add sdk header file

This commit is contained in:
eggman 2016-06-26 15:38:00 +09:00
commit c6c1e22690
76 changed files with 29776 additions and 0 deletions

View file

@ -0,0 +1,663 @@
//----------------------------------------------------------------------------//
#ifndef __WIFI_API_H
#define __WIFI_API_H
#include "FreeRTOS.h"
#include "wifi_constants.h"
#include "wifi_structures.h"
#include "wifi_util.h"
#include "wifi_ind.h"
#ifdef __cplusplus
extern "C" {
#endif
/******************************************************
* Macros
******************************************************/
#define RTW_ENABLE_API_INFO
#ifdef RTW_ENABLE_API_INFO
#define RTW_API_INFO(args) do {printf args;} while(0)
#else
#define RTW_API_INFO(args)
#endif
#define MAC_ARG(x) ((u8*)(x))[0],((u8*)(x))[1],((u8*)(x))[2],((u8*)(x))[3],((u8*)(x))[4],((u8*)(x))[5]
#define CMP_MAC( a, b ) (((a[0])==(b[0]))&& \
((a[1])==(b[1]))&& \
((a[2])==(b[2]))&& \
((a[3])==(b[3]))&& \
((a[4])==(b[4]))&& \
((a[5])==(b[5])))
/******************************************************
* Constants
******************************************************/
#define SCAN_LONGEST_WAIT_TIME (4500)
#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
#define PSCAN_ENABLE 0x01 //enable for partial channel scan
#define PSCAN_FAST_SURVEY 0x02 //set to select scan time to FAST_SURVEY_TO, otherwise SURVEY_TO
#define PSCAN_SIMPLE_CONFIG 0x04 //set to select scan time to FAST_SURVEY_TO and resend probe request
/******************************************************
* Type Definitions
******************************************************/
/** Scan result callback function pointer type
*
* @param result_ptr : A pointer to the pointer that indicates where to put the next scan result
* @param user_data : User provided data
*/
typedef void (*rtw_scan_result_callback_t)( rtw_scan_result_t** result_ptr, void* user_data );
typedef rtw_result_t (*rtw_scan_result_handler_t)( rtw_scan_handler_result_t* malloced_scan_result );
/******************************************************
* Structures
******************************************************/
typedef struct {
char *buf;
int buf_len;
} scan_buf_arg;
/******************************************************
* Structures
******************************************************/
typedef struct internal_scan_handler{
rtw_scan_result_t** pap_details;
rtw_scan_result_t * ap_details;
int scan_cnt;
rtw_bool_t scan_complete;
unsigned char max_ap_size;
rtw_scan_result_handler_t gscan_result_handler;
#if SCAN_USE_SEMAPHORE
void *scan_semaphore;
#else
int scan_running;
#endif
void* user_data;
unsigned int scan_start_time;
} internal_scan_handler_t;
typedef struct {
rtw_network_info_t network_info;
void *join_sema;
} internal_join_result_t;
/******************************************************
* Function Declarations
******************************************************/
/**
* Initialises Realtek WiFi API System
*
* - Initialises the required parts of the software platform
* i.e. worker, event registering, semaphore, etc.
*
* - Initialises the RTW API thread which handles the asynchronous event
*
* @return RTW_SUCCESS if initialization is successful, RTW_ERROR otherwise
*/
int wifi_manager_init(void);
/** Joins a Wi-Fi network
*
* Scans for, associates and authenticates with a Wi-Fi network.
* On successful return, the system is ready to send data packets.
*
* @param[in] ssid : A null terminated string containing the SSID name of the network to join
* @param[in] security_type : Authentication type:
* - RTW_SECURITY_OPEN - Open Security
* - RTW_SECURITY_WEP_PSK - WEP Security with open authentication
* - RTW_SECURITY_WEP_SHARED - WEP Security with shared authentication
* - RTW_SECURITY_WPA_TKIP_PSK - WPA Security
* - RTW_SECURITY_WPA2_AES_PSK - WPA2 Security using AES cipher
* - RTW_SECURITY_WPA2_TKIP_PSK - WPA2 Security using TKIP cipher
* - RTW_SECURITY_WPA2_MIXED_PSK - WPA2 Security using AES and/or TKIP ciphers
* @param[in] password : A byte array containing either the
* cleartext security key for WPA/WPA2
* secured networks, or a pointer to
* an array of rtw_wep_key_t
* structures for WEP secured networks
* @param[in] ssid_len : The length of the SSID in
* bytes.
* @param[in] password_len : The length of the security_key in
* bytes.
* @param[in] key_id : The index of the wep key.
* @param[in] semaphore : A user provided semaphore that is flagged when the join is complete
*
* @return RTW_SUCCESS : when the system is joined and ready
* to send data packets
* RTW_ERROR : if an error occurred
*/
int wifi_connect(
char *ssid,
rtw_security_t security_type,
char *password,
int ssid_len,
int password_len,
int key_id,
void *semaphore);
int wifi_connect_bssid(
unsigned char bssid[ETH_ALEN],
char *ssid,
rtw_security_t security_type,
char *password,
int bssid_len,
int ssid_len,
int password_len,
int key_id,
void *semaphore);
/** Disassociates from a Wi-Fi network.
*
* @return RTW_SUCCESS : On successful disassociation from
* the AP
* RTW_ERROR : If an error occurred
*/
int wifi_disconnect(void);
/** Check if the interface specified is up.
*
* @return RTW_TRUE : If it's up
* RTW_FALSE : If it's not
*/
int wifi_is_connected_to_ap(void);
/*check if wifi has connected to AP before dhcp
*
* @return RTW_SUCCESS:if conneced
RTW_ERROR :if not connect
*/
int wifi_is_up(rtw_interface_t interface);
/** Determines if a particular interface is ready to transceive ethernet packets
*
* @param Radio interface to check, options are
* RTW_STA_INTERFACE, RTW_AP_INTERFACE
* @return RTW_SUCCESS : if the interface is ready to
* transceive ethernet packets
* @return RTW_NOTFOUND : no AP with a matching SSID was
* found
* @return RTW_NOT_AUTHENTICATED: a matching AP was found but
* it won't let you
* authenticate. This can
* occur if this device is
* in the block list on the
* AP.
* @return RTW_NOT_KEYED: the device has authenticated and
* associated but has not completed
* the key exchange. This can occur
* if the passphrase is incorrect.
* @return RTW_ERROR : if the interface is not ready to
* transceive ethernet packets
*/
int wifi_is_ready_to_transceive(rtw_interface_t interface);
/** ----------------------------------------------------------------------
* WARNING : This function is for internal use only!
* ----------------------------------------------------------------------
* This function sets the current Media Access Control (MAC) address of the
* 802.11 device.
*
* @param[in] mac Wi-Fi MAC address
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_set_mac_address(char * mac);
/** Retrieves the current Media Access Control (MAC) address
* (or Ethernet hardware address) of the 802.11 device
*
* @param mac Pointer to a variable that the current MAC address will be written to
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_get_mac_address(char * mac);
/** Enables powersave mode
*
* @return @ref rtw_result_t
*/
int wifi_enable_powersave(void);
/** Disables 802.11 power save mode
*
* @return RTW_SUCCESS : if power save mode was successfully
* disabled
* RTW_ERROR : if power save mode was not successfully
* disabled
*/
int wifi_disable_powersave(void);
/** Gets the tx power in index units
*
* @param dbm : The variable to receive the tx power in index.
*
* @return RTW_SUCCESS : if successful
* RTW_ERROR : if not successful
*/
int wifi_get_txpower(int *poweridx);
/** Sets the tx power in index units
*
* @param dbm : The desired tx power in index.
*
* @return RTW_SUCCESS : if tx power was successfully set
* RTW_ERROR : if tx power was not successfully set
*/
int wifi_set_txpower(int poweridx);
/** Get the associated clients with SoftAP
*
* @param client_list_buffer : the location where the client
* list will be stored
* @param buffer_length : the buffer length.
*
* @return RTW_SUCCESS : if result was successfully get
* RTW_ERROR : if result was not successfully get
*/
int wifi_get_associated_client_list(void * client_list_buffer, unsigned short buffer_length);
/** Get the SoftAP information
*
* @param ap_info : the location where the AP info will be
* stored
* @param security : the security type.
*
* @return RTW_SUCCESS : if result was successfully get
* RTW_ERROR : if result was not successfully get
*/
int wifi_get_ap_info(rtw_bss_info_t * ap_info, rtw_security_t* security);
/** Set the country code to driver to determine the channel set
*
* @param country_code : the country code.
*
* @return RTW_SUCCESS : if result was successfully set
* RTW_ERROR : if result was not successfully set
*/
int wifi_set_country(rtw_country_code_t country_code);
/** Retrieve the latest RSSI value
*
* @param rssi: The location where the RSSI value will be stored
*
* @return RTW_SUCCESS : if the RSSI was succesfully retrieved
* RTW_ERROR : if the RSSI was not retrieved
*/
int wifi_get_rssi(int *pRSSI);
/** Set the current channel on STA interface
*
* @param channel : The desired channel
*
* @return RTW_SUCCESS : if the channel was successfully set
* RTW_ERROR : if the channel was not successfully
* set
*/
int wifi_set_channel(int channel);
/** Get the current channel on STA interface
*
* @param channel : A pointer to the variable where the
* channel value will be written
*
* @return RTW_SUCCESS : if the channel was successfully read
* RTW_ERROR : if the channel was not successfully
* read
*/
int wifi_get_channel(int *channel);
/** Registers interest in a multicast address
* Once a multicast address has been registered, all packets detected on the
* medium destined for that address are forwarded to the host.
* Otherwise they are ignored.
*
* @param mac: Ethernet MAC address
*
* @return RTW_SUCCESS : if the address was registered
* successfully
* RTW_ERROR : if the address was not registered
*/
int wifi_register_multicast_address(rtw_mac_t *mac);
/** Unregisters interest in a multicast address
* Once a multicast address has been unregistered, all packets detected on the
* medium destined for that address are ignored.
*
* @param mac: Ethernet MAC address
*
* @return RTW_SUCCESS : if the address was unregistered
* successfully
* RTW_ERROR : if the address was not unregistered
*/
int wifi_unregister_multicast_address(rtw_mac_t *mac);
int wifi_rf_on(void);
int wifi_rf_off(void);
/** Turn on the Wi-Fi device
*
* - Bring the Wireless interface "Up"
* - Initialises the driver thread which arbitrates access
* to the SDIO/SPI bus
*
* @param mode: wifi work mode
*
* @return RTW_SUCCESS : if the WiFi chip was initialised
* successfully
* RTW_ERROR : if the WiFi chip was not initialised
* successfully
*/
int wifi_on(rtw_mode_t mode);
/**
* Turn off the Wi-Fi device
*
* - Bring the Wireless interface "Down"
* - De-Initialises the driver thread which arbitrates access
* to the SDIO/SPI bus
*
* @return RTW_SUCCESS if deinitialization is successful,
* RTW_ERROR otherwise
*/
int wifi_off(void);
/**
* Set IPS/LPS mode
*
* @param[in] ips_mode : The desired IPS mode. It become effective when wlan enter ips.
* @param[in] lps_mode : The desired LPS mode. It become effective when wlan enter lps.
*
* @return RTW_SUCCESS if setting LPS mode successful
* RTW_ERROR otherwise
*/
int wifi_set_power_mode(unsigned char ips_mode, unsigned char lps_mode);
/**
* Set TDMA parameters
*
* @param[in] slot_period : We separate TBTT into 2 or 3 slots.
* If we separate TBTT into 2 slots, then slot_period should be larger or equal to 50ms.
* It means 2 slot period is
* slot_period, 100-slot_period
* If we separate TBTT into 3 slots, then slot_period should be less or equal to 33ms.
* It means 3 slot period is
* 100 - 2 * slot_period, slot_period, slot_period
* @param[in] rfon_period_len_1: rf on period of slot 1
* @param[in] rfon_period_len_2: rf on period of slot 2
* @param[in] rfon_period_len_3: rf on period of slot 3
*
* @return RTW_SUCCESS if setting TDMA parameters successful
* RTW_ERROR otherwise
*/
int wifi_set_tdma_param(unsigned char slot_period, unsigned char rfon_period_len_1, unsigned char rfon_period_len_2, unsigned char rfon_period_len_3);
/**
* Set LPS DTIM
*
* @param[in] dtim : In LPS, the package can be buffered at AP side.
* STA leave LPS until dtim count of packages buffered at AP side.
*
* @return RTW_SUCCESS if setting LPS dtim successful
* RTW_ERROR otherwise
*/
int wifi_set_lps_dtim(unsigned char dtim);
/** Starts an infrastructure WiFi network
*
* @warning If a STA interface is active when this function is called, the softAP will\n
* start on the same channel as the STA. It will NOT use the channel provided!
*
* @param[in] ssid : A null terminated string containing
* the SSID name of the network to join
* @param[in] security_type : Authentication type: \n
* - RTW_SECURITY_OPEN - Open Security \n
* - RTW_SECURITY_WPA_TKIP_PSK - WPA Security \n
* - RTW_SECURITY_WPA2_AES_PSK - WPA2 Security using AES cipher \n
* - RTW_SECURITY_WPA2_MIXED_PSK - WPA2 Security using AES and/or TKIP ciphers \n
* - WEP security is NOT IMPLEMENTED. It is NOT SECURE! \n
* @param[in] password : A byte array containing the cleartext
* security key for the network
* @param[in] ssid_len : The length of the SSID in
* bytes.
* @param[in] password_len : The length of the security_key in
* bytes.
* @param[in] channel : 802.11 channel number
*
* @return RTW_SUCCESS : if successfully creates an AP
* RTW_ERROR : if an error occurred
*/
int wifi_start_ap(
char *ssid,
rtw_security_t security_type,
char *password,
int ssid_len,
int password_len,
int channel);
/** Initiates a scan to search for 802.11 networks.
*
* The scan progressively accumulates results over time, and
* may take between 1 and 3 seconds to complete. The results of
* the scan will be individually provided to the callback
* function. Note: The callback function will be executed in
* the context of the RTW thread.
*
* @param[in] scan_type : Specifies whether the scan should
* be Active, Passive or scan
* Prohibited channels
* @param[in] bss_type : Specifies whether the scan should
* search for Infrastructure
* networks (those using an Access
* Point), Ad-hoc networks, or both
* types.
* @param result_ptr[in] : Scan specific ssid. The first 4
* bytes is ssid lenth, and ssid name
* append after it.
* If no specific ssid need to scan,
* PLEASE CLEAN result_ptr before pass
* it into parameter.
* @param result_ptr[out] : a pointer to a pointer to a result
* storage structure.
*
* @note : When scanning specific channels, devices with a
* strong signal strength on nearby channels may be
* detected
*
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_scan(rtw_scan_type_t scan_type,
rtw_bss_type_t bss_type,
void* result_ptr);
/** Initiates a scan to search for 802.11 networks, a higher
* level API based on wifi_scan to simplify the scan
* operation.
*
* The scan results will be list by the order of RSSI.
* It may demand hundreds bytes memory during scan
* processing according to the quantity of AP nearby.
*
* @param results_handler[in] : the callback function which
* will receive and process the result data.
* @param user_data[in] : user specific data that will be
* passed directly to the callback function
*
* @note : Callback must not use blocking functions, since it is
* called from the context of the RTW thread.
* @note : The callback, user_data variables will
* be referenced after the function returns. Those
* variables must remain valid until the scan is
* complete.
*
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_scan_networks(rtw_scan_result_handler_t results_handler, void* user_data);
int wifi_scan_networks_with_ssid(rtw_scan_result_handler_t results_handler, void* user_data, char* ssid, int ssid_len);
/** Set the partical scan
*
* @param channel_list[in] : the channel set the scan will
* stay on
* @param pscan_config[in] : the pscan_config of the channel set
*
* @param length[in] : the channel list length
*
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_set_pscan_chan(__u8 * channel_list,__u8 * pscan_config, __u8 length);
/** Get the network information
*
* @param ifname[in] : the name of the interface we are care
* @param pSetting[in] : the location where the network
* information will be stored
*
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_get_setting(const char *ifname,rtw_wifi_setting_t *pSetting);
/** Show the network information
*
* @param ifname[in] : the name of the interface we are care
* @param pSetting[in] : the location where the network
* information was stored
*
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_show_setting(const char *ifname,rtw_wifi_setting_t *pSetting);
/** Set the network mode according to the data rate it's
* supported
*
* @param mode[in] : the network mode
*
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_set_network_mode(rtw_network_mode_t mode);
/** Set the chip to worke in the promisc mode
*
* @param enabled[in] : enabled can be set 0, 1 and 2. if enabled is zero, disable the promisc, else enable the promisc.
* 0 means disable the promisc
* 1 means enable the promisc
* 2 means enable the promisc special for length is used
* @param callback[in] : the callback function which will
* receive and process the netowork data.
* @param len_used[in] : specify if the the promisc length is
* used.
*
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_set_promisc(rtw_rcr_level_t enabled, void (*callback)(unsigned char*, unsigned int, void*), unsigned char len_used);
/** Set the wps phase
*
* @param is_trigger_wps[in] : to trigger wps function or not
*
* @return RTW_SUCCESS or RTW_ERROR
*/
int wifi_set_wps_phase(unsigned char is_trigger_wps);
/** Restarts an infrastructure WiFi network
*
* @warning If a STA interface is active when this function is called, the softAP will\n
* start on the same channel as the STA. It will NOT use the channel provided!
*
* @param[in] ssid : A null terminated string containing
* the SSID name of the network to join
* @param[in] security_type : Authentication type: \n
* - RTW_SECURITY_OPEN - Open Security \n
* - RTW_SECURITY_WPA_TKIP_PSK - WPA Security \n
* - RTW_SECURITY_WPA2_AES_PSK - WPA2 Security using AES cipher \n
* - RTW_SECURITY_WPA2_MIXED_PSK - WPA2 Security using AES and/or TKIP ciphers \n
* - WEP security is NOT IMPLEMENTED. It is NOT SECURE! \n
* @param[in] password : A byte array containing the cleartext
* security key for the network
* @param[in] ssid_len : The length of the SSID in
* bytes.
* @param[in] password_len : The length of the security_key in
* bytes.
* @param[in] channel : 802.11 channel number
*
* @return RTW_SUCCESS : if successfully creates an AP
* RTW_ERROR : if an error occurred
*/
int wifi_restart_ap(
unsigned char *ssid,
rtw_security_t security_type,
unsigned char *password,
int ssid_len,
int password_len,
int channel);
int wifi_config_autoreconnect(__u8 mode, __u8 retyr_times, __u16 timeout);
int wifi_set_autoreconnect(__u8 mode);
int wifi_get_autoreconnect(__u8 *mode);
int wifi_get_last_error( void );
/** Present device disconnect reason while connecting
*
*@return RTW_NO_ERROR = 0,
* RTW_NONE_NETWORK = 1,
* RTW_CONNECT_FAIL = 2,
* RTW_WRONG_PASSWORD = 3 ,
* RTW_DHCP_FAIL = 4,
* RTW_UNKNOWN, initial status
*/
#ifdef CONFIG_CUSTOM_IE
#ifndef BIT
#define BIT(x) ((__u32)1 << (x))
#endif
#ifndef _CUSTOM_IE_TYPE_
#define _CUSTOM_IE_TYPE_
enum CUSTOM_IE_TYPE{
PROBE_REQ = BIT(0),
PROBE_RSP = BIT(1),
BEACON = BIT(2),
};
#endif /* _CUSTOM_IE_TYPE_ */
/* ie format
* +-----------+--------+-----------------------+
* |element ID | length | content in length byte|
* +-----------+--------+-----------------------+
*
* type: refer to CUSTOM_IE_TYPE
*/
#ifndef _CUS_IE_
#define _CUS_IE_
typedef struct _cus_ie{
__u8 *ie;
__u8 type;
}cus_ie, *p_cus_ie;
#endif /* _CUS_IE_ */
int wifi_add_custom_ie(void *cus_ie, int ie_num);
int wifi_update_custom_ie(void *cus_ie, int ie_index);
int wifi_del_custom_ie(void);
#endif
#ifdef CONFIG_PROMISC
void wifi_init_packet_filter(void);
int wifi_add_packet_filter(unsigned char filter_id, rtw_packet_filter_pattern_t *patt, rtw_packet_filter_rule_e rule);
int wifi_enable_packet_filter(unsigned char filter_id);
int wifi_disable_packet_filter(unsigned char filter_id);
int wifi_remove_packet_filter(unsigned char filter_id);
#endif
#ifdef __cplusplus
}
#endif
#endif // __WIFI_API_H
//----------------------------------------------------------------------------//

