335 lines
11 KiB
C
335 lines
11 KiB
C
|
/**
|
||
|
* Simple example with one sensor connected to I2C or SPI. It demonstrates the
|
||
|
* different approaches to fetch the data. Either one of the interrupt signals
|
||
|
* for axis movement wake up *INT1* and data ready interrupt *INT2* is used
|
||
|
* or the new data are fetched periodically.
|
||
|
*
|
||
|
* Harware configuration:
|
||
|
*
|
||
|
* I2C
|
||
|
*
|
||
|
* +-----------------+ +----------+
|
||
|
* | ESP8266 / ESP32 | | L3GD20H |
|
||
|
* | | | |
|
||
|
* | GPIO 14 (SCL) ----> SCL |
|
||
|
* | GPIO 13 (SDA) <---> SDA |
|
||
|
* | GPIO 5 <---- INT1 |
|
||
|
* | GPIO 4 <---- DRDY/INT2|
|
||
|
* +-----------------+ +----------+
|
||
|
*
|
||
|
* SPI
|
||
|
*
|
||
|
* +---------------+ +----------+ +---------------+ +----------+
|
||
|
* | ESP8266 | | L3GD20H | | ESP32 | | L3GD20H |
|
||
|
* | | | | | | | |
|
||
|
* | GPIO 14 (SCK) ----> SCK | | GPIO 16 (SCK) ----> SCK |
|
||
|
* | GPIO 13 (MOSI)----> SDI | | GPIO 17 (MOSI)----> SDI |
|
||
|
* | GPIO 12 (MISO)<---- SDO | | GPIO 18 (MISO)<---- SDO |
|
||
|
* | GPIO 2 (CS) ----> CS | | GPIO 19 (CS) ----> CS |
|
||
|
* | GPIO 5 <---- INT1 | | GPIO 5 <---- INT1 |
|
||
|
* | GPIO 4 <---- DRDY/INT2| | GPIO 4 <---- DRDY/INT2|
|
||
|
* +---------------+ +---------+ +---------------+ +----------+
|
||
|
*/
|
||
|
|
||
|
/* -- use following constants to define the example mode ----------- */
|
||
|
|
||
|
// #define SPI_USED // if defined SPI is used, otherwise I2C
|
||
|
// #define FIFO_MODE // multiple sample read mode
|
||
|
// #define INT_DATA // data interrupts used (data ready and FIFO status)
|
||
|
// #define INT_EVENT // event interrupts used (axis movement and wake up)
|
||
|
|
||
|
#if defined(INT_EVENT) || defined(INT_DATA)
|
||
|
#define INT_USED
|
||
|
#endif
|
||
|
|
||
|
/* -- includes -------------------------------------------------- */
|
||
|
|
||
|
#include "l3gd20h.h"
|
||
|
|
||
|
/* -- platform dependent definitions ---------------------------- */
|
||
|
|
||
|
#ifdef ESP_PLATFORM // ESP32 (ESP-IDF)
|
||
|
|
||
|
// user task stack depth
|
||
|
#define TASK_STACK_DEPTH 2048
|
||
|
|
||
|
// define SPI interface for L3GD20H sensors
|
||
|
#define SPI_BUS HSPI_HOST
|
||
|
#define SPI_SCK_GPIO 16
|
||
|
#define SPI_MOSI_GPIO 17
|
||
|
#define SPI_MISO_GPIO 18
|
||
|
#define SPI_CS_GPIO 19
|
||
|
|
||
|
#else // ESP8266 (esp-open-rtos)
|
||
|
|
||
|
// user task stack depth
|
||
|
#define TASK_STACK_DEPTH 256
|
||
|
|
||
|
// define SPI interface for L3GD20H sensors
|
||
|
#define SPI_BUS 1
|
||
|
#define SPI_SCK_GPIO 14
|
||
|
#define SPI_MOSI_GPIO 13
|
||
|
#define SPI_MISO_GPIO 12
|
||
|
#define SPI_CS_GPIO 2 // GPIO 15, the default CS of SPI bus 1, can't be used
|
||
|
|
||
|
#endif // ESP_PLATFORM
|
||
|
|
||
|
// define I2C interfaces for L3GD20H sensors
|
||
|
#define I2C_BUS 0
|
||
|
#define I2C_SCL_PIN 14
|
||
|
#define I2C_SDA_PIN 13
|
||
|
#define I2C_FREQ I2C_FREQ_100K
|
||
|
|
||
|
// define GPIOs for interrupt
|
||
|
#define INT1_PIN 5
|
||
|
#define INT2_PIN 4
|
||
|
|
||
|
/* -- user tasks ---------------------------------------------- */
|
||
|
|
||
|
static l3gd20h_sensor_t* sensor;
|
||
|
|
||
|
/**
|
||
|
* Common function used to get sensor data.
