esp-open-rtos/extras/spiffs/esp_spiffs_flash.c
sheinz 38cccbd456 SPIFFS: Optimized SPI data read/write.
Unaligned read/write from/to SPI data registers is rewritten in
assembler to improve performance.
2016-07-21 16:36:55 +03:00

273 lines
7.5 KiB
C

/**
* The MIT License (MIT)
*
* Copyright (c) 2016 sheinz (https://github.com/sheinz)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "esp_spiffs_flash.h"
#include "flashchip.h"
#include "espressif/spi_flash.h"
#include "FreeRTOS.h"
#include "esp/rom.h"
#include "esp/spi_regs.h"
#include <string.h>
/**
* Note about Wait_SPI_Idle.
*
* Each write/erase flash operation sets BUSY bit in flash status register.
* If attempt to access flash while BUSY bit is set operation will fail.
* Function Wait_SPI_Idle loops until this bit is not cleared.
*
* The approach in the following code is that each write function that is
* accessible from the outside should leave flash in Idle state.
* The read operations doesn't set BUSY bit in a flash. So they do not wait.
* They relay that previous operation is completely finished.
*
* This approach is different from ESP8266 bootrom where Wait_SPI_Idle is
* called where it needed and not.
*/
#define SPI_WRITE_MAX_SIZE 64
// 64 bytes read causes hang
// http://bbs.espressif.com/viewtopic.php?f=6&t=2439
#define SPI_READ_MAX_SIZE 60
/**
* Copy unaligned data to 4-byte aligned destination buffer.
*
* @param words Number of 4-byte words to write.
*
* @see unaligned_memcpy.S
*/
void memcpy_unaligned_src(volatile uint32_t *dst, uint8_t *src, uint8_t words);
/**
* Copy 4-byte aligned source data to unaligned destination buffer.
*
* @param bytes Number of byte to copy to dst.
*
* @see unaligned_memcpy.S
*/
void memcpy_unaligned_dst(uint8_t *dst, volatile uint32_t *src, uint8_t bytes);
/**
* Low level SPI flash write. Write block of data up to 64 bytes.
*/
static inline void IRAM spi_write_data(sdk_flashchip_t *chip, uint32_t addr,
uint8_t *buf, uint32_t size)
{
uint32_t words = size >> 2;
if (size & 0b11) {
words++;
}
Wait_SPI_Idle(chip); // wait for previous write to finish
SPI(0).ADDR = (addr & 0x00FFFFFF) | (size << 24);
memcpy_unaligned_src(SPI(0).W, buf, words);
SPI_write_enable(chip);
SPI(0).CMD = SPI_CMD_PP;
while (SPI(0).CMD) {}
}
/**
* Write a page of flash. Data block should not cross page boundary.
*/
static uint32_t IRAM spi_write_page(sdk_flashchip_t *flashchip, uint32_t dest_addr,
uint8_t *buf, uint32_t size)
{
// check if block to write doesn't cross page boundary
if (flashchip->page_size < size + (dest_addr % flashchip->page_size)) {
return ESP_SPIFFS_FLASH_ERROR;
}
if (size < 1) {
return ESP_SPIFFS_FLASH_OK;
}
while (size >= SPI_WRITE_MAX_SIZE) {
spi_write_data(flashchip, dest_addr, buf, SPI_WRITE_MAX_SIZE);
size -= SPI_WRITE_MAX_SIZE;
dest_addr += SPI_WRITE_MAX_SIZE;
buf += SPI_WRITE_MAX_SIZE;
if (size < 1) {
return ESP_SPIFFS_FLASH_OK;
}
}
spi_write_data(flashchip, dest_addr, buf, size);
return ESP_SPIFFS_FLASH_OK;
}
/**
* Split block of data into pages and write pages.