View file

@ -0,0 +1,52 @@
#ifndef _WIFI_INDICATE_H
#define _WIFI_INDICATE_H
#include "wifi_conf.h"
#if 0 //move to wifi_constants.h
typedef enum _WIFI_EVENT_INDICATE{
WIFI_EVENT_CONNECT = 0,
WIFI_EVENT_DISCONNECT = 1,
WIFI_EVENT_FOURWAY_HANDSHAKE_DONE = 2,
WIFI_EVENT_SCAN_RESULT_REPORT = 3,
WIFI_EVENT_SCAN_DONE = 4,
WIFI_EVENT_RECONNECTION_FAIL = 5,
WIFI_EVENT_SEND_ACTION_DONE = 6,
WIFI_EVENT_RX_MGNT = 7,
WIFI_EVENT_STA_ASSOC = 8,
WIFI_EVENT_STA_DISASSOC = 9,
WIFI_EVENT_WPS_FINISH = 10,
WIFI_EVENT_EAPOL_RECVD = 11,
WIFI_EVENT_NO_NETWORK = 12,
WIFI_EVENT_BEACON_AFTER_DHCP = 13,
WIFI_EVENT_MAX,
}WIFI_EVENT_INDICATE;
#endif
typedef void (*rtw_event_handler_t)(char *buf, int buf_len, int flags, void* handler_user_data );
typedef struct
{
// WIFI_EVENT_INDICATE event_cmd;
rtw_event_handler_t handler;
void* handler_user_data;
} event_list_elem_t;
void init_event_callback_list(void);
extern void wifi_indication( WIFI_EVENT_INDICATE event, char *buf, int buf_len, int flags);
/** Register the event listener
*
* @param[in] event_cmds : The event command number indicated
* @param[in] handler_func : the callback function which will
* receive and process the event
* @param[in] handler_user_data : user specific data that will be
* passed directly to the callback function
*
* @note : Set the same event_cmds with empty handler_func will
* unregister the event_cmds
*
* @return RTW_SUCCESS : if successfully registers the event
* RTW_ERROR : if an error occurred
*/
extern void wifi_reg_event_handler(unsigned int event_cmds, rtw_event_handler_t handler_func, void *handler_user_data);
extern void wifi_unreg_event_handler(unsigned int event_cmds, rtw_event_handler_t handler_func);
#endif //_WIFI_INDICATE_H

View file

@ -0,0 +1,67 @@
#ifndef _UTIL_H
#define _UTIL_H
#include <wireless.h>
#include <wlan_intf.h>
#include <wifi_constants.h>
#include "wifi_structures.h"
#ifdef __cplusplus
extern "C" {
#endif
int wext_get_ssid(const char *ifname, __u8 *ssid);
int wext_set_ssid(const char *ifname, const __u8 *ssid, __u16 ssid_len);
int wext_set_bssid(const char *ifname, const __u8 *bssid);
int wext_get_bssid(const char *ifname, __u8 *bssid);
int wext_set_auth_param(const char *ifname, __u16 idx, __u32 value);
int wext_set_key_ext(const char *ifname, __u16 alg, const __u8 *addr, int key_idx, int set_tx, const __u8 *seq, __u16 seq_len, __u8 *key, __u16 key_len);
int wext_get_enc_ext(const char *ifname, __u16 *alg, __u8 *key_idx, __u8 *passphrase);
int wext_set_passphrase(const char *ifname, const __u8 *passphrase, __u16 passphrase_len);
int wext_get_passphrase(const char *ifname, __u8 *passphrase);
int wext_set_mode(const char *ifname, int mode);
int wext_get_mode(const char *ifname, int *mode);
int wext_set_ap_ssid(const char *ifname, const __u8 *ssid, __u16 ssid_len);
int wext_set_country(const char *ifname, rtw_country_code_t country_code);
int wext_get_rssi(const char *ifname, int *rssi);
int wext_set_channel(const char *ifname, __u8 ch);
int wext_get_channel(const char *ifname, __u8 *ch);
int wext_register_multicast_address(const char *ifname, rtw_mac_t *mac);
int wext_unregister_multicast_address(const char *ifname, rtw_mac_t *mac);
int wext_set_scan(const char *ifname, char *buf, __u16 buf_len, __u16 flags);
int wext_get_scan(const char *ifname, char *buf, __u16 buf_len);
int wext_set_mac_address(const char *ifname, char * mac);
int wext_get_mac_address(const char *ifname, char * mac);
int wext_enable_powersave(const char *ifname, __u8 lps_mode, __u8 ips_mode);
int wext_disable_powersave(const char *ifname);
int wext_set_tdma_param(const char *ifname, __u8 slot_period, __u8 rfon_period_len_1, __u8 rfon_period_len_2, __u8 rfon_period_len_3);
int wext_set_lps_dtim(const char *ifname, __u8 lps_dtim);
int wext_get_tx_power(const char *ifname, __u8 *poweridx);
int wext_set_txpower(const char *ifname, int poweridx);
int wext_get_associated_client_list(const char *ifname, void * client_list_buffer, __u16 buffer_length);
int wext_get_ap_info(const char *ifname, rtw_bss_info_t * ap_info, rtw_security_t* security);
int wext_mp_command(const char *ifname, char *cmd, int show_msg);
int wext_private_command(const char *ifname, char *cmd, int show_msg);
int wext_private_command_with_retval(const char *ifname, char *cmd, char *ret_buf, int ret_len);
void wext_wlan_indicate(unsigned int cmd, union iwreq_data *wrqu, char *extra);
int wext_set_pscan_channel(const char *ifname, __u8 *ch, __u8 *pscan_config, __u8 length);
int wext_set_autoreconnect(const char *ifname, __u8 mode, __u8 retyr_times, __u16 timeout);
int wext_get_autoreconnect(const char *ifname, __u8 *mode);
#ifdef CONFIG_CUSTOM_IE
int wext_add_custom_ie(const char *ifname, void * cus_ie, int ie_num);
int wext_update_custom_ie(const char *ifname, void * cus_ie, int ie_index);
int wext_del_custom_ie(const char *ifname);
#endif
#define wext_handshake_done rltk_wlan_handshake_done
#ifdef CONFIG_P2P_NEW
int wext_send_mgnt(const char *ifname, char *buf, __u16 buf_len, __u16 flags);
#endif
int wext_set_gen_ie(const char *ifname, char *buf, __u16 buf_len, __u16 flags);
#ifdef __cplusplus
}
#endif
#endif /* _UTIL_H */

View file

@ -0,0 +1,35 @@
#ifndef _SDIO_HOST_H
#define _SDIO_HOST_H
#include "basic_types.h"
typedef enum{
SDIO_INIT_NONE = -1,
SDIO_INIT_FAIL = 0,
SDIO_INIT_OK = 1,
SDIO_SD_NONE = 2,
SDIO_SD_OK = 3,
}_sdio_init_s;
s8 sdio_init_host(void); // init sdio host interface
void sdio_deinit_host(void);
s8 sdio_sd_init(void); // init sd card through sdio
void sdio_sd_deinit(void); //de-init sd card through sdio
s8 sdio_sd_status(void);
u32 sdio_sd_getCapacity(void);
s8 sdio_sd_getProtection(void);
#ifdef ARDUINO_SDK
// protected is c++ keyword
s8 sdio_sd_setProtection(bool protection);
#else
s8 sdio_sd_setProtection(bool protected);
#endif
s8 sdio_sd_getCSD(u8* CSD);
s8 sdio_sd_isReady();
s8 sdio_read_blocks(u32 sector, u8 *buffer, u32 count);
s8 sdio_write_blocks(u32 sector, const u8 *buffer, u32 count);
#endif

View file

@ -0,0 +1,369 @@
#ifndef WLANCONFIG_H
#define WLANCONFIG_H
/*
* Include user defined options first. Anything not defined in these files
* will be set to standard values. Override anything you dont like!
*/
#if defined(CONFIG_PLATFORM_8195A) || defined(CONFIG_PLATFORM_8711B)
#include "platform_opts.h"
#endif
#if defined(CONFIG_PLATFORM_8195A) || defined(CONFIG_PLATFORM_8711B)
#define CONFIG_PLATFORM_AMEBA_X
#endif
#if !defined(CONFIG_PLATFORM_AMEBA_X)
#define PLATFORM_FREERTOS 1
#define CONFIG_GSPI_HCI
#else
#define CONFIG_LX_HCI
#endif
#ifndef CONFIG_INIC_EN
#define CONFIG_INIC_EN 0 //For iNIC project
#if CONFIG_INIC_EN
#define CONFIG_LWIP_LAYER 0
#endif
#endif
#define CONFIG_LITTLE_ENDIAN
#define CONFIG_80211N_HT
//#define CONFIG_RECV_REORDERING_CTRL
#define RTW_NOTCH_FILTER 0
#define CONFIG_EMBEDDED_FWIMG 1
#define CONFIG_PHY_SETTING_WITH_ODM
#if !defined(CONFIG_PLATFORM_AMEBA_X)
#define CONFIG_ODM_REFRESH_RAMASK
#define HAL_MAC_ENABLE 1
#define HAL_BB_ENABLE 1
#define HAL_RF_ENABLE 1
#endif
#if defined(CONFIG_PLATFORM_AMEBA_X)
/* Patch when dynamic mechanism is not ready */
//#define CONFIG_DM_PATCH
#endif
//#define CONFIG_DEBUG
//#define CONFIG_DEBUG_RTL871X
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define CONFIG_MEM_MONITOR MEM_MONITOR_SIMPLE
#define WLAN_INTF_DBG 0
#define CONFIG_DEBUG_DYNAMIC
//#define DBG_TX 1
//#define DBG_XMIT_BUF 1
//#define DBG_XMIT_BUF_EXT 1
#define DBG_TX_DROP_FRAME
#else
#define CONFIG_MEM_MONITOR MEM_MONITOR_LEAK
//#define CONFIG_TRACE_SKB
//#define WLAN_INTF_DBG
#endif // CONFIG_PLATFORM_AMEBA_X
//#define CONFIG_DONT_CARE_TP
//#define CONFIG_MEMORY_ACCESS_ALIGNED
#define CONFIG_POWER_SAVING
#ifdef CONFIG_POWER_SAVING
#define CONFIG_IPS
#define CONFIG_LPS
//#define CONFIG_LPS_LCLK
#define CONFIG_LPS_32K
#define TDMA_POWER_SAVING
#define CONFIG_WAIT_PS_ACK
#endif
#if defined(CONFIG_PLATFORM_AMEBA_X)
#if !defined(CONFIG_PLATFORM_8711B)
#define CONFIG_USE_TCM_HEAP 1 /* USE TCM HEAP */
#endif
#define CONFIG_RECV_TASKLET_THREAD
#define CONFIG_XMIT_TASKLET_THREAD
#else
#define CONFIG_XMIT_THREAD_MODE
#endif // CONFIG_PLATFORM_AMEBA_X
//#define CONFIG_RECV_THREAD_MODE /* Wlan IRQ Polling Mode*/
//#define CONFIG_ISR_THREAD_MODE_POLLING /* Wlan IRQ Polling Mode*/
//1 Chris
#ifndef CONFIG_SDIO_HCI
#define CONFIG_ISR_THREAD_MODE_INTERRUPT /* Wlan IRQ Interrupt Mode*/
#endif
#if defined(CONFIG_ISR_THREAD_MODE_POLLING) && defined(CONFIG_ISR_THREAD_MODE_INTERRUPT)
#error "CONFIG_ISR_THREAD_MODE_POLLING and CONFIG_ISR_THREAD_MODE_INTERRUPT are mutually exclusive. "
#endif
#if defined(CONFIG_PLATFORM_AMEBA_X)
/* CRC DMEM optimized mode consume 1k less SRM memory consumption */
#define CRC_IMPLEMENTATION_MODE CRC_IMPLEMENTATION_DMEM_OPTIMIZED
#endif
/* AES DMEM optimized mode comsume 10k less memory compare to
IMEM optimized mode AES_IMPLEMENTATION_IMEM_OPTIMIZED */
#define AES_IMPLEMENTATION_MODE AES_IMPLEMENTATION_DMEM_OPTIMIZED
#define USE_SKB_AS_XMITBUF 1
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define USE_XMIT_EXTBUFF 1
#else
#define USE_XMIT_EXTBUFF 0
#endif
#define USE_MUTEX_FOR_SPINLOCK 1
#define SUPPORT_5G_CHANNEL 0
#define SUPPORT_ONLY_HT_1T 1
#define SUPPORT_FAKE_EFUSE 0
#define CONFIG_AUTO_RECONNECT 1
#define ENABLE_HWPDN_PIN
#define SUPPORT_SCAN_BUF 1
#if !defined(CONFIG_PLATFORM_AMEBA_X)
#define BE_I_CUT 1
#endif
/* For WPA2 */
#define CONFIG_INCLUDE_WPA_PSK
#ifdef CONFIG_INCLUDE_WPA_PSK
#define CONFIG_MULTIPLE_WPA_STA
//#define CONFIG_WPA2_PREAUTH
#define PSK_SUPPORT_TKIP 1
#endif
/* For promiscuous mode */
#define CONFIG_PROMISC
#define PROMISC_DENY_PAIRWISE 0
/* For Simple Link */
#ifndef CONFIG_INCLUDE_SIMPLE_CONFIG
//#define CONFIG_INCLUDE_SIMPLE_CONFIG 1
#endif
// for probe request with custom vendor specific IE
#define CONFIG_CUSTOM_IE
#if !defined(CONFIG_PLATFORM_AMEBA_X)
/* For multicast */
#define CONFIG_MULTICAST
#endif
/* For STA+AP Concurrent MODE */
#if !defined(CONFIG_PLATFORM_8711B)
#define CONFIG_CONCURRENT_MODE
#endif
#ifdef CONFIG_CONCURRENT_MODE
#if defined(CONFIG_PLATFORM_8195A)
#define CONFIG_RUNTIME_PORT_SWITCH
#endif
#define NET_IF_NUM 2
#else
#define NET_IF_NUM 1
#endif
/* For WPS and P2P */
#ifndef CONFIG_WPS
#define CONFIG_WPS
#if defined(CONFIG_WPS)
#define CONFIG_ENABLE_WPS 1
#endif
#if 0//def CONFIG_WPS
#define CONFIG_WPS_AP
#define CONFIG_P2P_NEW
#if (!defined(SUPPORT_SCAN_BUF)||!defined(CONFIG_WPS_AP)) && defined(CONFIG_P2P_NEW)
#error "If CONFIG_P2P_NEW, need to SUPPORT_SCAN_BUF"
#endif
#endif
#endif
#if !defined(CONFIG_PLATFORM_AMEBA_X)
#define CONFIG_NEW_SIGNAL_STAT_PROCESS
#endif
/* For AP_MODE */
#define CONFIG_AP_MODE
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define AP_STA_NUM 3 //2014/10/27 modify to 3
#define USE_DEDICATED_BCN_TX 0
#if USE_DEDICATED_BCN_TX
#error "WLAN driver for Ameba should not enable USE_DEDICATED_BCN_TX"
#endif
#else
extern unsigned int g_ap_sta_num;
#define AP_STA_NUM g_ap_sta_num
#endif
#ifdef CONFIG_AP_MODE
#define CONFIG_NATIVEAP_MLME
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define CONFIG_INTERRUPT_BASED_TXBCN
#endif
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
//#define CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
#define CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
#endif
// #define CONFIG_GK_REKEY
#if !defined(CONFIG_PLATFORM_AMEBA_X)
#define USE_DEDICATED_BCN_TX 1
#endif
#if CONFIG_INIC_EN
#define REPORT_STA_EVENT
#endif
#else
#if !defined(CONFIG_PLATFORM_AMEBA_X)
#define USE_DEDICATED_BCN_TX 0
#endif
#endif
#if defined(CONFIG_AP_MODE) && defined(CONFIG_GK_REKEY) && !defined(CONFIG_MULTIPLE_WPA_STA)
#error "If CONFIG_GK_REKEY when CONFIG_AP_MODE, need to CONFIG_MULTIPLE_WPA_STA"
#endif
#if !defined(CONFIG_PLATFORM_AMEBA_X)
#if !defined(CONFIG_AP_MODE) && defined(CONFIG_CONCURRENT_MODE)
#error "If CONFIG_CONCURRENT_MODEE, need to CONFIG_AP_MODE"
#endif
#endif
/* For efuse or flash config */
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define CONFIG_RW_PHYSICAL_EFUSE 0 // Mask efuse user blocks
#define CONFIG_HIDE_PROTECT_EFUSE 1
#define CONFIG_ADAPTOR_INFO_CACHING_FLASH 1
#define CHECK_FLASH_VALID_MASK 1
/* For K-free */
#if !defined(CONFIG_PLATFORM_8711B)
#define CONFIG_RF_GAIN_OFFSET
#endif
#endif // CONFIG_PLATFORM_AMEBA_X
/* For MP_MODE */
//#define CONFIG_MP_INCLUDED
#ifdef CONFIG_MP_INCLUDED
#define MP_DRIVER 1
#define CONFIG_MP_IWPRIV_SUPPORT
// #define HAL_EFUSE_MEMORY
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define MP_REG_TEST
#endif
#else
#define MP_DRIVER 0
#if defined(CONFIG_PLATFORM_AMEBA_X)
//Control wifi mcu function
#define CONFIG_LITTLE_WIFI_MCU_FUNCTION_THREAD
#define CONFIG_ODM_REFRESH_RAMASK
#endif
#endif // #ifdef CONFIG_MP_INCLUDED
#if defined(CONFIG_PLATFORM_AMEBA_X)
#if defined(CONFIG_PLATFORM_8195A)
#define CONFIG_RTL8195A
#endif
#if defined(CONFIG_PLATFORM_8711B)
#define CONFIG_RTL8711B
#endif
#else
#define CONFIG_RTL8188E
#endif
#define RTL8192C_SUPPORT 0
#define RTL8192CE_SUPPORT 0
#define RTL8192CU_SUPPORT 0
#define RTL8192D_SUPPORT 0
#define RTL8192DE_SUPPORT 0
#define RTL8192DU_SUPPORT 0
#define RTL8723A_SUPPORT 0
#define RTL8723AU_SUPPORT 0
#define RTL8723AS_SUPPORT 0
#define RTL8192E_SUPPORT 0
#define RTL8812A_SUPPORT 0
#define RTL8821A_SUPPORT 0
#define RTL8723B_SUPPORT 0
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define RTL8195A_SUPPORT 1
#define RTL8188E_SUPPORT 0
#else
#define RTL8188E_SUPPORT 1
#define RTL8195A_SUPPORT 0
#endif
#define TEST_CHIP_SUPPORT 0
#define RTL8188E_FOR_TEST_CHIP 0
#define RTL8188E_FPGA_TRUE_PHY_VERIFICATION 0
// for Debug message
#define DBG 0
#if defined(CONFIG_PLATFORM_AMEBA_X)
#if(DBG == 0)
#define ROM_E_RTW_MSG 1
/* For DM debug*/
// BB
#define DBG_RX_INFO 1
#define DBG_TX_RATE 1 // DebugComponents: bit9
#define DBG_DM_RA 1 // DebugComponents: bit9
#define DBG_DM_DIG 1 // DebugComponents: bit0
// RF
#define DBG_PWR_TRACKING 1 // DebugComponents: bit24
#define DBG_RF_IQK 1 // DebugComponents: bit26
// Common
#define DBG_PWR_INDEX 1 // DebugComponents: bit30
#endif
#endif
/* For DM support */
#define RATE_ADAPTIVE_SUPPORT 1
#define CONFIG_RTW_ADAPTIVITY_EN 0
#define RTW_ADAPTIVITY_MODE_NORMAL 0
#define RTW_ADAPTIVITY_MODE_CARRIER_SENSE 1
#define CONFIG_RTW_ADAPTIVITY_MODE RTW_ADAPTIVITY_MODE_CARRIER_SENSE
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define CONFIG_POWER_TRAINING_WIL 0 // in RA
#else
#define POWER_BY_RATE_SUPPORT 0
#endif
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define RTL8195A_FOR_TEST_CHIP 0
//#define CONFIG_WIFI_TEST 1
//#define CONFIG_MAC_LOOPBACK_DRIVER 1
//#define CONFIG_WLAN_HAL_TEST 1
//#define SKB_PRE_ALLOCATE_TX 1
#define SKB_PRE_ALLOCATE_RX 0
#define TX_CHECK_DSEC_ALWAYS 1
#define CONFIG_DBG_DISABLE_RDU_INTERRUPT
//#define CONFIG_WLAN_HAL_RX_TASK
#if (SKB_PRE_ALLOCATE_RX == 1)
#define EXCHANGE_LXBUS_RX_SKB 0
#endif
//Enable mac loopback for test mode (Ameba)
//#define ENABLE_MAC_LB_FOR_TEST_MODE // for test mode
#ifdef ENABLE_MAC_LB_FOR_TEST_MODE
#define CONFIG_SUDO_PHY_SETTING
#define INT_HANDLE_IN_ISR 1
#define CONFIG_LWIP_LAYER 0
#define CONFIG_WLAN_HAL_TEST
#define CONFIG_WLAN_HAL_RX_TASK
#define CONFIG_MAC_LOOPBACK_DRIVER_RTL8195A 1
//#define CONFIG_TWO_MAC_TEST_MODE
#define DISABLE_BB_RF 1
#else
//#define CONFIG_TWO_MAC_DRIVER //for mornal driver; two mac
#ifdef CONFIG_TWO_MAC_DRIVER
#define CONFIG_SUDO_PHY_SETTING
#define DISABLE_BB_RF 1
#else
#define HAL_MAC_ENABLE 1
#define HAL_BB_ENABLE 1
#define HAL_RF_ENABLE 1
#define DISABLE_BB_RF 0
#endif
//#define INT_HANDLE_IN_ISR 1
#endif
#endif // CONFIG_PLATFORM_AMEBA_X
#ifndef CONFIG_LWIP_LAYER
#define CONFIG_LWIP_LAYER 1
#endif
#define CONFIG_MAC_ADDRESS 0
//fast reconnection
//#define CONFIG_FAST_RECONNECTION 1
#endif //WLANCONFIG_H