|
||
|
*/
|
||
|
void read_data (void)
|
||
|
{
|
||
|
#ifdef FIFO_MODE
|
||
|
|
||
|
l3gd20h_float_data_fifo_t data;
|
||
|
|
||
|
if (l3gd20h_new_data (sensor))
|
||
|
{
|
||
|
uint8_t num = l3gd20h_get_float_data_fifo (sensor, data);
|
||
|
printf("%.3f L3GD20H num=%d\n", (double)sdk_system_get_time()*1e-3, num);
|
||
|
for (int i = 0; i < num; i++)
|
||
|
// max. full scale is +-2000 dps and best sensitivity is 1 mdps, i.e. 7 digits
|
||
|
printf("%.3f L3GD20H (xyz)[dps]: %+9.3f %+9.3f %+9.3f\n",
|
||
|
(double)sdk_system_get_time()*1e-3, data[i].x, data[i].y, data[i].z);
|
||
|
}
|
||
|
|
||
|
#else // !FIFO_MODE
|
||
|
|
||
|
l3gd20h_float_data_t data;
|
||
|
|
||
|
if (l3gd20h_new_data (sensor) &&
|
||
|
l3gd20h_get_float_data (sensor, &data))
|
||
|
// max. full scale is +-2000 dps and best sensitivity is 1 mdps, i.e. 7 digits
|
||
|
printf("%.3f L3GD20H (xyz)[dps]: %+9.3f %+9.3f %+9.3f\n",
|
||
|
(double)sdk_system_get_time()*1e-3, data.x, data.y, data.z);
|
||
|
|
||
|
#endif // FIFO_MODE
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef INT_USED
|
||
|
/**
|
||
|
* In this case, axes movement wake up interrupt *INT1* and/or data ready
|
||
|
* interrupt *INT2* are used. While data ready interrupt *INT2* is generated
|
||
|
* every time new data are available or the FIFO status changes, the axes
|
||
|
* movement wake up interrupt *INT1* is triggered when output data across
|
||
|
* defined thresholds.
|
||
|
*
|
||
|
* When interrupts are used, the user has to define interrupt handlers that
|
||
|
* either fetches the data directly or triggers a task which is waiting to
|
||
|
* fetch the data. In this example, the interrupt handler sends an event to
|
||
|
* a waiting task to trigger the data gathering.
|
||
|
*/
|
||
|
|
||
|
static QueueHandle_t gpio_evt_queue = NULL;
|
||
|
|
||
|
// User task that fetches the sensor values.
|
||
|
|
||
|
void user_task_interrupt (void *pvParameters)
|
||
|
{
|
||
|
uint8_t gpio_num;
|
||
|
|
||
|
while (1)
|
||
|
{
|
||
|
if (xQueueReceive(gpio_evt_queue, &gpio_num, portMAX_DELAY))
|
||
|
{
|
||
|
if (gpio_num == INT1_PIN)
|
||
|
{
|
||
|
l3gd20h_int_event_source_t source;
|
||
|
|
||
|
// get the source of INT1 reset INT1 signal
|
||
|
l3gd20h_get_int_event_source (sensor, &source);
|
||
|
|
||
|
// in case of data ready interrupt, get the results and do something with them
|
||
|
if (source.active)
|
||
|
read_data ();
|
||
|
}
|
||
|
else if (gpio_num == INT2_PIN)
|
||
|
{
|
||
|
l3gd20h_int_data_source_t source;
|
||
|
|
||
|
// get the source of INT2
|
||
|
l3gd20h_get_int_data_source (sensor, &source);
|
||
|
|
||
|
// if data ready interrupt, get the results and do something with them
|
||
|
read_data();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Interrupt handler which resumes sends an event to the waiting user_task_interrupt
|
||
|
|
||
|
void IRAM int_signal_handler (uint8_t gpio)
|
||
|
{
|
||
|
// send an event with GPIO to the interrupt user task
|
||
|
xQueueSendFromISR(gpio_evt_queue, &gpio, NULL);
|
||
|
}
|
||
|
|
||
|
#else // !INT_USED
|
||
|
|
||
|
/*
|
||
|
* In this case, no interrupts are used and the user task fetches the sensor
|
||
|
* values periodically every seconds.
