triggers a task which is waiting to
* fetch the data. In this example, the interrupt handler sends an event to
* a waiting task to trigger the data gathering.
*/
static QueueHandle_t gpio_evt_queue = NULL;
// User task that fetches the sensor values.
void user_task_interrupt (void *pvParameters)
{
uint8_t gpio_num;
while (1)
{
if (xQueueReceive(gpio_evt_queue, &gpio_num, portMAX_DELAY))
{
if (gpio_num == INT1_PIN)
{
l3gd20h_int_event_source_t source;
// get the source of INT1 reset INT1 signal
l3gd20h_get_int_event_source (sensor, &source);
// in case of data ready interrupt, get the results and do something with them
if (source.active)
read_data ();
}
else if (gpio_num == INT2_PIN)
{
l3gd20h_int_data_source_t source;
// get the source of INT2
l3gd20h_get_int_data_source (sensor, &source);
// if data ready interrupt, get the results and do something with them
read_data();
}
}
}
}
// Interrupt handler which resumes sends an event to the waiting user_task_interrupt
void IRAM int_signal_handler (uint8_t gpio)
{
// send an event with GPIO to the interrupt user task
xQueueSendFromISR(gpio_evt_queue, &gpio, NULL);
}
#else // !INT_USED
/*
* In this case, no interrupts are used and the user task fetches the sensor
* values periodically every seconds.
*/
void user_task_periodic(void *pvParameters)
{
vTaskDelay (100/portTICK_PERIOD_MS);
while (1)
{
// read sensor data
read_data ();
// passive waiting until 1 second is over
vTaskDelay (100/portTICK_PERIOD_MS);
}
}
#endif // INT_USED
/* -- main program ---------------------------------------------- */
void user_init(void)
{
// Set UART Parameter.
uart_set_baud(0, 115200);
// Give the UART some time to settle
vTaskDelay(1);
/** -- MANDATORY PART -- */
#ifdef SPI_USED
// init the sensor connnected to SPI
spi_bus_init (SPI_BUS, SPI_SCK_GPIO, SPI_MISO_GPIO, SPI_MOSI_GPIO);
// init the sensor connected to SPI_BUS with SPI_CS_GPIO as chip select.
sensor = l3gd20h_init_sensor (SPI_BUS, 0, SPI_CS_GPIO);
#else // I2C
// init all I2C bus interfaces at which L3GD20H sensors are connected
i2c_init (I2C_BUS, I2C_SCL_PIN, I2C_SDA_PIN, I2C_FREQ);
// init the sensor with slave address L3GD20H_I2C_ADDRESS_2 connected to I2C_BUS.
sensor = l3gd20h_init_sensor (I2C_BUS, L3GD20H_I2C_ADDRESS_2, 0);
#endif // SPI_USED
if (sensor)
{
#ifdef INT_USED
/** --- INTERRUPT CONFIGURATION PART ---- */
// Interrupt configuration has to be done before the sensor is set
// into measurement mode to avoid losing interrupts
// create an event queue to send interrupt events from interrupt
// handler to the interrupt task
gpio_evt_queue = xQueueCreate(10, sizeof(uint8_t));
// configure interupt pins for *INT1* and *INT2* signals and set the
// interrupt handler
gpio_enable(INT1_PIN, GPIO_INPUT);
gpio_enable(INT2_PIN, GPIO_INPUT);
gpio_set_interrupt(INT1_PIN, GPIO_INTTYPE_EDGE_POS, int_signal_handler);
gpio_set_interrupt(INT2_PIN, GPIO_INTTYPE_EDGE_POS, int_signal_handler);
#endif // INT_USED
/** -- SENSOR CONFIGURATION PART --- */
// set type and polarity of INT signals if necessary
// l3gd20h_config_int_signals (dev, l3gd20h_push_pull, l3gd20h_high_active);
#ifdef INT_EVENT
// enable event interrupts (axis movement and wake up)
l3gd20h_int_event_config_t int_cfg;
l3gd20h_get_int_event_config (sensor, &int_cfg);
int_cfg.x_high_enabled = true;
int_cfg.y_high_enabled = true;
int_cfg.z_high_enabled = true;
int_cfg.x_low_enabled = false;
int_cfg.y_low_enabled = false;
int_cfg.z_low_enabled = false;
int_cfg.x_threshold = 1000;
int_cfg.y_threshold = 1000;
int_cfg.z_threshold = 1000;
int_cfg.filter = l3gd20h_hpf_only;
int_cfg.and_or = false;
int_cfg.duration = 0;
int_cfg.latch = true;
l3gd20h_set_int_event_config (sensor, &int_cfg);
l3gd20h_enable_int (sensor, l3gd20h_int_event, true);
#endif // INT_EVENT
#ifdef INT_DATA
// enable data ready (DRDY) and FIFO interrupt signal *INT2*
// NOTE: DRDY and FIFO interrupts must not be enabled at the same time
#ifdef FIFO_MODE
l3gd20h_enable_int (sensor, l3gd20h_int_fifo_overrun, true);
l3gd20h_enable_int (sensor, l3gd20h_int_fifo_threshold, true);
#else
l3gd20h_enable_int (sensor, l3gd20h_int_data_ready, true);
#endif
#endif // INT_DATA
#ifdef FIFO_MODE
// clear FIFO and activate FIFO mode if needed
l3gd20h_set_fifo_mode (sensor, l3gd20h_bypass, 0);
l3gd20h_set_fifo_mode (sensor, l3gd20h_stream, 10);
#endif
// select LPF/HPF, configure HPF and reset the reference by dummy read
l3gd20h_select_output_filter (sensor, l3gd20h_hpf_only);
l3gd20h_config_hpf (sensor, l3gd20h_hpf_normal, 0);
l3gd20h_get_hpf_ref (sensor);
// LAST STEP: Finally set scale and sensor mode to start measurements
l3gd20h_set_scale(sensor, l3gd20h_scale_245_dps);
l3gd20h_set_mode (sensor, l3gd20h_normal_odr_12_5, 3, true, true, true);
/** -- TASK CREATION PART --- */
// must be done last to avoid concurrency situations with the sensor
// configuration part
#ifdef INT_USED
// create a task that is triggered only in case of interrupts to fetch the data
xTaskCreate(user_task_interrupt, "user_task_interrupt", TASK_STACK_DEPTH, NULL, 2, NULL);
#else // INT_USED
// create a user task that fetches data from sensor periodically
xTaskCreate(user_task_periodic, "user_task_periodic", TASK_STACK_DEPTH, NULL, 2, NULL);
#endif
}
else
printf("Could not initialize L3GD20H sensor\n");
}