View file

@ -0,0 +1,425 @@
#ifndef _WIFI_CONSTANTS_H
#define _WIFI_CONSTANTS_H
#ifdef __cplusplus
extern "C" {
#endif
#define WEP_ENABLED 0x0001
#define TKIP_ENABLED 0x0002
#define AES_ENABLED 0x0004
#define WSEC_SWFLAG 0x0008
#define SHARED_ENABLED 0x00008000
#define WPA_SECURITY 0x00200000
#define WPA2_SECURITY 0x00400000
#define WPS_ENABLED 0x10000000
#define RTW_MAX_PSK_LEN (64)
#define RTW_MIN_PSK_LEN (8)
#define MCSSET_LEN 16
typedef enum
{
RTW_SUCCESS = 0, /**< Success */
RTW_PENDING = 1, /**< Pending */
RTW_TIMEOUT = 2, /**< Timeout */
RTW_PARTIAL_RESULTS = 3, /**< Partial results */
RTW_INVALID_KEY = 4, /**< Invalid key */
RTW_DOES_NOT_EXIST = 5, /**< Does not exist */
RTW_NOT_AUTHENTICATED = 6, /**< Not authenticated */
RTW_NOT_KEYED = 7, /**< Not keyed */
RTW_IOCTL_FAIL = 8, /**< IOCTL fail */
RTW_BUFFER_UNAVAILABLE_TEMPORARY = 9, /**< Buffer unavailable temporarily */
RTW_BUFFER_UNAVAILABLE_PERMANENT = 10, /**< Buffer unavailable permanently */
RTW_WPS_PBC_OVERLAP = 11, /**< WPS PBC overlap */
RTW_CONNECTION_LOST = 12, /**< Connection lost */
RTW_ERROR = -1, /**< Generic Error */
RTW_BADARG = -2, /**< Bad Argument */
RTW_BADOPTION = -3, /**< Bad option */
RTW_NOTUP = -4, /**< Not up */
RTW_NOTDOWN = -5, /**< Not down */
RTW_NOTAP = -6, /**< Not AP */
RTW_NOTSTA = -7, /**< Not STA */
RTW_BADKEYIDX = -8, /**< BAD Key Index */
RTW_RADIOOFF = -9, /**< Radio Off */
RTW_NOTBANDLOCKED = -10, /**< Not band locked */
RTW_NOCLK = -11, /**< No Clock */
RTW_BADRATESET = -12, /**< BAD Rate valueset */
RTW_BADBAND = -13, /**< BAD Band */
RTW_BUFTOOSHORT = -14, /**< Buffer too short */
RTW_BUFTOOLONG = -15, /**< Buffer too long */
RTW_BUSY = -16, /**< Busy */
RTW_NOTASSOCIATED = -17, /**< Not Associated */
RTW_BADSSIDLEN = -18, /**< Bad SSID len */
RTW_OUTOFRANGECHAN = -19, /**< Out of Range Channel */
RTW_BADCHAN = -20, /**< Bad Channel */
RTW_BADADDR = -21, /**< Bad Address */
RTW_NORESOURCE = -22, /**< Not Enough Resources */
RTW_UNSUPPORTED = -23, /**< Unsupported */
RTW_BADLEN = -24, /**< Bad length */
RTW_NOTREADY = -25, /**< Not Ready */
RTW_EPERM = -26, /**< Not Permitted */
RTW_NOMEM = -27, /**< No Memory */
RTW_ASSOCIATED = -28, /**< Associated */
RTW_RANGE = -29, /**< Not In Range */
RTW_NOTFOUND = -30, /**< Not Found */
RTW_WME_NOT_ENABLED = -31, /**< WME Not Enabled */
RTW_TSPEC_NOTFOUND = -32, /**< TSPEC Not Found */
RTW_ACM_NOTSUPPORTED = -33, /**< ACM Not Supported */
RTW_NOT_WME_ASSOCIATION = -34, /**< Not WME Association */
RTW_SDIO_ERROR = -35, /**< SDIO Bus Error */
RTW_WLAN_DOWN = -36, /**< WLAN Not Accessible */
RTW_BAD_VERSION = -37, /**< Incorrect version */
RTW_TXFAIL = -38, /**< TX failure */
RTW_RXFAIL = -39, /**< RX failure */
RTW_NODEVICE = -40, /**< Device not present */
RTW_UNFINISHED = -41, /**< To be finished */
RTW_NONRESIDENT = -42, /**< access to nonresident overlay */
RTW_DISABLED = -43 /**< Disabled in this build */
} rtw_result_t;
typedef enum {
RTW_SECURITY_OPEN = 0, /**< Open security */
RTW_SECURITY_WEP_PSK = WEP_ENABLED, /**< WEP Security with open authentication */
RTW_SECURITY_WEP_SHARED = ( WEP_ENABLED | SHARED_ENABLED ), /**< WEP Security with shared authentication */
RTW_SECURITY_WPA_TKIP_PSK = ( WPA_SECURITY | TKIP_ENABLED ), /**< WPA Security with TKIP */
RTW_SECURITY_WPA_AES_PSK = ( WPA_SECURITY | AES_ENABLED ), /**< WPA Security with AES */
RTW_SECURITY_WPA2_AES_PSK = ( WPA2_SECURITY | AES_ENABLED ), /**< WPA2 Security with AES */
RTW_SECURITY_WPA2_TKIP_PSK = ( WPA2_SECURITY | TKIP_ENABLED ), /**< WPA2 Security with TKIP */
RTW_SECURITY_WPA2_MIXED_PSK = ( WPA2_SECURITY | AES_ENABLED | TKIP_ENABLED ), /**< WPA2 Security with AES & TKIP */
RTW_SECURITY_WPA_WPA2_MIXED = ( WPA_SECURITY | WPA2_SECURITY ), /**< WPA/WPA2 Security */
RTW_SECURITY_WPS_OPEN = WPS_ENABLED, /**< WPS with open security */
RTW_SECURITY_WPS_SECURE = (WPS_ENABLED | AES_ENABLED), /**< WPS with AES security */
RTW_SECURITY_UNKNOWN = -1, /**< May be returned by scan function if security is unknown. Do not pass this to the join function! */
RTW_SECURITY_FORCE_32_BIT = 0x7fffffff /**< Exists only to force rtw_security_t type to 32 bits */
} rtw_security_t;
typedef enum {
RTW_ENCRYPTION_UNKNOWN = 0,
RTW_ENCRYPTION_OPEN = 1,
RTW_ENCRYPTION_WEP40 = 2,
RTW_ENCRYPTION_WPA_TKIP = 3,
RTW_ENCRYPTION_WPA_AES = 4,
RTW_ENCRYPTION_WPA2_TKIP = 5,
RTW_ENCRYPTION_WPA2_AES = 6,
RTW_ENCRYPTION_WPA2_MIXED = 7,
RTW_ENCRYPTION_WEP104 = 9,
RTW_ENCRYPTION_UNDEF = 0xFF,
} rtw_encryption_t;
typedef enum {
RTW_FALSE = 0,
RTW_TRUE = 1
} rtw_bool_t;
typedef enum {
RTW_802_11_BAND_5GHZ = 0, /**< Denotes 5GHz radio band */
RTW_802_11_BAND_2_4GHZ = 1 /**< Denotes 2.4GHz radio band */
} rtw_802_11_band_t;
typedef enum {
/* SPECIAL */
RTW_COUNTRY_WORLD,
RTW_COUNTRY_EU,
/* JAPANESE */
RTW_COUNTRY_JP,
/* FCC , 19 countries*/
RTW_COUNTRY_AS,
RTW_COUNTRY_BM,
RTW_COUNTRY_CA,
RTW_COUNTRY_DM,
RTW_COUNTRY_DO,
RTW_COUNTRY_FM,
RTW_COUNTRY_GD,
RTW_COUNTRY_GT,
RTW_COUNTRY_GU,
RTW_COUNTRY_HT,
RTW_COUNTRY_MH,
RTW_COUNTRY_MP,
RTW_COUNTRY_NI,
RTW_COUNTRY_PA,
RTW_COUNTRY_PR,
RTW_COUNTRY_PW,
RTW_COUNTRY_TW,
RTW_COUNTRY_US,
RTW_COUNTRY_VI,
/* others, ETSI */
RTW_COUNTRY_AD,
RTW_COUNTRY_AE,
RTW_COUNTRY_AF,
RTW_COUNTRY_AI,
RTW_COUNTRY_AL,
RTW_COUNTRY_AM,
RTW_COUNTRY_AN,
RTW_COUNTRY_AR,
RTW_COUNTRY_AT,
RTW_COUNTRY_AU,
RTW_COUNTRY_AW,
RTW_COUNTRY_AZ,
RTW_COUNTRY_BA,
RTW_COUNTRY_BB,
RTW_COUNTRY_BD,
RTW_COUNTRY_BE,
RTW_COUNTRY_BF,
RTW_COUNTRY_BG,
RTW_COUNTRY_BH,
RTW_COUNTRY_BL,
RTW_COUNTRY_BN,
RTW_COUNTRY_BO,
RTW_COUNTRY_BR,
RTW_COUNTRY_BS,
RTW_COUNTRY_BT,
RTW_COUNTRY_BY,
RTW_COUNTRY_BZ,
RTW_COUNTRY_CF,
RTW_COUNTRY_CH,
RTW_COUNTRY_CI,
RTW_COUNTRY_CL,
RTW_COUNTRY_CN,
RTW_COUNTRY_CO,
RTW_COUNTRY_CR,
RTW_COUNTRY_CX,
RTW_COUNTRY_CY,
RTW_COUNTRY_CZ,
RTW_COUNTRY_DE,
RTW_COUNTRY_DK,
RTW_COUNTRY_DZ,
RTW_COUNTRY_EC,
RTW_COUNTRY_EE,
RTW_COUNTRY_EG,
RTW_COUNTRY_ES,
RTW_COUNTRY_ET,
RTW_COUNTRY_FI,
RTW_COUNTRY_FR,
RTW_COUNTRY_GB,
RTW_COUNTRY_GE,
RTW_COUNTRY_GF,
RTW_COUNTRY_GH,
RTW_COUNTRY_GL,
RTW_COUNTRY_GP,
RTW_COUNTRY_GR,
RTW_COUNTRY_GY,
RTW_COUNTRY_HK,
RTW_COUNTRY_HN,
RTW_COUNTRY_HR,
RTW_COUNTRY_HU,
RTW_COUNTRY_ID,
RTW_COUNTRY_IE,
RTW_COUNTRY_IL,
RTW_COUNTRY_IN,
RTW_COUNTRY_IQ,
RTW_COUNTRY_IR,
RTW_COUNTRY_IS,
RTW_COUNTRY_IT,
RTW_COUNTRY_JM,
RTW_COUNTRY_JO,
RTW_COUNTRY_KE,
RTW_COUNTRY_KH,
RTW_COUNTRY_KN,
RTW_COUNTRY_KP,
RTW_COUNTRY_KR,
RTW_COUNTRY_KW,
RTW_COUNTRY_KY,
RTW_COUNTRY_KZ,
RTW_COUNTRY_LA,
RTW_COUNTRY_LB,
RTW_COUNTRY_LC,
RTW_COUNTRY_LI,
RTW_COUNTRY_LK,
RTW_COUNTRY_LR,
RTW_COUNTRY_LS,
RTW_COUNTRY_LT,
RTW_COUNTRY_LU,
RTW_COUNTRY_LV,
RTW_COUNTRY_MA,
RTW_COUNTRY_MC,
RTW_COUNTRY_MD,
RTW_COUNTRY_ME,
RTW_COUNTRY_MF,
RTW_COUNTRY_MK,
RTW_COUNTRY_MN,
RTW_COUNTRY_MO,
RTW_COUNTRY_MQ,
RTW_COUNTRY_MR,
RTW_COUNTRY_MT,
RTW_COUNTRY_MU,
RTW_COUNTRY_MV,
RTW_COUNTRY_MW,
RTW_COUNTRY_MX,
RTW_COUNTRY_MY,
RTW_COUNTRY_NG,
RTW_COUNTRY_NL,
RTW_COUNTRY_NO,
RTW_COUNTRY_NP,
RTW_COUNTRY_NZ,
RTW_COUNTRY_OM,
RTW_COUNTRY_PE,
RTW_COUNTRY_PF,
RTW_COUNTRY_PG,
RTW_COUNTRY_PH,
RTW_COUNTRY_PK,
RTW_COUNTRY_PL,
RTW_COUNTRY_PM,
RTW_COUNTRY_PT,
RTW_COUNTRY_PY,
RTW_COUNTRY_QA,
RTW_COUNTRY_RS,
RTW_COUNTRY_RU,
RTW_COUNTRY_RW,
RTW_COUNTRY_SA,
RTW_COUNTRY_SE,
RTW_COUNTRY_SG,
RTW_COUNTRY_SI,
RTW_COUNTRY_SK,
RTW_COUNTRY_SN,
RTW_COUNTRY_SR,
RTW_COUNTRY_SV,
RTW_COUNTRY_SY,
RTW_COUNTRY_TC,
RTW_COUNTRY_TD,
RTW_COUNTRY_TG,
RTW_COUNTRY_TH,
RTW_COUNTRY_TN,
RTW_COUNTRY_TR,
RTW_COUNTRY_TT,
RTW_COUNTRY_TZ,
RTW_COUNTRY_UA,
RTW_COUNTRY_UG,
RTW_COUNTRY_UY,
RTW_COUNTRY_UZ,
RTW_COUNTRY_VC,
RTW_COUNTRY_VE,
RTW_COUNTRY_VN,
RTW_COUNTRY_VU,
RTW_COUNTRY_WF,
RTW_COUNTRY_WS,
RTW_COUNTRY_YE,
RTW_COUNTRY_YT,
RTW_COUNTRY_ZA,
RTW_COUNTRY_ZW,
RTW_COUNTRY_MAX
}rtw_country_code_t;
typedef enum {
RTW_MODE_NONE = 0,
RTW_MODE_STA,
RTW_MODE_AP,
RTW_MODE_STA_AP,
RTW_MODE_PROMISC,
RTW_MODE_P2P
}rtw_mode_t;
typedef enum {
RTW_SCAN_FULL = 0,
RTW_SCAN_SOCIAL,
RTW_SCAN_ONE
}rtw_scan_mode_t;
typedef enum {
RTW_LINK_DISCONNECTED = 0,
RTW_LINK_CONNECTED
} rtw_link_status_t;
typedef enum {
RTW_SCAN_TYPE_ACTIVE = 0x00, /**< Actively scan a network by sending 802.11 probe(s) */
RTW_SCAN_TYPE_PASSIVE = 0x01, /**< Passively scan a network by listening for beacons from APs */
RTW_SCAN_TYPE_PROHIBITED_CHANNELS = 0x04 /**< Passively scan on channels not enabled by the country code */
} rtw_scan_type_t;
typedef enum {
RTW_BSS_TYPE_INFRASTRUCTURE = 0, /**< Denotes infrastructure network */
RTW_BSS_TYPE_ADHOC = 1, /**< Denotes an 802.11 ad-hoc IBSS network */
RTW_BSS_TYPE_ANY = 2, /**< Denotes either infrastructure or ad-hoc network */
RTW_BSS_TYPE_UNKNOWN = -1 /**< May be returned by scan function if BSS type is unknown. Do not pass this to the Join function */
} rtw_bss_type_t;
typedef enum {
RTW_SCAN_COMMAMD = 0x01
} rtw_scan_command_t;
typedef enum{
COMMAND1 = 0x01
}rtw_command_type;
typedef enum {
RTW_WPS_TYPE_DEFAULT = 0x0000,
RTW_WPS_TYPE_USER_SPECIFIED = 0x0001,
RTW_WPS_TYPE_MACHINE_SPECIFIED = 0x0002,
RTW_WPS_TYPE_REKEY = 0x0003,
RTW_WPS_TYPE_PUSHBUTTON = 0x0004,
RTW_WPS_TYPE_REGISTRAR_SPECIFIED = 0x0005,
RTW_WPS_TYPE_NONE = 0x0006
} rtw_wps_type_t;
typedef enum {
RTW_NETWORK_B = 1,
RTW_NETWORK_BG = 3,
RTW_NETWORK_BGN = 11
} rtw_network_mode_t;
typedef enum {
RTW_STA_INTERFACE = 0, /**< STA or Client Interface */
RTW_AP_INTERFACE = 1, /**< softAP Interface */
} rtw_interface_t;
/**
* Enumeration of packet filter rules
*/
typedef enum {
RTW_POSITIVE_MATCHING = 0, /**< Specifies that a filter should match a given pattern */
RTW_NEGATIVE_MATCHING = 1 /**< Specifies that a filter should NOT match a given pattern */
} rtw_packet_filter_rule_e;
typedef enum {
RTW_PROMISC_DISABLE = 0, /**< disable the promisc */
RTW_PROMISC_ENABLE = 1, /**< fetch all ethernet packets */
RTW_PROMISC_ENABLE_1 = 2, /**< fetch only B/M packets */
RTW_PROMISC_ENABLE_2 = 3, /**< fetch all 802.11 packets*/
RTW_PROMISC_ENABLE_3 = 4, /**< fetch only B/M 802.11 packets*/
} rtw_rcr_level_t;
typedef enum{
RTW_NO_ERROR = 0,
RTW_NONE_NETWORK = 1,
RTW_CONNECT_FAIL = 2,
RTW_WRONG_PASSWORD = 3 ,
RTW_DHCP_FAIL = 4,
RTW_UNKNOWN,
}rtw_connect_error_flag_t;
typedef enum _WIFI_EVENT_INDICATE{
WIFI_EVENT_CONNECT = 0,
WIFI_EVENT_DISCONNECT = 1,
WIFI_EVENT_FOURWAY_HANDSHAKE_DONE = 2,
WIFI_EVENT_SCAN_RESULT_REPORT = 3,
WIFI_EVENT_SCAN_DONE = 4,
WIFI_EVENT_RECONNECTION_FAIL = 5,
WIFI_EVENT_SEND_ACTION_DONE = 6,
WIFI_EVENT_RX_MGNT = 7,
WIFI_EVENT_STA_ASSOC = 8,
WIFI_EVENT_STA_DISASSOC = 9,
WIFI_EVENT_WPS_FINISH = 10,
WIFI_EVENT_EAPOL_RECVD = 11,
WIFI_EVENT_NO_NETWORK = 12,
WIFI_EVENT_BEACON_AFTER_DHCP = 13,
WIFI_EVENT_MAX,
}WIFI_EVENT_INDICATE;
#ifdef __cplusplus
}
#endif
#endif /* _WIFI_CONSTANTS_H */