|
||
|
*/
|
||
|
|
||
|
void user_task_periodic(void *pvParameters)
|
||
|
{
|
||
|
vTaskDelay (100/portTICK_PERIOD_MS);
|
||
|
|
||
|
while (1)
|
||
|
{
|
||
|
// read sensor data
|
||
|
read_data ();
|
||
|
|
||
|
// passive waiting until 1 second is over
|
||
|
vTaskDelay (100/portTICK_PERIOD_MS);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif // INT_USED
|
||
|
|
||
|
/* -- main program ---------------------------------------------- */
|
||
|
|
||
|
void user_init(void)
|
||
|
{
|
||
|
// Set UART Parameter.
|
||
|
uart_set_baud(0, 115200);
|
||
|
// Give the UART some time to settle
|
||
|
vTaskDelay(1);
|
||
|
|
||
|
/** -- MANDATORY PART -- */
|
||
|
|
||
|
#ifdef SPI_USED
|
||
|
|
||
|
// init the sensor connnected to SPI
|
||
|
spi_bus_init (SPI_BUS, SPI_SCK_GPIO, SPI_MISO_GPIO, SPI_MOSI_GPIO);
|
||
|
|
||
|
// init the sensor connected to SPI_BUS with SPI_CS_GPIO as chip select.
|
||
|
sensor = l3gd20h_init_sensor (SPI_BUS, 0, SPI_CS_GPIO);
|
||
|
|
||
|
#else // I2C
|
||
|
|
||
|
// init all I2C bus interfaces at which L3GD20H sensors are connected
|
||
|
i2c_init (I2C_BUS, I2C_SCL_PIN, I2C_SDA_PIN, I2C_FREQ);
|
||
|
|
||
|
// init the sensor with slave address L3GD20H_I2C_ADDRESS_2 connected to I2C_BUS.
|
||
|
sensor = l3gd20h_init_sensor (I2C_BUS, L3GD20H_I2C_ADDRESS_2, 0);
|
||
|
|
||
|
#endif // SPI_USED
|
||
|
|
||
|
if (sensor)
|
||
|
{
|
||
|
#ifdef INT_USED
|
||
|
|
||
|
/** --- INTERRUPT CONFIGURATION PART ---- */
|
||
|
|
||
|
// Interrupt configuration has to be done before the sensor is set
|
||
|
// into measurement mode to avoid losing interrupts
|
||
|
|
||
|
// create an event queue to send interrupt events from interrupt
|
||
|
// handler to the interrupt task
|
||
|
gpio_evt_queue = xQueueCreate(10, sizeof(uint8_t));
|
||
|
|
||
|
// configure interupt pins for *INT1* and *INT2* signals and set the
|
||
|
// interrupt handler
|
||
|
gpio_enable(INT1_PIN, GPIO_INPUT);
|
||
|
gpio_enable(INT2_PIN, GPIO_INPUT);
|
||
|
gpio_set_interrupt(INT1_PIN, GPIO_INTTYPE_EDGE_POS, int_signal_handler);
|
||
|
gpio_set_interrupt(INT2_PIN, GPIO_INTTYPE_EDGE_POS, int_signal_handler);
|
||
|
|
||
|
#endif // INT_USED
|
||
|
|
||
|
/** -- SENSOR CONFIGURATION PART --- */
|
||
|
|
||
|
// set type and polarity of INT signals if necessary
|
||
|
// l3gd20h_config_int_signals (dev, l3gd20h_push_pull, l3gd20h_high_active);
|
||
|
|
||
|
#ifdef INT_EVENT
|
||
|
// enable event interrupts (axis movement and wake up)
|
||
|
l3gd20h_int_event_config_t int_cfg;
|
||
|
|
||