*/
static uint32_t IRAM spi_write(uint32_t addr, uint8_t *dst, uint32_t size)
{
if (sdk_flashchip.chip_size < (addr + size)) {
return ESP_SPIFFS_FLASH_ERROR;
}
uint32_t write_bytes_to_page = sdk_flashchip.page_size -
(addr % sdk_flashchip.page_size); // TODO: place for optimization
if (size < write_bytes_to_page) {
if (spi_write_page(&sdk_flashchip, addr, dst, size)) {
return ESP_SPIFFS_FLASH_ERROR;
}
} else {
if (spi_write_page(&sdk_flashchip, addr, dst, write_bytes_to_page)) {
return ESP_SPIFFS_FLASH_ERROR;
}
uint32_t offset = write_bytes_to_page;
uint32_t pages_to_write = (size - offset) / sdk_flashchip.page_size;
for (uint8_t i = 0; i != pages_to_write; i++) {
if (spi_write_page(&sdk_flashchip, addr + offset,
dst + offset, sdk_flashchip.page_size)) {
return ESP_SPIFFS_FLASH_ERROR;
}
offset += sdk_flashchip.page_size;
}
if (spi_write_page(&sdk_flashchip, addr + offset,
dst + offset, size - offset)) {
return ESP_SPIFFS_FLASH_ERROR;
}
}
return ESP_SPIFFS_FLASH_OK;
}
uint32_t IRAM esp_spiffs_flash_write(uint32_t addr, uint8_t *buf, uint32_t size)
{
uint32_t result = ESP_SPIFFS_FLASH_ERROR;
if (buf) {
vPortEnterCritical();
Cache_Read_Disable();
result = spi_write(addr, buf, size);
// make sure all write operations is finished before exiting
Wait_SPI_Idle(&sdk_flashchip);
Cache_Read_Enable(0, 0, 1);
vPortExitCritical();
}
return result;
}
/**
* Read SPI flash up to 64 bytes.
*/
static inline void IRAM read_block(sdk_flashchip_t *chip, uint32_t addr,
uint8_t *buf, uint32_t size)
{
SPI(0).ADDR = (addr & 0x00FFFFFF) | (size << 24);
SPI(0).CMD = SPI_CMD_READ;
while (SPI(0).CMD) {};
memcpy_unaligned_dst(buf, SPI(0).W, size);
}
/**
* Read SPI flash data. Data region doesn't need to be page aligned.
*/
static inline uint32_t IRAM read_data(sdk_flashchip_t *flashchip, uint32_t addr,
uint8_t *dst, uint32_t size)
{
if (size < 1) {
return ESP_SPIFFS_FLASH_OK;
}
if ((addr + size) > flashchip->chip_size) {
return ESP_SPIFFS_FLASH_ERROR;
}
while (size >= SPI_READ_MAX_SIZE) {
read_block(flashchip, addr, dst, SPI_READ_MAX_SIZE);
dst += SPI_READ_MAX_SIZE;
size -= SPI_READ_MAX_SIZE;
addr += SPI_READ_MAX_SIZE;
}
if (size > 0) {
read_block(flashchip, addr, dst, size);
}
return ESP_SPIFFS_FLASH_OK;
}
uint32_t IRAM esp_spiffs_flash_read(uint32_t dest_addr, uint8_t *buf, uint32_t size)
{
uint32_t result = ESP_SPIFFS_FLASH_ERROR;
if (buf) {
vPortEnterCritical();
Cache_Read_Disable();
result = read_data(&sdk_flashchip, dest_addr, buf, size);
Cache_Read_Enable(0, 0, 1);
vPortExitCritical();
}
return result;
}
uint32_t IRAM esp_spiffs_flash_erase_sector(uint32_t addr)
{
if ((addr + sdk_flashchip.sector_size) > sdk_flashchip.chip_size) {
return ESP_SPIFFS_FLASH_ERROR;
}
if (addr & 0xFFF) {
return ESP_SPIFFS_FLASH_ERROR;
}
vPortEnterCritical();
Cache_Read_Disable();
SPI_write_enable(&sdk_flashchip);
SPI(0).ADDR = addr & 0x00FFFFFF;
SPI(0).CMD = SPI_CMD_SE;
while (SPI(0).CMD) {};
Wait_SPI_Idle(&sdk_flashchip);
Cache_Read_Enable(0, 0, 1);
vPortExitCritical();
return ESP_SPIFFS_FLASH_OK;
}