View file

@ -0,0 +1,159 @@
#ifndef _WIFI_STRUCTURES_H
#define _WIFI_STRUCTURES_H
//#include <freertos/freertos_service.h>
#include "wifi_constants.h"
#ifdef __cplusplus
extern "C" {
#endif
#if defined(__IAR_SYSTEMS_ICC__)
#pragma pack(1)
#endif
typedef struct rtw_ssid {
unsigned char len; /**< SSID length */
unsigned char val[33]; /**< SSID name (AP name) */
} rtw_ssid_t;
#if defined(__IAR_SYSTEMS_ICC__)
#pragma pack()
#endif
#if defined(__IAR_SYSTEMS_ICC__)
#pragma pack(1)
#endif
typedef struct rtw_mac {
unsigned char octet[6]; /**< Unique 6-byte MAC address */
} rtw_mac_t;
#if defined(__IAR_SYSTEMS_ICC__)
#pragma pack()
#endif
typedef struct rtw_ap_info {
rtw_ssid_t ssid;
rtw_security_t security_type;
unsigned char *password;
int password_len;
int channel;
}rtw_ap_info_t;
typedef struct rtw_network_info {
rtw_ssid_t ssid;
rtw_mac_t bssid;
rtw_security_t security_type;
unsigned char *password;
int password_len;
int key_id;
}rtw_network_info_t;
#if defined(__IAR_SYSTEMS_ICC__)
#pragma pack(1)
#endif
typedef struct rtw_scan_result {
rtw_ssid_t SSID; /**< Service Set Identification (i.e. Name of Access Point) */
rtw_mac_t BSSID; /**< Basic Service Set Identification (i.e. MAC address of Access Point) */
signed short signal_strength; /**< Receive Signal Strength Indication in dBm. <-90=Very poor, >-30=Excellent */
rtw_bss_type_t bss_type; /**< Network type */
rtw_security_t security; /**< Security type */
rtw_wps_type_t wps_type; /**< WPS type */
unsigned int channel; /**< Radio channel that the AP beacon was received on */
rtw_802_11_band_t band; /**< Radio band */
} rtw_scan_result_t;
#if defined(__IAR_SYSTEMS_ICC__)
#pragma pack()
#endif
typedef struct rtw_scan_handler_result {
rtw_scan_result_t ap_details;
rtw_bool_t scan_complete;
void* user_data;
} rtw_scan_handler_result_t;
#if defined(__IAR_SYSTEMS_ICC__)
#pragma pack(1)
#endif
typedef struct rtw_wifi_setting {
rtw_mode_t mode;
unsigned char ssid[33];
unsigned char channel;
rtw_security_t security_type;
unsigned char password[65];
unsigned char key_idx;
}rtw_wifi_setting_t;
#if defined(__IAR_SYSTEMS_ICC__)
#pragma pack()
#endif
typedef struct rtw_wifi_config {
unsigned int boot_mode;
unsigned char ssid[32];
unsigned char ssid_len;
unsigned char security_type;
unsigned char password[65];
unsigned char password_len;
unsigned char channel;
} rtw_wifi_config_t;
typedef struct
{
unsigned int count; /**< Number of MAC addresses in the list */
rtw_mac_t mac_list[1]; /**< Variable length array of MAC addresses */
} rtw_maclist_t;
typedef struct {
unsigned int version; /* version field */
unsigned int length; /* byte length of data in this record, */
/* starting at version and including IEs */
rtw_mac_t BSSID;
unsigned short beacon_period; /* units are Kusec */
unsigned short capability; /* Capability information */
unsigned char SSID_len;
unsigned char SSID[32];
unsigned char channel;
// struct {
// uint32_t count; /* # rates in this set */
// uint8_t rates[16]; /* rates in 500kbps units w/hi bit set if basic */
// } rateset; /* supported rates */
// rtw_chanspec_t chanspec; /* chanspec for bss */
unsigned short atim_window; /* units are Kusec */
unsigned char dtim_period; /* DTIM period */
signed short RSSI; /* receive signal strength (in dBm) */
unsigned char n_cap; /* BSS is 802.11N Capable */
unsigned int nbss_cap; /* 802.11N BSS Capabilities (based on HT_CAP_*) */
unsigned char basic_mcs[MCSSET_LEN]; /* 802.11N BSS required MCS set */
unsigned short ie_offset; /* offset at which IEs start, from beginning */
unsigned int ie_length; /* byte length of Information Elements */
} rtw_bss_info_t;
typedef struct {
unsigned short offset; /**< Offset in bytes to start filtering (referenced to the start of the ethernet packet) */
unsigned short mask_size; /**< Size of the mask in bytes */
unsigned char* mask; /**< Pattern mask bytes to be ANDed with the pattern eg. "\xff00" (must be in network byte order) */
unsigned char* pattern; /**< Pattern bytes used to filter eg. "\x0800" (must be in network byte order) */
} rtw_packet_filter_pattern_t;
typedef struct ieee80211_frame_info{
unsigned short i_fc;
unsigned short i_dur;
unsigned char i_addr1[6];
unsigned char i_addr2[6];
unsigned char i_addr3[6];
unsigned short i_seq;
unsigned char bssid[6];
unsigned char encrypt;
signed char rssi;
}ieee80211_frame_info_t;
typedef struct {
char filter_id;
rtw_packet_filter_pattern_t patt;
rtw_packet_filter_rule_e rule;
unsigned char enable;
}rtw_packet_filter_info_t;
#ifdef __cplusplus
}
#endif
#endif /* _WIFI_STRUCTURES_H */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,65 @@
#ifndef __WLAN_INTF_H__
#define __WLAN_INTF_H__
#ifdef __cplusplus
extern "C" {
#endif
#include <autoconf.h>
#include <wireless.h>
#include "wifi_constants.h"
#ifndef WLAN0_IDX
#define WLAN0_IDX 0
#endif
#ifndef WLAN1_IDX
#define WLAN1_IDX 1
#endif
#ifndef WLAN_UNDEF
#define WLAN_UNDEF -1
#endif
/***********************************************************/
/*
struct sk_buff {
// These two members must be first.
struct sk_buff *next; // Next buffer in list
struct sk_buff *prev; // Previous buffer in list
struct sk_buff_head *list; // List we are on
unsigned char *head; // Head of buffer
unsigned char *data; // Data head pointer
unsigned char *tail; // Tail pointer
unsigned char *end; //End pointer
struct net_device *dev; //Device we arrived on/are leaving by
unsigned int len; // Length of actual data
};
*/
/************************************************************/
//----- ------------------------------------------------------------------
// Wlan Interface opened for upper layer
//----- ------------------------------------------------------------------
int rltk_wlan_init(int idx_wlan, rtw_mode_t mode); //return 0: success. -1:fail
void rltk_wlan_deinit(void);
void rltk_wlan_start(int idx_wlan);
void rltk_wlan_statistic(unsigned char idx);
unsigned char rltk_wlan_running(unsigned char idx); // interface is up. 0: interface is down
int rltk_wlan_control(unsigned long cmd, void *data);
int rltk_wlan_handshake_done(void);
int rltk_wlan_rf_on(void);
int rltk_wlan_rf_off(void);
int rltk_wlan_check_bus(void);
int rltk_wlan_wireless_mode(unsigned char mode);
int rltk_wlan_set_wps_phase(unsigned char is_trigger_wps);
int rtw_ps_enable(int enable);
int rltk_wlan_is_connected_to_ap(void);
#ifdef __cplusplus
}
#endif
#endif //#ifndef __WLAN_INTF_H__