|
l3gd20h_get_int_event_config (sensor, &int_cfg);
|
||
|
|
||
|
int_cfg.x_high_enabled = true;
|
||
|
int_cfg.y_high_enabled = true;
|
||
|
int_cfg.z_high_enabled = true;
|
||
|
int_cfg.x_low_enabled = false;
|
||
|
int_cfg.y_low_enabled = false;
|
||
|
int_cfg.z_low_enabled = false;
|
||
|
int_cfg.x_threshold = 1000;
|
||
|
int_cfg.y_threshold = 1000;
|
||
|
int_cfg.z_threshold = 1000;
|
||
|
|
||
|
int_cfg.filter = l3gd20h_hpf_only;
|
||
|
int_cfg.and_or = false;
|
||
|
int_cfg.duration = 0;
|
||
|
int_cfg.latch = true;
|
||
|
|
||
|
l3gd20h_set_int_event_config (sensor, &int_cfg);
|
||
|
l3gd20h_enable_int (sensor, l3gd20h_int_event, true);
|
||
|
|
||
|
#endif // INT_EVENT
|
||
|
|
||
|
#ifdef INT_DATA
|
||
|
// enable data ready (DRDY) and FIFO interrupt signal *INT2*
|
||
|
// NOTE: DRDY and FIFO interrupts must not be enabled at the same time
|
||
|
#ifdef FIFO_MODE
|
||
|
l3gd20h_enable_int (sensor, l3gd20h_int_fifo_overrun, true);
|
||
|
l3gd20h_enable_int (sensor, l3gd20h_int_fifo_threshold, true);
|
||
|
#else
|
||
|
l3gd20h_enable_int (sensor, l3gd20h_int_data_ready, true);
|
||
|
#endif
|
||
|
#endif // INT_DATA
|
||
|
|
||
|
#ifdef FIFO_MODE
|
||
|
// clear FIFO and activate FIFO mode if needed
|
||
|
l3gd20h_set_fifo_mode (sensor, l3gd20h_bypass, 0);
|
||
|
l3gd20h_set_fifo_mode (sensor, l3gd20h_stream, 10);
|
||
|
#endif
|
||
|
|
||
|
// select LPF/HPF, configure HPF and reset the reference by dummy read
|
||
|
l3gd20h_select_output_filter (sensor, l3gd20h_hpf_only);
|
||
|
l3gd20h_config_hpf (sensor, l3gd20h_hpf_normal, 0);
|
||
|
l3gd20h_get_hpf_ref (sensor);
|
||
|
|
||
|
// LAST STEP: Finally set scale and sensor mode to start measurements
|
||
|
l3gd20h_set_scale(sensor, l3gd20h_scale_245_dps);
|
||
|
l3gd20h_set_mode (sensor, l3gd20h_normal_odr_12_5, 3, true, true, true);
|
||
|
|
||
|
/** -- TASK CREATION PART --- */
|
||
|
|
||
|
// must be done last to avoid concurrency situations with the sensor
|
||
|
// configuration part
|
||
|
|
||
|
#ifdef INT_USED
|
||
|
|
||
|
// create a task that is triggered only in case of interrupts to fetch the data
|
||
|
xTaskCreate(user_task_interrupt, "user_task_interrupt", TASK_STACK_DEPTH, NULL, 2, NULL);
|
||
|
|
||
|
#else // INT_USED
|
||
|
|
||
|
// create a user task that fetches data from sensor periodically
|
||
|
xTaskCreate(user_task_periodic, "user_task_periodic", TASK_STACK_DEPTH, NULL, 2, NULL);
|
||
|
|
||
|
#endif
|
||
|
}
|
||
|
else
|
||
|
printf("Could not initialize L3GD20H sensor\n");
|
||
|
}
|
||
|
|