View file

@ -0,0 +1,816 @@
/* ----------------------------------------------------------------------
* $Date: 5. February 2013
* $Revision: V1.02
*
* Project: CMSIS-RTOS API
* Title: cmsis_os.h template header file
*
* Version 0.02
* Initial Proposal Phase
* Version 0.03
* osKernelStart added, optional feature: main started as thread
* osSemaphores have standard behavior
* osTimerCreate does not start the timer, added osTimerStart
* osThreadPass is renamed to osThreadYield
* Version 1.01
* Support for C++ interface
* - const attribute removed from the osXxxxDef_t typedef's
* - const attribute added to the osXxxxDef macros
* Added: osTimerDelete, osMutexDelete, osSemaphoreDelete
* Added: osKernelInitialize
* Version 1.02
* Control functions for short timeouts in microsecond resolution:
* Added: osKernelSysTick, osKernelSysTickFrequency, osKernelSysTickMicroSec
* Removed: osSignalGet
*----------------------------------------------------------------------------
*
* Copyright (c) 2013 ARM LIMITED
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*---------------------------------------------------------------------------*/
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "queue.h"
#include "semphr.h"
#define FREERTOS_VERSION 0x00080001 // bits[31:16] main version, bits[15:0] sub-version
#if FREERTOS_VERSION >= 0x00080000
#define configSignalManagementSupport 1
#else
#define configSignalManagementSupport 0
#endif
#if configSignalManagementSupport
#include "event_groups.h"
#endif
/**
\page cmsis_os_h Header File Template: cmsis_os.h
The file \b cmsis_os.h is a template header file for a CMSIS-RTOS compliant Real-Time Operating System (RTOS).
Each RTOS that is compliant with CMSIS-RTOS shall provide a specific \b cmsis_os.h header file that represents
its implementation.
The file cmsis_os.h contains:
- CMSIS-RTOS API function definitions
- struct definitions for parameters and return types
- status and priority values used by CMSIS-RTOS API functions
- macros for defining threads and other kernel objects
<b>Name conventions and header file modifications</b>
All definitions are prefixed with \b os to give an unique name space for CMSIS-RTOS functions.
Definitions that are prefixed \b os_ are not used in the application code but local to this header file.
All definitions and functions that belong to a module are grouped and have a common prefix, i.e. \b osThread.
Definitions that are marked with <b>CAN BE CHANGED</b> can be adapted towards the needs of the actual CMSIS-RTOS implementation.
These definitions can be specific to the underlying RTOS kernel.
Definitions that are marked with <b>MUST REMAIN UNCHANGED</b> cannot be altered. Otherwise the CMSIS-RTOS implementation is no longer
compliant to the standard. Note that some functions are optional and need not to be provided by every CMSIS-RTOS implementation.
<b>Function calls from interrupt service routines</b>
The following CMSIS-RTOS functions can be called from threads and interrupt service routines (ISR):
- \ref osSignalSet
- \ref osSemaphoreRelease
- \ref osPoolAlloc, \ref osPoolCAlloc, \ref osPoolFree
- \ref osMessagePut, \ref osMessageGet
- \ref osMailAlloc, \ref osMailCAlloc, \ref osMailGet, \ref osMailPut, \ref osMailFree
Functions that cannot be called from an ISR are verifying the interrupt status and return in case that they are called
from an ISR context the status code \b osErrorISR. In some implementations this condition might be caught using the HARD FAULT vector.
Some CMSIS-RTOS implementations support CMSIS-RTOS function calls from multiple ISR at the same time.
If this is impossible, the CMSIS-RTOS rejects calls by nested ISR functions with the status code \b osErrorISRRecursive.
<b>Define and reference object definitions</b>
With <b>\#define osObjectsExternal</b> objects are defined as external symbols. This allows to create a consistent header file
that is used throughout a project as shown below:
<i>Header File</i>
\code
#include <cmsis_os.h> // CMSIS RTOS header file
// Thread definition
extern void thread_sample (void const *argument); // function prototype
osThreadDef (thread_sample, osPriorityBelowNormal, 1, 100);
// Pool definition
osPoolDef(MyPool, 10, long);
\endcode
This header file defines all objects when included in a C/C++ source file. When <b>\#define osObjectsExternal</b> is
present before the header file, the objects are defined as external symbols. A single consistent header file can therefore be
used throughout the whole project.
<i>Example</i>
\code
#include "osObjects.h" // Definition of the CMSIS-RTOS objects
\endcode
\code
#define osObjectExternal // Objects will be defined as external symbols
#include "osObjects.h" // Reference to the CMSIS-RTOS objects
\endcode
*/
#ifndef _CMSIS_OS_H
#define _CMSIS_OS_H
/// \note MUST REMAIN UNCHANGED: \b osCMSIS identifies the CMSIS-RTOS API version.
#define osCMSIS 0x10002 ///< API version (main [31:16] .sub [15:0])
/// \note CAN BE CHANGED: \b osCMSIS_KERNEL identifies the underlying RTOS kernel and version number.
#define osCMSIS_KERNEL 0x10000 ///< RTOS identification and version (main [31:16] .sub [15:0])
/// \note MUST REMAIN UNCHANGED: \b osKernelSystemId shall be consistent in every CMSIS-RTOS.
#define osKernelSystemId "KERNEL V1.00" ///< RTOS identification string
/// \note MUST REMAIN UNCHANGED: \b osFeature_xxx shall be consistent in every CMSIS-RTOS.
#define osFeature_MainThread 1 ///< main thread 1=main can be thread, 0=not available
#define osFeature_Pool 1 ///< Memory Pools: 1=available, 0=not available
#define osFeature_MailQ 1 ///< Mail Queues: 1=available, 0=not available
#define osFeature_MessageQ 1 ///< Message Queues: 1=available, 0=not available
#define osFeature_Signals 8 ///< maximum number of Signal Flags available per thread
#define osFeature_Semaphore 30 ///< maximum count for \ref osSemaphoreCreate function
#define osFeature_Wait 1 ///< osWait function: 1=available, 0=not available
#define osFeature_SysTick 1 ///< osKernelSysTick functions: 1=available, 0=not available
//#include <stdint.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C"
{
#endif
// ==== Enumeration, structures, defines ====
/// Priority used for thread control.
/// \note MUST REMAIN UNCHANGED: \b osPriority shall be consistent in every CMSIS-RTOS.
typedef enum {
osPriorityIdle = -3, ///< priority: idle (lowest)
osPriorityLow = -2, ///< priority: low
osPriorityBelowNormal = -1, ///< priority: below normal
osPriorityNormal = 0, ///< priority: normal (default)
osPriorityAboveNormal = +1, ///< priority: above normal
osPriorityHigh = +2, ///< priority: high
osPriorityRealtime = +3, ///< priority: realtime (highest)
osPriorityError = 0x84 ///< system cannot determine priority or thread has illegal priority
} osPriority;
/// Timeout value.
/// \note MUST REMAIN UNCHANGED: \b osWaitForever shall be consistent in every CMSIS-RTOS.
#define osWaitForever 0xFFFFFFFF ///< wait forever timeout value
/// Status code values returned by CMSIS-RTOS functions.
/// \note MUST REMAIN UNCHANGED: \b osStatus shall be consistent in every CMSIS-RTOS.
typedef enum {
osOK = 0, ///< function completed; no error or event occurred.
osEventSignal = 0x08, ///< function completed; signal event occurred.
osEventMessage = 0x10, ///< function completed; message event occurred.
osEventMail = 0x20, ///< function completed; mail event occurred.
osEventTimeout = 0x40, ///< function completed; timeout occurred.
osErrorParameter = 0x80, ///< parameter error: a mandatory parameter was missing or specified an incorrect object.
osErrorResource = 0x81, ///< resource not available: a specified resource was not available.
osErrorTimeoutResource = 0xC1, ///< resource not available within given time: a specified resource was not available within the timeout period.
osErrorISR = 0x82, ///< not allowed in ISR context: the function cannot be called from interrupt service routines.
osErrorISRRecursive = 0x83, ///< function called multiple times from ISR with same object.
osErrorPriority = 0x84, ///< system cannot determine priority or thread has illegal priority.
osErrorNoMemory = 0x85, ///< system is out of memory: it was impossible to allocate or reserve memory for the operation.
osErrorValue = 0x86, ///< value of a parameter is out of range.
osErrorOS = 0xFF, ///< unspecified RTOS error: run-time error but no other error message fits.
os_status_reserved = 0x7FFFFFFF ///< prevent from enum down-size compiler optimization.
} osStatus;
/// Timer type value for the timer definition.
/// \note MUST REMAIN UNCHANGED: \b os_timer_type shall be consistent in every CMSIS-RTOS.
typedef enum {
osTimerOnce = 0, ///< one-shot timer
osTimerPeriodic = 1 ///< repeating timer
} os_timer_type;
/// Entry point of a thread.
/// \note MUST REMAIN UNCHANGED: \b os_pthread shall be consistent in every CMSIS-RTOS.
typedef void (*os_pthread) (void const *argument);
/// Entry point of a timer call back function.
/// \note MUST REMAIN UNCHANGED: \b os_ptimer shall be consistent in every CMSIS-RTOS.
typedef void (*os_ptimer) (void const *argument);
// >>> the following data type definitions may shall adapted towards a specific RTOS
/// Thread ID identifies the thread (pointer to a thread control block).
/// \note CAN BE CHANGED: \b os_thread_cb is implementation specific in every CMSIS-RTOS.
typedef xTaskHandle osThreadId;
/// Timer ID identifies the timer (pointer to a timer control block).
/// \note CAN BE CHANGED: \b os_timer_cb is implementation specific in every CMSIS-RTOS.
typedef xTimerHandle osTimerId;
/// Mutex ID identifies the mutex (pointer to a mutex control block).
/// \note CAN BE CHANGED: \b os_mutex_cb is implementation specific in every CMSIS-RTOS.
typedef xSemaphoreHandle osMutexId;
/// Semaphore ID identifies the semaphore (pointer to a semaphore control block).
/// \note CAN BE CHANGED: \b os_semaphore_cb is implementation specific in every CMSIS-RTOS.
typedef xSemaphoreHandle osSemaphoreId;
/// Pool ID identifies the memory pool (pointer to a memory pool control block).
/// \note CAN BE CHANGED: \b os_pool_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_pool_cb *osPoolId;
/// Message ID identifies the message queue (pointer to a message queue control block).
/// \note CAN BE CHANGED: \b os_messageQ_cb is implementation specific in every CMSIS-RTOS.
typedef xQueueHandle osMessageQId;
/// Mail ID identifies the mail queue (pointer to a mail queue control block).
/// \note CAN BE CHANGED: \b os_mailQ_cb is implementation specific in every CMSIS-RTOS.
typedef struct os_mailQ_cb *osMailQId;
/// Thread Definition structure contains startup information of a thread.
/// \note CAN BE CHANGED: \b os_thread_def is implementation specific in every CMSIS-RTOS.
typedef struct os_thread_def {
os_pthread pthread; ///< start address of thread function
osPriority tpriority; ///< initial thread priority
uint32_t instances; ///< maximum number of instances of that thread function
uint32_t stacksize; ///< stack size requirements in bytes; 0 is default stack size
char * name;
} osThreadDef_t;
/// Timer Definition structure contains timer parameters.
/// \note CAN BE CHANGED: \b os_timer_def is implementation specific in every CMSIS-RTOS.
struct os_timer_custom {
void *argument;
};
typedef struct os_timer_def {
os_ptimer ptimer; ///< start address of a timer function
struct os_timer_custom *custom;
} osTimerDef_t;
/// Mutex Definition structure contains setup information for a mutex.
/// \note CAN BE CHANGED: \b os_mutex_def is implementation specific in every CMSIS-RTOS.
typedef struct os_mutex_def {
uint32_t dummy; ///< dummy value.
} osMutexDef_t;
/// Semaphore Definition structure contains setup information for a semaphore.
/// \note CAN BE CHANGED: \b os_semaphore_def is implementation specific in every CMSIS-RTOS.
typedef struct os_semaphore_def {
uint32_t dummy; ///< dummy value.
} osSemaphoreDef_t;
/// Definition structure for memory block allocation
/// \note CAN BE CHANGED: \b os_pool_def is implementation specific in every CMSIS-RTOS.
typedef struct os_pool_def {
uint32_t pool_sz; ///< number of items (elements) in the pool
uint32_t item_sz; ///< size of an item
void *pool; ///< pointer to memory for pool
} osPoolDef_t;
/// Definition structure for message queue.
/// \note CAN BE CHANGED: \b os_messageQ_def is implementation specific in every CMSIS-RTOS.
typedef struct os_messageQ_def {
uint32_t queue_sz; ///< number of elements in the queue
uint32_t item_sz; ///< size of an item
void *pool; ///< memory array for messages
} osMessageQDef_t;
/// Definition structure for mail queue
/// \note CAN BE CHANGED: \b os_mailQ_def is implementation specific in every CMSIS-RTOS.
typedef struct os_mailQ_def {
uint32_t queue_sz; ///< number of elements in the queue
uint32_t item_sz; ///< size of an item
struct os_mailQ_cb **cb;
} osMailQDef_t;
/// Event structure contains detailed information about an event.
/// \note MUST REMAIN UNCHANGED: \b os_event shall be consistent in every CMSIS-RTOS.
/// However the struct may be extended at the end.
typedef struct {
osStatus status; ///< status code: event or error information
union {
uint32_t v; ///< message as 32-bit value
void *p; ///< message or mail as void pointer
int32_t signals; ///< signal flags
} value; ///< event value
union {
osMailQId mail_id; ///< mail id obtained by \ref osMailCreate
osMessageQId message_id; ///< message id obtained by \ref osMessageCreate
} def; ///< event definition
} osEvent;
// ==== Kernel Control Functions ====
/// Initialize the RTOS Kernel for creating objects.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osKernelInitialize shall be consistent in every CMSIS-RTOS.
osStatus osKernelInitialize (void);
/// Start the RTOS Kernel.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osKernelStart shall be consistent in every CMSIS-RTOS.
osStatus osKernelStart (void);
/// Check if the RTOS kernel is already started.
/// \note MUST REMAIN UNCHANGED: \b osKernelRunning shall be consistent in every CMSIS-RTOS.
/// \return 0 RTOS is not started, 1 RTOS is started.
int32_t osKernelRunning(void);
#if (defined (osFeature_SysTick) && (osFeature_SysTick != 0)) // System Timer available
/// Get the RTOS kernel system timer counter
/// \note MUST REMAIN UNCHANGED: \b osKernelSysTick shall be consistent in every CMSIS-RTOS.
/// \return RTOS kernel system timer as 32-bit value
uint32_t osKernelSysTick (void);
/// The RTOS kernel system timer frequency in Hz
/// \note Reflects the system timer setting and is typically defined in a configuration file.
#define osKernelSysTickFrequency configTICK_RATE_HZ
/// Convert a microseconds value to a RTOS kernel system timer value.
/// \param microsec time value in microseconds.
/// \return time value normalized to the \ref osKernelSysTickFrequency
#define osKernelSysTickMicroSec(microsec) (((uint64_t)microsec * (osKernelSysTickFrequency)) / 1000000)
#endif // System Timer available
// ==== Thread Management ====
/// Create a Thread Definition with function, priority, and stack requirements.
/// \param name name of the thread function.
/// \param priority initial priority of the thread function.
/// \param instances number of possible thread instances.
/// \param stacksz stack size (in bytes) requirements for the thread function.
/// \note CAN BE CHANGED: The parameters to \b osThreadDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osThreadDef(name, priority, instances, stacksz) \
extern const osThreadDef_t os_thread_def_##name
#else // define the object
#define osThreadDef(name, priority, instances, stacksz) \
const osThreadDef_t os_thread_def_##name = \
{ (name), (priority), (instances), (stacksz), #name }
#endif
/// Access a Thread definition.
/// \param name name of the thread definition object.
/// \note CAN BE CHANGED: The parameter to \b osThread shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osThread(name) \
&os_thread_def_##name
/// Create a thread and add it to Active Threads and set it to state READY.
/// \param[in] thread_def thread definition referenced with \ref osThread.
/// \param[in] argument pointer that is passed to the thread function as start argument.
/// \return thread ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osThreadCreate shall be consistent in every CMSIS-RTOS.
osThreadId osThreadCreate (const osThreadDef_t *thread_def, void *argument);
/// Return the thread ID of the current running thread.
/// \return thread ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osThreadGetId shall be consistent in every CMSIS-RTOS.
osThreadId osThreadGetId (void);
/// Terminate execution of a thread and remove it from Active Threads.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osThreadTerminate shall be consistent in every CMSIS-RTOS.
osStatus osThreadTerminate (osThreadId thread_id);
/// Pass control to next thread that is in state \b READY.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osThreadYield shall be consistent in every CMSIS-RTOS.
osStatus osThreadYield (void);
/// Change priority of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \param[in] priority new priority value for the thread function.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osThreadSetPriority shall be consistent in every CMSIS-RTOS.
osStatus osThreadSetPriority (osThreadId thread_id, osPriority priority);
/// Get current priority of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \return current priority value of the thread function.
/// \note MUST REMAIN UNCHANGED: \b osThreadGetPriority shall be consistent in every CMSIS-RTOS.
osPriority osThreadGetPriority (osThreadId thread_id);
// ==== Generic Wait Functions ====
/// Wait for Timeout (Time Delay).
/// \param[in] millisec time delay value
/// \return status code that indicates the execution status of the function.
osStatus osDelay (uint32_t millisec);
#if (defined (osFeature_Wait) && (osFeature_Wait != 0)) // Generic Wait available
/// Wait for Signal, Message, Mail, or Timeout.
/// \param[in] millisec timeout value or 0 in case of no time-out
/// \return event that contains signal, message, or mail information or error code.
/// \note MUST REMAIN UNCHANGED: \b osWait shall be consistent in every CMSIS-RTOS.
osEvent osWait (uint32_t millisec);
#endif // Generic Wait available
// ==== Timer Management Functions ====
/// Define a Timer object.
/// \param name name of the timer object.
/// \param function name of the timer call back function.
/// \note CAN BE CHANGED: The parameter to \b osTimerDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osTimerDef(name, function) \
extern const osTimerDef_t os_timer_def_##name; \
extern struct os_timer_custom os_timer_custome_##name
#else // define the object
#define osTimerDef(name, function) \
struct os_timer_custom os_timer_custom_##name; \
const osTimerDef_t os_timer_def_##name = \
{ (function), (&os_timer_custom_##name) }
#endif
/// Access a Timer definition.
/// \param name name of the timer object.
/// \note CAN BE CHANGED: The parameter to \b osTimer shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osTimer(name) \
&os_timer_def_##name
/// Create a timer.
/// \param[in] timer_def timer object referenced with \ref osTimer.
/// \param[in] type osTimerOnce for one-shot or osTimerPeriodic for periodic behavior.
/// \param[in] argument argument to the timer call back function.
/// \return timer ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osTimerCreate shall be consistent in every CMSIS-RTOS.
osTimerId osTimerCreate (const osTimerDef_t *timer_def, os_timer_type type, void *argument);
/// Start or restart a timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerCreate.
/// \param[in] millisec time delay value of the timer.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osTimerStart shall be consistent in every CMSIS-RTOS.
osStatus osTimerStart (osTimerId timer_id, uint32_t millisec);
/// Stop the timer.
/// \param[in] timer_id timer ID obtained by \ref osTimerCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osTimerStop shall be consistent in every CMSIS-RTOS.
osStatus osTimerStop (osTimerId timer_id);
/// Delete a timer that was created by \ref osTimerCreate.
/// \param[in] timer_id timer ID obtained by \ref osTimerCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osTimerDelete shall be consistent in every CMSIS-RTOS.
osStatus osTimerDelete (osTimerId timer_id);
// ==== Signal Management ====
/// Set the specified Signal Flags of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \param[in] signals specifies the signal flags of the thread that should be set.
/// \return previous signal flags of the specified thread or 0x80000000 in case of incorrect parameters.
/// \note MUST REMAIN UNCHANGED: \b osSignalSet shall be consistent in every CMSIS-RTOS.
int32_t osSignalSet (osThreadId thread_id, int32_t signals);
/// Clear the specified Signal Flags of an active thread.
/// \param[in] thread_id thread ID obtained by \ref osThreadCreate or \ref osThreadGetId.
/// \param[in] signals specifies the signal flags of the thread that shall be cleared.
/// \return previous signal flags of the specified thread or 0x80000000 in case of incorrect parameters.
/// \note MUST REMAIN UNCHANGED: \b osSignalClear shall be consistent in every CMSIS-RTOS.
int32_t osSignalClear (osThreadId thread_id, int32_t signals);
/// Wait for one or more Signal Flags to become signaled for the current \b RUNNING thread.
/// \param[in] signals wait until all specified signal flags set or 0 for any single signal flag.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return event flag information or error code.
/// \note MUST REMAIN UNCHANGED: \b osSignalWait shall be consistent in every CMSIS-RTOS.
osEvent osSignalWait (int32_t signals, uint32_t millisec);
// ==== Mutex Management ====
/// Define a Mutex.
/// \param name name of the mutex object.
/// \note CAN BE CHANGED: The parameter to \b osMutexDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osMutexDef(name) \
extern const osMutexDef_t os_mutex_def_##name
#else // define the object
#define osMutexDef(name) \
const osMutexDef_t os_mutex_def_##name = { 0 }
#endif
/// Access a Mutex definition.
/// \param name name of the mutex object.
/// \note CAN BE CHANGED: The parameter to \b osMutex shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osMutex(name) \
&os_mutex_def_##name
/// Create and Initialize a Mutex object.
/// \param[in] mutex_def mutex definition referenced with \ref osMutex.
/// \return mutex ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMutexCreate shall be consistent in every CMSIS-RTOS.
osMutexId osMutexCreate (const osMutexDef_t *mutex_def);
/// Wait until a Mutex becomes available.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMutexWait shall be consistent in every CMSIS-RTOS.
osStatus osMutexWait (osMutexId mutex_id, uint32_t millisec);
/// Release a Mutex that was obtained by \ref osMutexWait.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMutexRelease shall be consistent in every CMSIS-RTOS.
osStatus osMutexRelease (osMutexId mutex_id);
/// Delete a Mutex that was created by \ref osMutexCreate.
/// \param[in] mutex_id mutex ID obtained by \ref osMutexCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMutexDelete shall be consistent in every CMSIS-RTOS.
osStatus osMutexDelete (osMutexId mutex_id);
// ==== Semaphore Management Functions ====
#if (defined (osFeature_Semaphore) && (osFeature_Semaphore != 0)) // Semaphore available
/// Define a Semaphore object.
/// \param name name of the semaphore object.
/// \note CAN BE CHANGED: The parameter to \b osSemaphoreDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osSemaphoreDef(name) \
extern const osSemaphoreDef_t os_semaphore_def_##name
#else // define the object
#define osSemaphoreDef(name) \
const osSemaphoreDef_t os_semaphore_def_##name = { 0 }
#endif
/// Access a Semaphore definition.
/// \param name name of the semaphore object.
/// \note CAN BE CHANGED: The parameter to \b osSemaphore shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osSemaphore(name) \
&os_semaphore_def_##name
/// Create and Initialize a Semaphore object used for managing resources.
/// \param[in] semaphore_def semaphore definition referenced with \ref osSemaphore.
/// \param[in] count number of available resources.
/// \return semaphore ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreCreate shall be consistent in every CMSIS-RTOS.
osSemaphoreId osSemaphoreCreate (const osSemaphoreDef_t *semaphore_def, int32_t count);
/// Wait until a Semaphore token becomes available.
/// \param[in] semaphore_id semaphore object referenced with \ref osSemaphoreCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return number of available tokens, or -1 in case of incorrect parameters.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreWait shall be consistent in every CMSIS-RTOS.
int32_t osSemaphoreWait (osSemaphoreId semaphore_id, uint32_t millisec);
/// Release a Semaphore token.
/// \param[in] semaphore_id semaphore object referenced with \ref osSemaphoreCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreRelease shall be consistent in every CMSIS-RTOS.
osStatus osSemaphoreRelease (osSemaphoreId semaphore_id);
/// Delete a Semaphore that was created by \ref osSemaphoreCreate.
/// \param[in] semaphore_id semaphore object referenced with \ref osSemaphoreCreate.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osSemaphoreDelete shall be consistent in every CMSIS-RTOS.
osStatus osSemaphoreDelete (osSemaphoreId semaphore_id);
#endif // Semaphore available
// ==== Memory Pool Management Functions ====
#if (defined (osFeature_Pool) && (osFeature_Pool != 0)) // Memory Pool Management available
/// \brief Define a Memory Pool.
/// \param name name of the memory pool.
/// \param no maximum number of blocks (objects) in the memory pool.
/// \param type data type of a single block (object).
/// \note CAN BE CHANGED: The parameter to \b osPoolDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osPoolDef(name, no, type) \
extern const osPoolDef_t os_pool_def_##name
#else // define the object
#define osPoolDef(name, no, type) \
const osPoolDef_t os_pool_def_##name = \
{ (no), sizeof(type), NULL }
#endif
/// \brief Access a Memory Pool definition.
/// \param name name of the memory pool
/// \note CAN BE CHANGED: The parameter to \b osPool shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osPool(name) \
&os_pool_def_##name
/// Create and Initialize a memory pool.
/// \param[in] pool_def memory pool definition referenced with \ref osPool.
/// \return memory pool ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osPoolCreate shall be consistent in every CMSIS-RTOS.
osPoolId osPoolCreate (const osPoolDef_t *pool_def);
/// Allocate a memory block from a memory pool.
/// \param[in] pool_id memory pool ID obtain referenced with \ref osPoolCreate.
/// \return address of the allocated memory block or NULL in case of no memory available.
/// \note MUST REMAIN UNCHANGED: \b osPoolAlloc shall be consistent in every CMSIS-RTOS.
void *osPoolAlloc (osPoolId pool_id);
/// Allocate a memory block from a memory pool and set memory block to zero.
/// \param[in] pool_id memory pool ID obtain referenced with \ref osPoolCreate.
/// \return address of the allocated memory block or NULL in case of no memory available.
/// \note MUST REMAIN UNCHANGED: \b osPoolCAlloc shall be consistent in every CMSIS-RTOS.
void *osPoolCAlloc (osPoolId pool_id);
/// Return an allocated memory block back to a specific memory pool.
/// \param[in] pool_id memory pool ID obtain referenced with \ref osPoolCreate.
/// \param[in] block address of the allocated memory block that is returned to the memory pool.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osPoolFree shall be consistent in every CMSIS-RTOS.
osStatus osPoolFree (osPoolId pool_id, void *block);
#endif // Memory Pool Management available
// ==== Message Queue Management Functions ====
#if (defined (osFeature_MessageQ) && (osFeature_MessageQ != 0)) // Message Queues available
/// \brief Create a Message Queue Definition.
/// \param name name of the queue.
/// \param queue_sz maximum number of messages in the queue.
/// \param type data type of a single message element (for debugger).
/// \note CAN BE CHANGED: The parameter to \b osMessageQDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osMessageQDef(name, queue_sz, type) \
extern const osMessageQDef_t os_messageQ_def_##name
#else // define the object
#define osMessageQDef(name, queue_sz, type) \
const osMessageQDef_t os_messageQ_def_##name = \
{ (queue_sz), sizeof (type) }
#endif
/// \brief Access a Message Queue Definition.
/// \param name name of the queue
/// \note CAN BE CHANGED: The parameter to \b osMessageQ shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osMessageQ(name) \
&os_messageQ_def_##name
/// Create and Initialize a Message Queue.
/// \param[in] queue_def queue definition referenced with \ref osMessageQ.
/// \param[in] thread_id thread ID (obtained by \ref osThreadCreate or \ref osThreadGetId) or NULL.
/// \return message queue ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMessageCreate shall be consistent in every CMSIS-RTOS.
osMessageQId osMessageCreate (const osMessageQDef_t *queue_def, osThreadId thread_id);
/// Put a Message to a Queue.
/// \param[in] queue_id message queue ID obtained with \ref osMessageCreate.
/// \param[in] info message information.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMessagePut shall be consistent in every CMSIS-RTOS.
osStatus osMessagePut (osMessageQId queue_id, uint32_t info, uint32_t millisec);
/// Get a Message or Wait for a Message from a Queue.
/// \param[in] queue_id message queue ID obtained with \ref osMessageCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out.
/// \return event information that includes status code.
/// \note MUST REMAIN UNCHANGED: \b osMessageGet shall be consistent in every CMSIS-RTOS.
osEvent osMessageGet (osMessageQId queue_id, uint32_t millisec);
#endif // Message Queues available
// ==== Mail Queue Management Functions ====
#if (defined (osFeature_MailQ) && (osFeature_MailQ != 0)) // Mail Queues available
/// \brief Create a Mail Queue Definition.
/// \param name name of the queue
/// \param queue_sz maximum number of messages in queue
/// \param type data type of a single message element
/// \note CAN BE CHANGED: The parameter to \b osMailQDef shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#if defined (osObjectsExternal) // object is external
#define osMailQDef(name, queue_sz, type) \
extern struct os_mailQ_cb *os_mailQ_cb_##name; \
extern const osMailQDef_t os_mailQ_def_##name;
#else // define the object
#define osMailQDef(name, queue_sz, type) \
struct os_mailQ_cb *os_mailQ_cb_##name; \
const osMailQDef_t os_mailQ_def_##name = \
{ (queue_sz), sizeof (type), (&os_mailQ_cb_##name) }
#endif
/// \brief Access a Mail Queue Definition.
/// \param name name of the queue
/// \note CAN BE CHANGED: The parameter to \b osMailQ shall be consistent but the
/// macro body is implementation specific in every CMSIS-RTOS.
#define osMailQ(name) \
&os_mailQ_def_##name
/// Create and Initialize mail queue.
/// \param[in] queue_def reference to the mail queue definition obtain with \ref osMailQ
/// \param[in] thread_id thread ID (obtained by \ref osThreadCreate or \ref osThreadGetId) or NULL.
/// \return mail queue ID for reference by other functions or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMailCreate shall be consistent in every CMSIS-RTOS.
osMailQId osMailCreate (const osMailQDef_t *queue_def, osThreadId thread_id);
/// Allocate a memory block from a mail.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out
/// \return pointer to memory block that can be filled with mail or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMailAlloc shall be consistent in every CMSIS-RTOS.
void *osMailAlloc (osMailQId queue_id, uint32_t millisec);
/// Allocate a memory block from a mail and set memory block to zero.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out
/// \return pointer to memory block that can be filled with mail or NULL in case of error.
/// \note MUST REMAIN UNCHANGED: \b osMailCAlloc shall be consistent in every CMSIS-RTOS.
void *osMailCAlloc (osMailQId queue_id, uint32_t millisec);
/// Put a mail to a queue.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] mail memory block previously allocated with \ref osMailAlloc or \ref osMailCAlloc.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMailPut shall be consistent in every CMSIS-RTOS.
osStatus osMailPut (osMailQId queue_id, void *mail);
/// Get a mail from a queue.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] millisec timeout value or 0 in case of no time-out
/// \return event that contains mail information or error code.
/// \note MUST REMAIN UNCHANGED: \b osMailGet shall be consistent in every CMSIS-RTOS.
osEvent osMailGet (osMailQId queue_id, uint32_t millisec);
/// Free a memory block from a mail.
/// \param[in] queue_id mail queue ID obtained with \ref osMailCreate.
/// \param[in] mail pointer to the memory block that was obtained with \ref osMailGet.
/// \return status code that indicates the execution status of the function.
/// \note MUST REMAIN UNCHANGED: \b osMailFree shall be consistent in every CMSIS-RTOS.
osStatus osMailFree (osMailQId queue_id, void *mail);
#endif // Mail Queues available
#define malloc(size) pvPortMalloc(size)
#define free(pbuf) vPortFree(pbuf)
extern void *calloc_freertos(size_t nelements, size_t elementSize);
#define calloc(nelements, elementSize) calloc_freertos(nelements, elementSize)
#ifdef __cplusplus
}
#endif
#endif // _CMSIS_OS_H

View file

@ -0,0 +1,112 @@
#ifndef __FREERTOS_PMU_H_
#define __FREERTOS_PMU_H_
#include "sleep_ex_api.h"
#define BIT(n) (1<<n)
// wakelock for system usage
#define WAKELOCK_OS BIT(0)
#define WAKELOCK_WLAN BIT(1)
#define WAKELOCK_LOGUART BIT(2)
#define WAKELOCK_SDIO_DEVICE BIT(3)
// wakelock for user defined
#define WAKELOCK_USER_BASE BIT(16)
#if 0
#define DEFAULT_WAKELOCK (0)
#else
// default locked by OS and not to sleep until OS release wakelock in somewhere
#define DEFAULT_WAKELOCK (WAKELOCK_OS)
#endif
#define DEFAULT_WAKEUP_EVENT (SLEEP_WAKEUP_BY_STIMER | SLEEP_WAKEUP_BY_GTIMER | SLEEP_WAKEUP_BY_GPIO_INT | SLEEP_WAKEUP_BY_WLAN)
typedef void (*freertos_sleep_callback)( unsigned int );
/** Acquire wakelock
*
* A wakelock is a 32-bit map. Each module own 1 bit in this bit map.
* FreeRTOS tickless reference the wakelock and decide that if it can or cannot enter sleep state.
* If any module acquire and hold a bit in wakelock, then the whole system won't enter sleep state.
*
* If wakelock is not equals to 0, then the system won't enter sleep.
*
* @param lock_id : The bit which is attempt to add into wakelock
*/
void acquire_wakelock(uint32_t lock_id);
/** Release wakelock
*
* If wakelock equals to 0, then the system may enter sleep state if it is in idle state.
*
* @param lock_id : The bit which is attempt to remove from wakelock
*/
void release_wakelock(uint32_t lock_id);
/** Get current wakelock bit map value
*
* @return : the current wakelock bit map value
*/
uint32_t get_wakelock_status();
#if (configGENERATE_RUN_TIME_STATS == 1)
/** Get text report that contain the statics of wakelock holding time
*
* Each time a module acquries or releases wakelock, a holding time is calculated and sum up to a table.
* It is for debug that which module is power saving killer.
*
* @param pcWriteBuffer : The char buffer that contain the report
*/
void get_wakelock_hold_stats( char *pcWriteBuffer );
/** Recalculate the wakelock statics
*
* By default the wakelock statics is calculated from system boot up.
* If we want to debug power saving killer from a specified timestamp, we can reset the statics.
*/
void clean_wakelock_stat();
#endif
void add_wakeup_event(uint32_t event);
void del_wakeup_event(uint32_t event);
/** Register sleep callback
*
* Pre-sleep callbacks are called before entering sleep.
* Post-sleep callbacks are called after resume.
*
* @param is_pre_sleep : Indicate the sleep_cb is for pre-sleep or post-sleep
* @param sleep_cb : The callback function which is called before/after sleep
* @param module : The callback is assigned according to the bit specify in bit field of param module
* The bit 15 (0x00008000) is used for unspecified callback.
*/
void register_sleep_callback_by_module( unsigned char is_pre_sleep, freertos_sleep_callback sleep_cb, uint32_t module );
/** Register unspecified pre sleep callback
*
* Pre-sleep callbacks are called before entering sleep.
*
* @param pre_sleep_cb : The callback function which is called before sleep
* It is registed in bit 15 (0x00008000) of module list
*/
void register_pre_sleep_callback( freertos_sleep_callback pre_sleep_cb );
/** Register unspecified post sleep callback
*
* Post-sleep callbacks are called before entering sleep.
*
* @param post_sleep_cb : The callback function which is called after sleep
* It is registed in bit 15 (0x00008000) of module list
*/
void register_post_sleep_callback( freertos_sleep_callback post_sleep_cb );
/** Set PLL reserved or not when sleep is called
*
* @param reserve: true for sleep with PLL reserve
*/
void set_pll_reserved(unsigned char reserve);
#endif

View file

@ -0,0 +1,241 @@
#ifndef _FREERTOS_SERVICE_H_
#define _FREERTOS_SERVICE_H_
//----- ------------------------------------------------------------------
// Include Files
//----- ------------------------------------------------------------------
//#include "wireless.h"
#include "dlist.h"
// --------------------------------------------
// Platform dependent include file
// --------------------------------------------
#if defined(CONFIG_PLATFORM_8195A) || defined(CONFIG_PLATFORM_8711B)
#include "platform/platform_stdlib.h"
extern VOID RtlUdelayOS(u32 us);
#else
// other MCU may use standard library
#include <string.h>
#endif
#if (defined CONFIG_GSPI_HCI || defined CONFIG_SDIO_HCI) || defined(CONFIG_LX_HCI)
/* For SPI interface transfer and us delay implementation */
#if !defined(CONFIG_PLATFORM_8195A) && !defined(CONFIG_PLATFORM_8711B)
#include <rtwlan_bsp.h>
#endif
#endif
// --------------------------------------------
// Platform dependent type define
// --------------------------------------------
#if !defined(CONFIG_PLATFORM_8195A) && !defined(CONFIG_PLATFORM_8711B)
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
typedef signed char s8;
typedef signed short s16;
typedef signed int s32;
typedef signed long long s64;
typedef unsigned long long u64;
typedef unsigned int uint;
typedef signed int sint;
#ifndef bool
typedef int bool;
#define true 1
#define false 0
#endif
#define IN
#define OUT
#define VOID void
#define NDIS_OID uint
#define NDIS_STATUS uint
#ifndef PVOID
typedef void * PVOID;
#endif
typedef unsigned int __kernel_size_t;
typedef int __kernel_ssize_t;
typedef __kernel_size_t SIZE_T;
typedef __kernel_ssize_t SSIZE_T;
#endif //CONFIG_PLATFORM_8195A
#define FIELD_OFFSET(s,field) ((SSIZE_T)&((s*)(0))->field)
// os types
typedef char osdepCHAR;
typedef float osdepFLOAT;
typedef double osdepDOUBLE;
typedef long osdepLONG;
typedef short osdepSHORT;
typedef unsigned long osdepSTACK_TYPE;
typedef long osdepBASE_TYPE;
typedef unsigned long osdepTickType;
typedef void* _timerHandle;
typedef void* _sema;
typedef void* _mutex;
typedef void* _lock;
typedef void* _queueHandle;
typedef void* _xqueue;
typedef struct timer_list _timer;
typedef struct sk_buff _pkt;
typedef unsigned char _buffer;
#ifndef __LIST_H
#warning "DLIST_NOT_DEFINE!!!!!!"
struct list_head {
struct list_head *next, *prev;
};
#endif
struct __queue {
struct list_head queue;
_lock lock;
};
typedef struct __queue _queue;
typedef struct list_head _list;
typedef unsigned long _irqL;
typedef void* _thread_hdl_;
typedef void thread_return;
typedef void* thread_context;
#define ATOMIC_T atomic_t
#define HZ configTICK_RATE_HZ
#define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
/* emulate a modern version */
#define LINUX_VERSION_CODE KERNEL_VERSION(2, 6, 17)
static __inline _list *get_next(_list *list)
{
return list->next;
}
static __inline _list *get_list_head(_queue *queue)
{
return (&(queue->queue));
}
#define LIST_CONTAINOR(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)((char *)&((type *)ptr)->member - (char *)ptr)))
//#define container_of(p,t,n) (t*)((p)-&(((t*)0)->n))
#define container_of(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
#define TASK_PRORITY_LOW 1
#define TASK_PRORITY_MIDDLE 2
#define TASK_PRORITY_HIGH 3
#define TASK_PRORITY_SUPER 4
#define TIMER_MAX_DELAY 0xFFFFFFFF
void save_and_cli(void);
void restore_flags(void);
void cli(void);
//----- ------------------------------------------------------------------
// Common Definition
//----- ------------------------------------------------------------------
#define __init
#define __exit
#define __devinit
#define __devexit
#define KERN_ERR
#define KERN_INFO
#define KERN_NOTICE
#define GFP_KERNEL 1
#define GFP_ATOMIC 1
#define SET_MODULE_OWNER(some_struct) do { } while (0)
#define SET_NETDEV_DEV(dev, obj) do { } while (0)
#define register_netdev(dev) (0)
#define unregister_netdev(dev) do { } while (0)
#define netif_queue_stopped(dev) (0)
#define netif_wake_queue(dev) do { } while (0)
#define printk printf
#define DBG_ERR(...) do { printf("\n\r[%s] ", __FUNCTION__); printf(__VA_ARGS__); } while(0)
#if WLAN_INTF_DBG
#define DBG_TRACE(fmt, args...) printf("\n\r[%s] " fmt, __FUNCTION__, ## args)
#define DBG_INFO(fmt, args...) printf("\n\r[%s] " fmt, __FUNCTION__, ## args)
#else
#define DBG_TRACE(fmt, args...)
#define DBG_INFO(fmt, args...)
#endif
#define HALT() do { cli(); for(;;);} while(0)
#define ASSERT(x) do { \
if((x) == 0) \
printf("\n\rAssert(" #x ") failed on line %d in file %s", __LINE__, __FILE__); \
HALT(); \
} while(0)
#undef DBG_ASSERT
#define DBG_ASSERT(x, msg) do { \
if((x) == 0) \
printf("\n\r%s, Assert(" #x ") failed on line %d in file %s", msg, __LINE__, __FILE__); \
} while(0)
//----- ------------------------------------------------------------------
// Atomic Operation
//----- ------------------------------------------------------------------
#if !defined(CONFIG_PLATFORM_8195A) && !defined(CONFIG_PLATFORM_8711B) // for 8195A, it is defined in ..system../basic_types.h
typedef struct { volatile int counter; } atomic_t;
#endif
/*
* atomic_read - read atomic variable
* @v: pointer of type atomic_t
*
* Atomically reads the value of @v. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
#define atomic_read(v) ((v)->counter)
/*
* atomic_set - set atomic variable
* @v: pointer of type atomic_t
* @i: required value
*
* Atomically sets the value of @v to @i. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
#define atomic_set(v,i) ((v)->counter = (i))
/*
* These inlines deal with timer wrapping correctly. You are
* strongly encouraged to use them
* 1. Because people otherwise forget
* 2. Because if the timer wrap changes in future you wont have to
* alter your driver code.
*
* time_after(a,b) returns true if the time a is after time b.
*
* Do this with "<0" and ">=0" to only test the sign of the result. A
* good compiler would generate better code (and a really good compiler
* wouldn't care). Gcc is currently neither.
*/
#define time_after(a,b) ((long)(b) - (long)(a) < 0)
#define time_before(a,b) time_after(b,a)
#define time_after_eq(a,b) ((long)(a) - (long)(b) >= 0)
#define time_before_eq(a,b) time_after_eq(b,a)
extern void rtw_init_listhead(_list *list);
extern u32 rtw_is_list_empty(_list *phead);
extern void rtw_list_insert_head(_list *plist, _list *phead);
extern void rtw_list_insert_tail(_list *plist, _list *phead);
extern void rtw_list_delete(_list *plist);
#endif /* _FREERTOS_SERVICE_H_ */

View file

@ -0,0 +1,762 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef INC_FREERTOS_H
#define INC_FREERTOS_H
/*
* Include the generic headers required for the FreeRTOS port being used.
*/
#include <stddef.h>
/*
* If stdint.h cannot be located then:
* + If using GCC ensure the -nostdint options is *not* being used.
* + Ensure the project's include path includes the directory in which your
* compiler stores stdint.h.
* + Set any compiler options necessary for it to support C99, as technically
* stdint.h is only mandatory with C99 (FreeRTOS does not require C99 in any
* other way).
* + The FreeRTOS download includes a simple stdint.h definition that can be
* used in cases where none is provided by the compiler. The files only
* contains the typedefs required to build FreeRTOS. Read the instructions
* in FreeRTOS/source/stdint.readme for more information.
*/
#include <stdint.h> /* READ COMMENT ABOVE. */
#ifdef __cplusplus
extern "C" {
#endif
/* Application specific configuration options. */
#include "FreeRTOSConfig.h"
/* Basic FreeRTOS definitions. */
#include "projdefs.h"
/* Definitions specific to the port being used. */
#include "portable.h"
/*
* Check all the required application specific macros have been defined.
* These macros are application specific and (as downloaded) are defined
* within FreeRTOSConfig.h.
*/
#ifndef configMINIMAL_STACK_SIZE
#error Missing definition: configMINIMAL_STACK_SIZE must be defined in FreeRTOSConfig.h. configMINIMAL_STACK_SIZE defines the size (in words) of the stack allocated to the idle task. Refer to the demo project provided for your port for a suitable value.
#endif
#ifndef configMAX_PRIORITIES
#error Missing definition: configMAX_PRIORITIES must be defined in FreeRTOSConfig.h. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_PREEMPTION
#error Missing definition: configUSE_PREEMPTION must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_IDLE_HOOK
#error Missing definition: configUSE_IDLE_HOOK must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_TICK_HOOK
#error Missing definition: configUSE_TICK_HOOK must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_CO_ROUTINES
#error Missing definition: configUSE_CO_ROUTINES must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskPrioritySet
#error Missing definition: INCLUDE_vTaskPrioritySet must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_uxTaskPriorityGet
#error Missing definition: INCLUDE_uxTaskPriorityGet must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskDelete
#error Missing definition: INCLUDE_vTaskDelete must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskSuspend
#error Missing definition: INCLUDE_vTaskSuspend must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskDelayUntil
#error Missing definition: INCLUDE_vTaskDelayUntil must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef INCLUDE_vTaskDelay
#error Missing definition: INCLUDE_vTaskDelay must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#ifndef configUSE_16_BIT_TICKS
#error Missing definition: configUSE_16_BIT_TICKS must be defined in FreeRTOSConfig.h as either 1 or 0. See the Configuration section of the FreeRTOS API documentation for details.
#endif
#if configUSE_CO_ROUTINES != 0
#ifndef configMAX_CO_ROUTINE_PRIORITIES
#error configMAX_CO_ROUTINE_PRIORITIES must be greater than or equal to 1.
#endif
#endif
#ifndef configMAX_PRIORITIES
#error configMAX_PRIORITIES must be defined to be greater than or equal to 1.
#endif
#ifndef INCLUDE_xTaskGetIdleTaskHandle
#define INCLUDE_xTaskGetIdleTaskHandle 0
#endif
#ifndef INCLUDE_xTimerGetTimerDaemonTaskHandle
#define INCLUDE_xTimerGetTimerDaemonTaskHandle 0
#endif
#ifndef INCLUDE_xQueueGetMutexHolder
#define INCLUDE_xQueueGetMutexHolder 0
#endif
#ifndef INCLUDE_xSemaphoreGetMutexHolder
#define INCLUDE_xSemaphoreGetMutexHolder INCLUDE_xQueueGetMutexHolder
#endif
#ifndef INCLUDE_pcTaskGetTaskName
#define INCLUDE_pcTaskGetTaskName 0
#endif
#ifndef configUSE_APPLICATION_TASK_TAG
#define configUSE_APPLICATION_TASK_TAG 0
#endif
#ifndef INCLUDE_uxTaskGetStackHighWaterMark
#define INCLUDE_uxTaskGetStackHighWaterMark 0
#endif
#ifndef INCLUDE_eTaskGetState
#define INCLUDE_eTaskGetState 0
#endif
#ifndef configUSE_RECURSIVE_MUTEXES
#define configUSE_RECURSIVE_MUTEXES 0
#endif
#ifndef configUSE_MUTEXES
#define configUSE_MUTEXES 0
#endif
#ifndef configUSE_TIMERS
#define configUSE_TIMERS 0
#endif
#ifndef configUSE_COUNTING_SEMAPHORES
#define configUSE_COUNTING_SEMAPHORES 0
#endif
#ifndef configUSE_ALTERNATIVE_API
#define configUSE_ALTERNATIVE_API 0
#endif
#ifndef portCRITICAL_NESTING_IN_TCB
#define portCRITICAL_NESTING_IN_TCB 0
#endif
#ifndef configMAX_TASK_NAME_LEN
#define configMAX_TASK_NAME_LEN 16
#endif
#ifndef configIDLE_SHOULD_YIELD
#define configIDLE_SHOULD_YIELD 1
#endif
#if configMAX_TASK_NAME_LEN < 1
#error configMAX_TASK_NAME_LEN must be set to a minimum of 1 in FreeRTOSConfig.h
#endif
#ifndef INCLUDE_xTaskResumeFromISR
#define INCLUDE_xTaskResumeFromISR 1
#endif
#ifndef INCLUDE_xEventGroupSetBitFromISR
#define INCLUDE_xEventGroupSetBitFromISR 0
#endif
#ifndef INCLUDE_xTimerPendFunctionCall
#define INCLUDE_xTimerPendFunctionCall 0
#endif
#ifndef configASSERT
#define configASSERT( x )
#define configASSERT_DEFINED 0
#else
#define configASSERT_DEFINED 1
#endif
/* The timers module relies on xTaskGetSchedulerState(). */
#if configUSE_TIMERS == 1
#ifndef configTIMER_TASK_PRIORITY
#error If configUSE_TIMERS is set to 1 then configTIMER_TASK_PRIORITY must also be defined.
#endif /* configTIMER_TASK_PRIORITY */
#ifndef configTIMER_QUEUE_LENGTH
#error If configUSE_TIMERS is set to 1 then configTIMER_QUEUE_LENGTH must also be defined.
#endif /* configTIMER_QUEUE_LENGTH */
#ifndef configTIMER_TASK_STACK_DEPTH
#error If configUSE_TIMERS is set to 1 then configTIMER_TASK_STACK_DEPTH must also be defined.
#endif /* configTIMER_TASK_STACK_DEPTH */
#endif /* configUSE_TIMERS */
#ifndef INCLUDE_xTaskGetSchedulerState
#define INCLUDE_xTaskGetSchedulerState 0
#endif
#ifndef INCLUDE_xTaskGetCurrentTaskHandle
#define INCLUDE_xTaskGetCurrentTaskHandle 0
#endif
#ifndef portSET_INTERRUPT_MASK_FROM_ISR
#define portSET_INTERRUPT_MASK_FROM_ISR() 0
#endif
#ifndef portCLEAR_INTERRUPT_MASK_FROM_ISR
#define portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedStatusValue ) ( void ) uxSavedStatusValue
#endif
#ifndef portCLEAN_UP_TCB
#define portCLEAN_UP_TCB( pxTCB ) ( void ) pxTCB
#endif
#ifndef portPRE_TASK_DELETE_HOOK
#define portPRE_TASK_DELETE_HOOK( pvTaskToDelete, pxYieldPending )
#endif
#ifndef portSETUP_TCB
#define portSETUP_TCB( pxTCB ) ( void ) pxTCB
#endif
#ifndef configQUEUE_REGISTRY_SIZE
#define configQUEUE_REGISTRY_SIZE 0U
#endif
#if ( configQUEUE_REGISTRY_SIZE < 1 )
#define vQueueAddToRegistry( xQueue, pcName )
#define vQueueUnregisterQueue( xQueue )
#endif
#ifndef portPOINTER_SIZE_TYPE
#define portPOINTER_SIZE_TYPE uint32_t
#endif
/* Remove any unused trace macros. */
#ifndef traceSTART
/* Used to perform any necessary initialisation - for example, open a file
into which trace is to be written. */
#define traceSTART()
#endif
#ifndef traceEND
/* Use to close a trace, for example close a file into which trace has been
written. */
#define traceEND()
#endif
#ifndef traceTASK_SWITCHED_IN
/* Called after a task has been selected to run. pxCurrentTCB holds a pointer
to the task control block of the selected task. */
#define traceTASK_SWITCHED_IN()
#endif
#ifndef traceINCREASE_TICK_COUNT
/* Called before stepping the tick count after waking from tickless idle
sleep. */
#define traceINCREASE_TICK_COUNT( x )
#endif
#ifndef traceLOW_POWER_IDLE_BEGIN
/* Called immediately before entering tickless idle. */
#define traceLOW_POWER_IDLE_BEGIN()
#endif
#ifndef traceLOW_POWER_IDLE_END
/* Called when returning to the Idle task after a tickless idle. */
#define traceLOW_POWER_IDLE_END()
#endif
#ifndef traceTASK_SWITCHED_OUT
/* Called before a task has been selected to run. pxCurrentTCB holds a pointer
to the task control block of the task being switched out. */
#define traceTASK_SWITCHED_OUT()
#endif
#ifndef traceTASK_PRIORITY_INHERIT
/* Called when a task attempts to take a mutex that is already held by a
lower priority task. pxTCBOfMutexHolder is a pointer to the TCB of the task
that holds the mutex. uxInheritedPriority is the priority the mutex holder
will inherit (the priority of the task that is attempting to obtain the
muted. */
#define traceTASK_PRIORITY_INHERIT( pxTCBOfMutexHolder, uxInheritedPriority )
#endif
#ifndef traceTASK_PRIORITY_DISINHERIT
/* Called when a task releases a mutex, the holding of which had resulted in
the task inheriting the priority of a higher priority task.
pxTCBOfMutexHolder is a pointer to the TCB of the task that is releasing the
mutex. uxOriginalPriority is the task's configured (base) priority. */
#define traceTASK_PRIORITY_DISINHERIT( pxTCBOfMutexHolder, uxOriginalPriority )
#endif
#ifndef traceBLOCKING_ON_QUEUE_RECEIVE
/* Task is about to block because it cannot read from a
queue/mutex/semaphore. pxQueue is a pointer to the queue/mutex/semaphore
upon which the read was attempted. pxCurrentTCB points to the TCB of the
task that attempted the read. */
#define traceBLOCKING_ON_QUEUE_RECEIVE( pxQueue )
#endif
#ifndef traceBLOCKING_ON_QUEUE_SEND
/* Task is about to block because it cannot write to a
queue/mutex/semaphore. pxQueue is a pointer to the queue/mutex/semaphore
upon which the write was attempted. pxCurrentTCB points to the TCB of the
task that attempted the write. */
#define traceBLOCKING_ON_QUEUE_SEND( pxQueue )
#endif
#ifndef configCHECK_FOR_STACK_OVERFLOW
#define configCHECK_FOR_STACK_OVERFLOW 0
#endif
/* The following event macros are embedded in the kernel API calls. */
#ifndef traceMOVED_TASK_TO_READY_STATE
#define traceMOVED_TASK_TO_READY_STATE( pxTCB )
#endif
#ifndef traceQUEUE_CREATE
#define traceQUEUE_CREATE( pxNewQueue )
#endif
#ifndef traceQUEUE_CREATE_FAILED
#define traceQUEUE_CREATE_FAILED( ucQueueType )
#endif
#ifndef traceCREATE_MUTEX
#define traceCREATE_MUTEX( pxNewQueue )
#endif
#ifndef traceCREATE_MUTEX_FAILED
#define traceCREATE_MUTEX_FAILED()
#endif
#ifndef traceGIVE_MUTEX_RECURSIVE
#define traceGIVE_MUTEX_RECURSIVE( pxMutex )
#endif
#ifndef traceGIVE_MUTEX_RECURSIVE_FAILED
#define traceGIVE_MUTEX_RECURSIVE_FAILED( pxMutex )
#endif
#ifndef traceTAKE_MUTEX_RECURSIVE
#define traceTAKE_MUTEX_RECURSIVE( pxMutex )
#endif
#ifndef traceTAKE_MUTEX_RECURSIVE_FAILED
#define traceTAKE_MUTEX_RECURSIVE_FAILED( pxMutex )
#endif
#ifndef traceCREATE_COUNTING_SEMAPHORE
#define traceCREATE_COUNTING_SEMAPHORE()
#endif
#ifndef traceCREATE_COUNTING_SEMAPHORE_FAILED
#define traceCREATE_COUNTING_SEMAPHORE_FAILED()
#endif
#ifndef traceQUEUE_SEND
#define traceQUEUE_SEND( pxQueue )
#endif
#ifndef traceQUEUE_SEND_FAILED
#define traceQUEUE_SEND_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_RECEIVE
#define traceQUEUE_RECEIVE( pxQueue )
#endif
#ifndef traceQUEUE_PEEK
#define traceQUEUE_PEEK( pxQueue )
#endif
#ifndef traceQUEUE_PEEK_FROM_ISR
#define traceQUEUE_PEEK_FROM_ISR( pxQueue )
#endif
#ifndef traceQUEUE_RECEIVE_FAILED
#define traceQUEUE_RECEIVE_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_SEND_FROM_ISR
#define traceQUEUE_SEND_FROM_ISR( pxQueue )
#endif
#ifndef traceQUEUE_SEND_FROM_ISR_FAILED
#define traceQUEUE_SEND_FROM_ISR_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_RECEIVE_FROM_ISR
#define traceQUEUE_RECEIVE_FROM_ISR( pxQueue )
#endif
#ifndef traceQUEUE_RECEIVE_FROM_ISR_FAILED
#define traceQUEUE_RECEIVE_FROM_ISR_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_PEEK_FROM_ISR_FAILED
#define traceQUEUE_PEEK_FROM_ISR_FAILED( pxQueue )
#endif
#ifndef traceQUEUE_DELETE
#define traceQUEUE_DELETE( pxQueue )
#endif
#ifndef traceTASK_CREATE
#define traceTASK_CREATE( pxNewTCB )
#endif
#ifndef traceTASK_CREATE_FAILED
#define traceTASK_CREATE_FAILED()
#endif
#ifndef traceTASK_DELETE
#define traceTASK_DELETE( pxTaskToDelete )
#endif
#ifndef traceTASK_DELAY_UNTIL
#define traceTASK_DELAY_UNTIL()
#endif
#ifndef traceTASK_DELAY
#define traceTASK_DELAY()
#endif
#ifndef traceTASK_PRIORITY_SET
#define traceTASK_PRIORITY_SET( pxTask, uxNewPriority )
#endif
#ifndef traceTASK_SUSPEND
#define traceTASK_SUSPEND( pxTaskToSuspend )
#endif
#ifndef traceTASK_RESUME
#define traceTASK_RESUME( pxTaskToResume )
#endif
#ifndef traceTASK_RESUME_FROM_ISR
#define traceTASK_RESUME_FROM_ISR( pxTaskToResume )
#endif
#ifndef traceTASK_INCREMENT_TICK
#define traceTASK_INCREMENT_TICK( xTickCount )
#endif
#ifndef traceTIMER_CREATE
#define traceTIMER_CREATE( pxNewTimer )
#endif
#ifndef traceTIMER_CREATE_FAILED
#define traceTIMER_CREATE_FAILED()
#endif
#ifndef traceTIMER_COMMAND_SEND
#define traceTIMER_COMMAND_SEND( xTimer, xMessageID, xMessageValueValue, xReturn )
#endif
#ifndef traceTIMER_EXPIRED
#define traceTIMER_EXPIRED( pxTimer )
#endif
#ifndef traceTIMER_COMMAND_RECEIVED
#define traceTIMER_COMMAND_RECEIVED( pxTimer, xMessageID, xMessageValue )
#endif
#ifndef traceMALLOC
#define traceMALLOC( pvAddress, uiSize )
#endif
#ifndef traceFREE
#define traceFREE( pvAddress, uiSize )
#endif
#ifndef traceEVENT_GROUP_CREATE
#define traceEVENT_GROUP_CREATE( xEventGroup )
#endif
#ifndef traceEVENT_GROUP_CREATE_FAILED
#define traceEVENT_GROUP_CREATE_FAILED()
#endif
#ifndef traceEVENT_GROUP_SYNC_BLOCK
#define traceEVENT_GROUP_SYNC_BLOCK( xEventGroup, uxBitsToSet, uxBitsToWaitFor )
#endif
#ifndef traceEVENT_GROUP_SYNC_END
#define traceEVENT_GROUP_SYNC_END( xEventGroup, uxBitsToSet, uxBitsToWaitFor, xTimeoutOccurred ) ( void ) xTimeoutOccurred
#endif
#ifndef traceEVENT_GROUP_WAIT_BITS_BLOCK
#define traceEVENT_GROUP_WAIT_BITS_BLOCK( xEventGroup, uxBitsToWaitFor )
#endif
#ifndef traceEVENT_GROUP_WAIT_BITS_END
#define traceEVENT_GROUP_WAIT_BITS_END( xEventGroup, uxBitsToWaitFor, xTimeoutOccurred ) ( void ) xTimeoutOccurred
#endif
#ifndef traceEVENT_GROUP_CLEAR_BITS
#define traceEVENT_GROUP_CLEAR_BITS( xEventGroup, uxBitsToClear )
#endif
#ifndef traceEVENT_GROUP_CLEAR_BITS_FROM_ISR
#define traceEVENT_GROUP_CLEAR_BITS_FROM_ISR( xEventGroup, uxBitsToClear )
#endif
#ifndef traceEVENT_GROUP_SET_BITS
#define traceEVENT_GROUP_SET_BITS( xEventGroup, uxBitsToSet )
#endif
#ifndef traceEVENT_GROUP_SET_BITS_FROM_ISR
#define traceEVENT_GROUP_SET_BITS_FROM_ISR( xEventGroup, uxBitsToSet )
#endif
#ifndef traceEVENT_GROUP_DELETE
#define traceEVENT_GROUP_DELETE( xEventGroup )
#endif
#ifndef tracePEND_FUNC_CALL
#define tracePEND_FUNC_CALL(xFunctionToPend, pvParameter1, ulParameter2, ret)
#endif
#ifndef tracePEND_FUNC_CALL_FROM_ISR
#define tracePEND_FUNC_CALL_FROM_ISR(xFunctionToPend, pvParameter1, ulParameter2, ret)
#endif
#ifndef traceQUEUE_REGISTRY_ADD
#define traceQUEUE_REGISTRY_ADD(xQueue, pcQueueName)
#endif
#ifndef configGENERATE_RUN_TIME_STATS
#define configGENERATE_RUN_TIME_STATS 0
#endif
#if ( configGENERATE_RUN_TIME_STATS == 1 )
#ifndef configUSE_STATS_FORMATTING_FUNCTIONS
#define configUSE_STATS_FORMATTING_FUNCTIONS 1
#endif
#ifndef portCONFIGURE_TIMER_FOR_RUN_TIME_STATS
#error If configGENERATE_RUN_TIME_STATS is defined then portCONFIGURE_TIMER_FOR_RUN_TIME_STATS must also be defined. portCONFIGURE_TIMER_FOR_RUN_TIME_STATS should call a port layer function to setup a peripheral timer/counter that can then be used as the run time counter time base.
#endif /* portCONFIGURE_TIMER_FOR_RUN_TIME_STATS */
#ifndef portGET_RUN_TIME_COUNTER_VALUE
#ifndef portALT_GET_RUN_TIME_COUNTER_VALUE
#error If configGENERATE_RUN_TIME_STATS is defined then either portGET_RUN_TIME_COUNTER_VALUE or portALT_GET_RUN_TIME_COUNTER_VALUE must also be defined. See the examples provided and the FreeRTOS web site for more information.
#endif /* portALT_GET_RUN_TIME_COUNTER_VALUE */
#endif /* portGET_RUN_TIME_COUNTER_VALUE */
#endif /* configGENERATE_RUN_TIME_STATS */
#ifndef portCONFIGURE_TIMER_FOR_RUN_TIME_STATS
#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS()
#endif
#ifndef configUSE_MALLOC_FAILED_HOOK
#define configUSE_MALLOC_FAILED_HOOK 0
#endif
#ifndef portPRIVILEGE_BIT
#define portPRIVILEGE_BIT ( ( UBaseType_t ) 0x00 )
#endif
#ifndef portYIELD_WITHIN_API
#define portYIELD_WITHIN_API portYIELD
#endif
#ifndef pvPortMallocAligned
#define pvPortMallocAligned( x, puxStackBuffer ) ( ( ( puxStackBuffer ) == NULL ) ? ( pvPortMalloc( ( x ) ) ) : ( puxStackBuffer ) )
#endif
#ifndef vPortFreeAligned
#define vPortFreeAligned( pvBlockToFree ) vPortFree( pvBlockToFree )
#endif
#ifndef portSUPPRESS_TICKS_AND_SLEEP
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime )
#endif
#ifndef configEXPECTED_IDLE_TIME_BEFORE_SLEEP
#define configEXPECTED_IDLE_TIME_BEFORE_SLEEP 2
#endif
#if configEXPECTED_IDLE_TIME_BEFORE_SLEEP < 2
#error configEXPECTED_IDLE_TIME_BEFORE_SLEEP must not be less than 2
#endif
#ifndef configUSE_TICKLESS_IDLE
#define configUSE_TICKLESS_IDLE 0
#endif
#ifndef configPRE_SLEEP_PROCESSING
#define configPRE_SLEEP_PROCESSING( x )
#endif
#ifndef configPOST_SLEEP_PROCESSING
#define configPOST_SLEEP_PROCESSING( x )
#endif
#ifndef configUSE_QUEUE_SETS
#define configUSE_QUEUE_SETS 0
#endif
#ifndef portTASK_USES_FLOATING_POINT
#define portTASK_USES_FLOATING_POINT()
#endif
#ifndef configUSE_TIME_SLICING
#define configUSE_TIME_SLICING 1
#endif
#ifndef configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS
#define configINCLUDE_APPLICATION_DEFINED_PRIVILEGED_FUNCTIONS 0
#endif
#ifndef configUSE_NEWLIB_REENTRANT
#define configUSE_NEWLIB_REENTRANT 0
#endif
#ifndef configUSE_STATS_FORMATTING_FUNCTIONS
#define configUSE_STATS_FORMATTING_FUNCTIONS 0
#endif
#ifndef portASSERT_IF_INTERRUPT_PRIORITY_INVALID
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID()
#endif
#ifndef configUSE_TRACE_FACILITY
#define configUSE_TRACE_FACILITY 0
#endif
#ifndef mtCOVERAGE_TEST_MARKER
#define mtCOVERAGE_TEST_MARKER()
#endif
#ifndef portASSERT_IF_IN_ISR
#define portASSERT_IF_IN_ISR()
#endif
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 0
#endif
/* Definitions to allow backward compatibility with FreeRTOS versions prior to
V8 if desired. */
#ifndef configENABLE_BACKWARD_COMPATIBILITY
#define configENABLE_BACKWARD_COMPATIBILITY 1
#endif
#if configENABLE_BACKWARD_COMPATIBILITY == 1
#define eTaskStateGet eTaskGetState
#define portTickType TickType_t
#define xTaskHandle TaskHandle_t
#define xQueueHandle QueueHandle_t
#define xSemaphoreHandle SemaphoreHandle_t
#define xQueueSetHandle QueueSetHandle_t
#define xQueueSetMemberHandle QueueSetMemberHandle_t
#define xTimeOutType TimeOut_t
#define xMemoryRegion MemoryRegion_t
#define xTaskParameters TaskParameters_t
#define xTaskStatusType TaskStatus_t
#define xTimerHandle TimerHandle_t
#define xCoRoutineHandle CoRoutineHandle_t
#define pdTASK_HOOK_CODE TaskHookFunction_t
#define portTICK_RATE_MS portTICK_PERIOD_MS
/* Backward compatibility within the scheduler code only - these definitions
are not really required but are included for completeness. */
#define tmrTIMER_CALLBACK TimerCallbackFunction_t
#define pdTASK_CODE TaskFunction_t
#define xListItem ListItem_t
#define xList List_t
#endif /* configENABLE_BACKWARD_COMPATIBILITY */
#ifdef __cplusplus
}
#endif
#endif /* INC_FREERTOS_H */

View file

@ -0,0 +1,758 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef CO_ROUTINE_H
#define CO_ROUTINE_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h must appear in source files before include croutine.h"
#endif
#include "list.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Used to hide the implementation of the co-routine control block. The
control block structure however has to be included in the header due to
the macro implementation of the co-routine functionality. */
typedef void * CoRoutineHandle_t;
/* Defines the prototype to which co-routine functions must conform. */
typedef void (*crCOROUTINE_CODE)( CoRoutineHandle_t, UBaseType_t );
typedef struct corCoRoutineControlBlock
{
crCOROUTINE_CODE pxCoRoutineFunction;
ListItem_t xGenericListItem; /*< List item used to place the CRCB in ready and blocked queues. */
ListItem_t xEventListItem; /*< List item used to place the CRCB in event lists. */
UBaseType_t uxPriority; /*< The priority of the co-routine in relation to other co-routines. */
UBaseType_t uxIndex; /*< Used to distinguish between co-routines when multiple co-routines use the same co-routine function. */
uint16_t uxState; /*< Used internally by the co-routine implementation. */
} CRCB_t; /* Co-routine control block. Note must be identical in size down to uxPriority with TCB_t. */
/**
* croutine. h
*<pre>
BaseType_t xCoRoutineCreate(
crCOROUTINE_CODE pxCoRoutineCode,
UBaseType_t uxPriority,
UBaseType_t uxIndex
);</pre>
*
* Create a new co-routine and add it to the list of co-routines that are
* ready to run.
*
* @param pxCoRoutineCode Pointer to the co-routine function. Co-routine
* functions require special syntax - see the co-routine section of the WEB
* documentation for more information.
*
* @param uxPriority The priority with respect to other co-routines at which
* the co-routine will run.
*
* @param uxIndex Used to distinguish between different co-routines that
* execute the same function. See the example below and the co-routine section
* of the WEB documentation for further information.
*
* @return pdPASS if the co-routine was successfully created and added to a ready
* list, otherwise an error code defined with ProjDefs.h.
*
* Example usage:
<pre>
// Co-routine to be created.
void vFlashCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
// This may not be necessary for const variables.
static const char cLedToFlash[ 2 ] = { 5, 6 };
static const TickType_t uxFlashRates[ 2 ] = { 200, 400 };
// Must start every co-routine with a call to crSTART();
crSTART( xHandle );
for( ;; )
{
// This co-routine just delays for a fixed period, then toggles
// an LED. Two co-routines are created using this function, so
// the uxIndex parameter is used to tell the co-routine which
// LED to flash and how int32_t to delay. This assumes xQueue has
// already been created.
vParTestToggleLED( cLedToFlash[ uxIndex ] );
crDELAY( xHandle, uxFlashRates[ uxIndex ] );
}
// Must end every co-routine with a call to crEND();
crEND();
}
// Function that creates two co-routines.
void vOtherFunction( void )
{
uint8_t ucParameterToPass;
TaskHandle_t xHandle;
// Create two co-routines at priority 0. The first is given index 0
// so (from the code above) toggles LED 5 every 200 ticks. The second
// is given index 1 so toggles LED 6 every 400 ticks.
for( uxIndex = 0; uxIndex < 2; uxIndex++ )
{
xCoRoutineCreate( vFlashCoRoutine, 0, uxIndex );
}
}
</pre>
* \defgroup xCoRoutineCreate xCoRoutineCreate
* \ingroup Tasks
*/
BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, UBaseType_t uxPriority, UBaseType_t uxIndex );
/**
* croutine. h
*<pre>
void vCoRoutineSchedule( void );</pre>
*
* Run a co-routine.
*
* vCoRoutineSchedule() executes the highest priority co-routine that is able
* to run. The co-routine will execute until it either blocks, yields or is
* preempted by a task. Co-routines execute cooperatively so one
* co-routine cannot be preempted by another, but can be preempted by a task.
*
* If an application comprises of both tasks and co-routines then
* vCoRoutineSchedule should be called from the idle task (in an idle task
* hook).
*
* Example usage:
<pre>
// This idle task hook will schedule a co-routine each time it is called.
// The rest of the idle task will execute between co-routine calls.
void vApplicationIdleHook( void )
{
vCoRoutineSchedule();
}
// Alternatively, if you do not require any other part of the idle task to
// execute, the idle task hook can call vCoRoutineScheduler() within an
// infinite loop.
void vApplicationIdleHook( void )
{
for( ;; )
{
vCoRoutineSchedule();
}
}
</pre>
* \defgroup vCoRoutineSchedule vCoRoutineSchedule
* \ingroup Tasks
*/
void vCoRoutineSchedule( void );
/**
* croutine. h
* <pre>
crSTART( CoRoutineHandle_t xHandle );</pre>
*
* This macro MUST always be called at the start of a co-routine function.
*
* Example usage:
<pre>
// Co-routine to be created.
void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
static int32_t ulAVariable;
// Must start every co-routine with a call to crSTART();
crSTART( xHandle );
for( ;; )
{
// Co-routine functionality goes here.
}
// Must end every co-routine with a call to crEND();
crEND();
}</pre>
* \defgroup crSTART crSTART
* \ingroup Tasks
*/
#define crSTART( pxCRCB ) switch( ( ( CRCB_t * )( pxCRCB ) )->uxState ) { case 0:
/**
* croutine. h
* <pre>
crEND();</pre>
*
* This macro MUST always be called at the end of a co-routine function.
*
* Example usage:
<pre>
// Co-routine to be created.
void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
static int32_t ulAVariable;
// Must start every co-routine with a call to crSTART();
crSTART( xHandle );
for( ;; )
{
// Co-routine functionality goes here.
}
// Must end every co-routine with a call to crEND();
crEND();
}</pre>
* \defgroup crSTART crSTART
* \ingroup Tasks
*/
#define crEND() }
/*
* These macros are intended for internal use by the co-routine implementation
* only. The macros should not be used directly by application writers.
*/
#define crSET_STATE0( xHandle ) ( ( CRCB_t * )( xHandle ) )->uxState = (__LINE__ * 2); return; case (__LINE__ * 2):
#define crSET_STATE1( xHandle ) ( ( CRCB_t * )( xHandle ) )->uxState = ((__LINE__ * 2)+1); return; case ((__LINE__ * 2)+1):
/**
* croutine. h
*<pre>
crDELAY( CoRoutineHandle_t xHandle, TickType_t xTicksToDelay );</pre>
*
* Delay a co-routine for a fixed period of time.
*
* crDELAY can only be called from the co-routine function itself - not
* from within a function called by the co-routine function. This is because
* co-routines do not maintain their own stack.
*
* @param xHandle The handle of the co-routine to delay. This is the xHandle
* parameter of the co-routine function.
*
* @param xTickToDelay The number of ticks that the co-routine should delay
* for. The actual amount of time this equates to is defined by
* configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant portTICK_PERIOD_MS
* can be used to convert ticks to milliseconds.
*
* Example usage:
<pre>
// Co-routine to be created.
void vACoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
// This may not be necessary for const variables.
// We are to delay for 200ms.
static const xTickType xDelayTime = 200 / portTICK_PERIOD_MS;
// Must start every co-routine with a call to crSTART();
crSTART( xHandle );
for( ;; )
{
// Delay for 200ms.
crDELAY( xHandle, xDelayTime );
// Do something here.
}
// Must end every co-routine with a call to crEND();
crEND();
}</pre>
* \defgroup crDELAY crDELAY
* \ingroup Tasks
*/
#define crDELAY( xHandle, xTicksToDelay ) \
if( ( xTicksToDelay ) > 0 ) \
{ \
vCoRoutineAddToDelayedList( ( xTicksToDelay ), NULL ); \
} \
crSET_STATE0( ( xHandle ) );
/**
* <pre>
crQUEUE_SEND(
CoRoutineHandle_t xHandle,
QueueHandle_t pxQueue,
void *pvItemToQueue,
TickType_t xTicksToWait,
BaseType_t *pxResult
)</pre>
*
* The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
* equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
*
* crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
* xQueueSend() and xQueueReceive() can only be used from tasks.
*
* crQUEUE_SEND can only be called from the co-routine function itself - not
* from within a function called by the co-routine function. This is because
* co-routines do not maintain their own stack.
*
* See the co-routine section of the WEB documentation for information on
* passing data between tasks and co-routines and between ISR's and
* co-routines.
*
* @param xHandle The handle of the calling co-routine. This is the xHandle
* parameter of the co-routine function.
*
* @param pxQueue The handle of the queue on which the data will be posted.
* The handle is obtained as the return value when the queue is created using
* the xQueueCreate() API function.
*
* @param pvItemToQueue A pointer to the data being posted onto the queue.
* The number of bytes of each queued item is specified when the queue is
* created. This number of bytes is copied from pvItemToQueue into the queue
* itself.
*
* @param xTickToDelay The number of ticks that the co-routine should block
* to wait for space to become available on the queue, should space not be
* available immediately. The actual amount of time this equates to is defined
* by configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant
* portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see example
* below).
*
* @param pxResult The variable pointed to by pxResult will be set to pdPASS if
* data was successfully posted onto the queue, otherwise it will be set to an
* error defined within ProjDefs.h.
*
* Example usage:
<pre>
// Co-routine function that blocks for a fixed period then posts a number onto
// a queue.
static void prvCoRoutineFlashTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
static BaseType_t xNumberToPost = 0;
static BaseType_t xResult;
// Co-routines must begin with a call to crSTART().
crSTART( xHandle );
for( ;; )
{
// This assumes the queue has already been created.
crQUEUE_SEND( xHandle, xCoRoutineQueue, &xNumberToPost, NO_DELAY, &xResult );
if( xResult != pdPASS )
{
// The message was not posted!
}
// Increment the number to be posted onto the queue.
xNumberToPost++;
// Delay for 100 ticks.
crDELAY( xHandle, 100 );
}
// Co-routines must end with a call to crEND().
crEND();
}</pre>
* \defgroup crQUEUE_SEND crQUEUE_SEND
* \ingroup Tasks
*/
#define crQUEUE_SEND( xHandle, pxQueue, pvItemToQueue, xTicksToWait, pxResult ) \
{ \
*( pxResult ) = xQueueCRSend( ( pxQueue) , ( pvItemToQueue) , ( xTicksToWait ) ); \
if( *( pxResult ) == errQUEUE_BLOCKED ) \
{ \
crSET_STATE0( ( xHandle ) ); \
*pxResult = xQueueCRSend( ( pxQueue ), ( pvItemToQueue ), 0 ); \
} \
if( *pxResult == errQUEUE_YIELD ) \
{ \
crSET_STATE1( ( xHandle ) ); \
*pxResult = pdPASS; \
} \
}
/**
* croutine. h
* <pre>
crQUEUE_RECEIVE(
CoRoutineHandle_t xHandle,
QueueHandle_t pxQueue,
void *pvBuffer,
TickType_t xTicksToWait,
BaseType_t *pxResult
)</pre>
*
* The macro's crQUEUE_SEND() and crQUEUE_RECEIVE() are the co-routine
* equivalent to the xQueueSend() and xQueueReceive() functions used by tasks.
*
* crQUEUE_SEND and crQUEUE_RECEIVE can only be used from a co-routine whereas
* xQueueSend() and xQueueReceive() can only be used from tasks.
*
* crQUEUE_RECEIVE can only be called from the co-routine function itself - not
* from within a function called by the co-routine function. This is because
* co-routines do not maintain their own stack.
*
* See the co-routine section of the WEB documentation for information on
* passing data between tasks and co-routines and between ISR's and
* co-routines.
*
* @param xHandle The handle of the calling co-routine. This is the xHandle
* parameter of the co-routine function.
*
* @param pxQueue The handle of the queue from which the data will be received.
* The handle is obtained as the return value when the queue is created using
* the xQueueCreate() API function.
*
* @param pvBuffer The buffer into which the received item is to be copied.
* The number of bytes of each queued item is specified when the queue is
* created. This number of bytes is copied into pvBuffer.
*
* @param xTickToDelay The number of ticks that the co-routine should block
* to wait for data to become available from the queue, should data not be
* available immediately. The actual amount of time this equates to is defined
* by configTICK_RATE_HZ (set in FreeRTOSConfig.h). The constant
* portTICK_PERIOD_MS can be used to convert ticks to milliseconds (see the
* crQUEUE_SEND example).
*
* @param pxResult The variable pointed to by pxResult will be set to pdPASS if
* data was successfully retrieved from the queue, otherwise it will be set to
* an error code as defined within ProjDefs.h.
*
* Example usage:
<pre>
// A co-routine receives the number of an LED to flash from a queue. It
// blocks on the queue until the number is received.
static void prvCoRoutineFlashWorkTask( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// Variables in co-routines must be declared static if they must maintain value across a blocking call.
static BaseType_t xResult;
static UBaseType_t uxLEDToFlash;
// All co-routines must start with a call to crSTART().
crSTART( xHandle );
for( ;; )
{
// Wait for data to become available on the queue.
crQUEUE_RECEIVE( xHandle, xCoRoutineQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
if( xResult == pdPASS )
{
// We received the LED to flash - flash it!
vParTestToggleLED( uxLEDToFlash );
}
}
crEND();
}</pre>
* \defgroup crQUEUE_RECEIVE crQUEUE_RECEIVE
* \ingroup Tasks
*/
#define crQUEUE_RECEIVE( xHandle, pxQueue, pvBuffer, xTicksToWait, pxResult ) \
{ \
*( pxResult ) = xQueueCRReceive( ( pxQueue) , ( pvBuffer ), ( xTicksToWait ) ); \
if( *( pxResult ) == errQUEUE_BLOCKED ) \
{ \
crSET_STATE0( ( xHandle ) ); \
*( pxResult ) = xQueueCRReceive( ( pxQueue) , ( pvBuffer ), 0 ); \
} \
if( *( pxResult ) == errQUEUE_YIELD ) \
{ \
crSET_STATE1( ( xHandle ) ); \
*( pxResult ) = pdPASS; \
} \
}
/**
* croutine. h
* <pre>
crQUEUE_SEND_FROM_ISR(
QueueHandle_t pxQueue,
void *pvItemToQueue,
BaseType_t xCoRoutinePreviouslyWoken
)</pre>
*
* The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
* co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
* functions used by tasks.
*
* crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
* pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
* xQueueReceiveFromISR() can only be used to pass data between a task and and
* ISR.
*
* crQUEUE_SEND_FROM_ISR can only be called from an ISR to send data to a queue
* that is being used from within a co-routine.
*
* See the co-routine section of the WEB documentation for information on
* passing data between tasks and co-routines and between ISR's and
* co-routines.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvItemToQueue A pointer to the item that is to be placed on the
* queue. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from pvItemToQueue
* into the queue storage area.
*
* @param xCoRoutinePreviouslyWoken This is included so an ISR can post onto
* the same queue multiple times from a single interrupt. The first call
* should always pass in pdFALSE. Subsequent calls should pass in
* the value returned from the previous call.
*
* @return pdTRUE if a co-routine was woken by posting onto the queue. This is
* used by the ISR to determine if a context switch may be required following
* the ISR.
*
* Example usage:
<pre>
// A co-routine that blocks on a queue waiting for characters to be received.
static void vReceivingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
char cRxedChar;
BaseType_t xResult;
// All co-routines must start with a call to crSTART().
crSTART( xHandle );
for( ;; )
{
// Wait for data to become available on the queue. This assumes the
// queue xCommsRxQueue has already been created!
crQUEUE_RECEIVE( xHandle, xCommsRxQueue, &uxLEDToFlash, portMAX_DELAY, &xResult );
// Was a character received?
if( xResult == pdPASS )
{
// Process the character here.
}
}
// All co-routines must end with a call to crEND().
crEND();
}
// An ISR that uses a queue to send characters received on a serial port to
// a co-routine.
void vUART_ISR( void )
{
char cRxedChar;
BaseType_t xCRWokenByPost = pdFALSE;
// We loop around reading characters until there are none left in the UART.
while( UART_RX_REG_NOT_EMPTY() )
{
// Obtain the character from the UART.
cRxedChar = UART_RX_REG;
// Post the character onto a queue. xCRWokenByPost will be pdFALSE
// the first time around the loop. If the post causes a co-routine
// to be woken (unblocked) then xCRWokenByPost will be set to pdTRUE.
// In this manner we can ensure that if more than one co-routine is
// blocked on the queue only one is woken by this ISR no matter how
// many characters are posted to the queue.
xCRWokenByPost = crQUEUE_SEND_FROM_ISR( xCommsRxQueue, &cRxedChar, xCRWokenByPost );
}
}</pre>
* \defgroup crQUEUE_SEND_FROM_ISR crQUEUE_SEND_FROM_ISR
* \ingroup Tasks
*/
#define crQUEUE_SEND_FROM_ISR( pxQueue, pvItemToQueue, xCoRoutinePreviouslyWoken ) xQueueCRSendFromISR( ( pxQueue ), ( pvItemToQueue ), ( xCoRoutinePreviouslyWoken ) )
/**
* croutine. h
* <pre>
crQUEUE_SEND_FROM_ISR(
QueueHandle_t pxQueue,
void *pvBuffer,
BaseType_t * pxCoRoutineWoken
)</pre>
*
* The macro's crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() are the
* co-routine equivalent to the xQueueSendFromISR() and xQueueReceiveFromISR()
* functions used by tasks.
*
* crQUEUE_SEND_FROM_ISR() and crQUEUE_RECEIVE_FROM_ISR() can only be used to
* pass data between a co-routine and and ISR, whereas xQueueSendFromISR() and
* xQueueReceiveFromISR() can only be used to pass data between a task and and
* ISR.
*
* crQUEUE_RECEIVE_FROM_ISR can only be called from an ISR to receive data
* from a queue that is being used from within a co-routine (a co-routine
* posted to the queue).
*
* See the co-routine section of the WEB documentation for information on
* passing data between tasks and co-routines and between ISR's and
* co-routines.
*
* @param xQueue The handle to the queue on which the item is to be posted.
*
* @param pvBuffer A pointer to a buffer into which the received item will be
* placed. The size of the items the queue will hold was defined when the
* queue was created, so this many bytes will be copied from the queue into
* pvBuffer.
*
* @param pxCoRoutineWoken A co-routine may be blocked waiting for space to become
* available on the queue. If crQUEUE_RECEIVE_FROM_ISR causes such a
* co-routine to unblock *pxCoRoutineWoken will get set to pdTRUE, otherwise
* *pxCoRoutineWoken will remain unchanged.
*
* @return pdTRUE an item was successfully received from the queue, otherwise
* pdFALSE.
*
* Example usage:
<pre>
// A co-routine that posts a character to a queue then blocks for a fixed
// period. The character is incremented each time.
static void vSendingCoRoutine( CoRoutineHandle_t xHandle, UBaseType_t uxIndex )
{
// cChar holds its value while this co-routine is blocked and must therefore
// be declared static.
static char cCharToTx = 'a';
BaseType_t xResult;
// All co-routines must start with a call to crSTART().
crSTART( xHandle );
for( ;; )
{
// Send the next character to the queue.
crQUEUE_SEND( xHandle, xCoRoutineQueue, &cCharToTx, NO_DELAY, &xResult );
if( xResult == pdPASS )
{
// The character was successfully posted to the queue.
}
else
{
// Could not post the character to the queue.
}
// Enable the UART Tx interrupt to cause an interrupt in this
// hypothetical UART. The interrupt will obtain the character
// from the queue and send it.
ENABLE_RX_INTERRUPT();
// Increment to the next character then block for a fixed period.
// cCharToTx will maintain its value across the delay as it is
// declared static.
cCharToTx++;
if( cCharToTx > 'x' )
{
cCharToTx = 'a';
}
crDELAY( 100 );
}
// All co-routines must end with a call to crEND().
crEND();
}
// An ISR that uses a queue to receive characters to send on a UART.
void vUART_ISR( void )
{
char cCharToTx;
BaseType_t xCRWokenByPost = pdFALSE;
while( UART_TX_REG_EMPTY() )
{
// Are there any characters in the queue waiting to be sent?
// xCRWokenByPost will automatically be set to pdTRUE if a co-routine
// is woken by the post - ensuring that only a single co-routine is
// woken no matter how many times we go around this loop.
if( crQUEUE_RECEIVE_FROM_ISR( pxQueue, &cCharToTx, &xCRWokenByPost ) )
{
SEND_CHARACTER( cCharToTx );
}
}
}</pre>
* \defgroup crQUEUE_RECEIVE_FROM_ISR crQUEUE_RECEIVE_FROM_ISR
* \ingroup Tasks
*/
#define crQUEUE_RECEIVE_FROM_ISR( pxQueue, pvBuffer, pxCoRoutineWoken ) xQueueCRReceiveFromISR( ( pxQueue ), ( pvBuffer ), ( pxCoRoutineWoken ) )
/*
* This function is intended for internal use by the co-routine macros only.
* The macro nature of the co-routine implementation requires that the
* prototype appears here. The function should not be used by application
* writers.
*
* Removes the current co-routine from its ready list and places it in the
* appropriate delayed list.
*/
void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay, List_t *pxEventList );
/*
* This function is intended for internal use by the queue implementation only.
* The function should not be used by application writers.
*
* Removes the highest priority co-routine from the event list and places it in
* the pending ready list.
*/
BaseType_t xCoRoutineRemoveFromEventList( const List_t *pxEventList );
#ifdef __cplusplus
}
#endif
#endif /* CO_ROUTINE_H */

View file

@ -0,0 +1,726 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef EVENT_GROUPS_H
#define EVENT_GROUPS_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h" must appear in source files before "include event_groups.h"
#endif
#include "timers.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* An event group is a collection of bits to which an application can assign a
* meaning. For example, an application may create an event group to convey
* the status of various CAN bus related events in which bit 0 might mean "A CAN
* message has been received and is ready for processing", bit 1 might mean "The
* application has queued a message that is ready for sending onto the CAN
* network", and bit 2 might mean "It is time to send a SYNC message onto the
* CAN network" etc. A task can then test the bit values to see which events
* are active, and optionally enter the Blocked state to wait for a specified
* bit or a group of specified bits to be active. To continue the CAN bus
* example, a CAN controlling task can enter the Blocked state (and therefore
* not consume any processing time) until either bit 0, bit 1 or bit 2 are
* active, at which time the bit that was actually active would inform the task
* which action it had to take (process a received message, send a message, or
* send a SYNC).
*
* The event groups implementation contains intelligence to avoid race
* conditions that would otherwise occur were an application to use a simple
* variable for the same purpose. This is particularly important with respect
* to when a bit within an event group is to be cleared, and when bits have to
* be set and then tested atomically - as is the case where event groups are
* used to create a synchronisation point between multiple tasks (a
* 'rendezvous').
*
* \defgroup EventGroup
*/
/**
* event_groups.h
*
* Type by which event groups are referenced. For example, a call to
* xEventGroupCreate() returns an EventGroupHandle_t variable that can then
* be used as a parameter to other event group functions.
*
* \defgroup EventGroupHandle_t EventGroupHandle_t
* \ingroup EventGroup
*/
typedef void * EventGroupHandle_t;
/*
* The type that holds event bits always matches TickType_t - therefore the
* number of bits it holds is set by configUSE_16_BIT_TICKS (16 bits if set to 1,
* 32 bits if set to 0.
*
* \defgroup EventBits_t EventBits_t
* \ingroup EventGroup
*/
typedef TickType_t EventBits_t;
/**
* event_groups.h
*<pre>
EventGroupHandle_t xEventGroupCreate( void );
</pre>
*
* Create a new event group. This function cannot be called from an interrupt.
*
* Although event groups are not related to ticks, for internal implementation
* reasons the number of bits available for use in an event group is dependent
* on the configUSE_16_BIT_TICKS setting in FreeRTOSConfig.h. If
* configUSE_16_BIT_TICKS is 1 then each event group contains 8 usable bits (bit
* 0 to bit 7). If configUSE_16_BIT_TICKS is set to 0 then each event group has
* 24 usable bits (bit 0 to bit 23). The EventBits_t type is used to store
* event bits within an event group.
*
* @return If the event group was created then a handle to the event group is
* returned. If there was insufficient FreeRTOS heap available to create the
* event group then NULL is returned. See http://www.freertos.org/a00111.html
*
* Example usage:
<pre>
// Declare a variable to hold the created event group.
EventGroupHandle_t xCreatedEventGroup;
// Attempt to create the event group.
xCreatedEventGroup = xEventGroupCreate();
// Was the event group created successfully?
if( xCreatedEventGroup == NULL )
{
// The event group was not created because there was insufficient
// FreeRTOS heap available.
}
else
{
// The event group was created.
}
</pre>
* \defgroup xEventGroupCreate xEventGroupCreate
* \ingroup EventGroup
*/
EventGroupHandle_t xEventGroupCreate( void ) PRIVILEGED_FUNCTION;
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToWaitFor,
const BaseType_t xClearOnExit,
const BaseType_t xWaitForAllBits,
const TickType_t xTicksToWait );
</pre>
*
* [Potentially] block to wait for one or more bits to be set within a
* previously created event group.
*
* This function cannot be called from an interrupt.
*
* @param xEventGroup The event group in which the bits are being tested. The
* event group must have previously been created using a call to
* xEventGroupCreate().
*
* @param uxBitsToWaitFor A bitwise value that indicates the bit or bits to test
* inside the event group. For example, to wait for bit 0 and/or bit 2 set
* uxBitsToWaitFor to 0x05. To wait for bits 0 and/or bit 1 and/or bit 2 set
* uxBitsToWaitFor to 0x07. Etc.
*
* @param xClearOnExit If xClearOnExit is set to pdTRUE then any bits within
* uxBitsToWaitFor that are set within the event group will be cleared before
* xEventGroupWaitBits() returns if the wait condition was met (if the function
* returns for a reason other than a timeout). If xClearOnExit is set to
* pdFALSE then the bits set in the event group are not altered when the call to
* xEventGroupWaitBits() returns.
*
* @param xWaitForAllBits If xWaitForAllBits is set to pdTRUE then
* xEventGroupWaitBits() will return when either all the bits in uxBitsToWaitFor
* are set or the specified block time expires. If xWaitForAllBits is set to
* pdFALSE then xEventGroupWaitBits() will return when any one of the bits set
* in uxBitsToWaitFor is set or the specified block time expires. The block
* time is specified by the xTicksToWait parameter.
*
* @param xTicksToWait The maximum amount of time (specified in 'ticks') to wait
* for one/all (depending on the xWaitForAllBits value) of the bits specified by
* uxBitsToWaitFor to become set.
*
* @return The value of the event group at the time either the bits being waited
* for became set, or the block time expired. Test the return value to know
* which bits were set. If xEventGroupWaitBits() returned because its timeout
* expired then not all the bits being waited for will be set. If
* xEventGroupWaitBits() returned because the bits it was waiting for were set
* then the returned value is the event group value before any bits were
* automatically cleared in the case that xClearOnExit parameter was set to
* pdTRUE.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
void aFunction( EventGroupHandle_t xEventGroup )
{
EventBits_t uxBits;
const TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
// Wait a maximum of 100ms for either bit 0 or bit 4 to be set within
// the event group. Clear the bits before exiting.
uxBits = xEventGroupWaitBits(
xEventGroup, // The event group being tested.
BIT_0 | BIT_4, // The bits within the event group to wait for.
pdTRUE, // BIT_0 and BIT_4 should be cleared before returning.
pdFALSE, // Don't wait for both bits, either bit will do.
xTicksToWait ); // Wait a maximum of 100ms for either bit to be set.
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
{
// xEventGroupWaitBits() returned because both bits were set.
}
else if( ( uxBits & BIT_0 ) != 0 )
{
// xEventGroupWaitBits() returned because just BIT_0 was set.
}
else if( ( uxBits & BIT_4 ) != 0 )
{
// xEventGroupWaitBits() returned because just BIT_4 was set.
}
else
{
// xEventGroupWaitBits() returned because xTicksToWait ticks passed
// without either BIT_0 or BIT_4 becoming set.
}
}
</pre>
* \defgroup xEventGroupWaitBits xEventGroupWaitBits
* \ingroup EventGroup
*/
EventBits_t xEventGroupWaitBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToWaitFor, const BaseType_t xClearOnExit, const BaseType_t xWaitForAllBits, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear );
</pre>
*
* Clear bits within an event group. This function cannot be called from an
* interrupt.
*
* @param xEventGroup The event group in which the bits are to be cleared.
*
* @param uxBitsToClear A bitwise value that indicates the bit or bits to clear
* in the event group. For example, to clear bit 3 only, set uxBitsToClear to
* 0x08. To clear bit 3 and bit 0 set uxBitsToClear to 0x09.
*
* @return The value of the event group before the specified bits were cleared.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
void aFunction( EventGroupHandle_t xEventGroup )
{
EventBits_t uxBits;
// Clear bit 0 and bit 4 in xEventGroup.
uxBits = xEventGroupClearBits(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 );// The bits being cleared.
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
{
// Both bit 0 and bit 4 were set before xEventGroupClearBits() was
// called. Both will now be clear (not set).
}
else if( ( uxBits & BIT_0 ) != 0 )
{
// Bit 0 was set before xEventGroupClearBits() was called. It will
// now be clear.
}
else if( ( uxBits & BIT_4 ) != 0 )
{
// Bit 4 was set before xEventGroupClearBits() was called. It will
// now be clear.
}
else
{
// Neither bit 0 nor bit 4 were set in the first place.
}
}
</pre>
* \defgroup xEventGroupClearBits xEventGroupClearBits
* \ingroup EventGroup
*/
EventBits_t xEventGroupClearBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToClear ) PRIVILEGED_FUNCTION;
/**
* event_groups.h
*<pre>
BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
</pre>
*
* A version of xEventGroupClearBits() that can be called from an interrupt.
*
* Setting bits in an event group is not a deterministic operation because there
* are an unknown number of tasks that may be waiting for the bit or bits being
* set. FreeRTOS does not allow nondeterministic operations to be performed
* while interrupts are disabled, so protects event groups that are accessed
* from tasks by suspending the scheduler rather than disabling interrupts. As
* a result event groups cannot be accessed directly from an interrupt service
* routine. Therefore xEventGroupClearBitsFromISR() sends a message to the
* timer task to have the clear operation performed in the context of the timer
* task.
*
* @param xEventGroup The event group in which the bits are to be cleared.
*
* @param uxBitsToClear A bitwise value that indicates the bit or bits to clear.
* For example, to clear bit 3 only, set uxBitsToClear to 0x08. To clear bit 3
* and bit 0 set uxBitsToClear to 0x09.
*
* @return If the request to execute the function was posted successfully then
* pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
* if the timer service queue was full.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
// An event group which it is assumed has already been created by a call to
// xEventGroupCreate().
EventGroupHandle_t xEventGroup;
void anInterruptHandler( void )
{
// Clear bit 0 and bit 4 in xEventGroup.
xResult = xEventGroupClearBitsFromISR(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 ); // The bits being set.
if( xResult == pdPASS )
{
// The message was posted successfully.
}
}
</pre>
* \defgroup xEventGroupSetBitsFromISR xEventGroupSetBitsFromISR
* \ingroup EventGroup
*/
#if( configUSE_TRACE_FACILITY == 1 )
BaseType_t xEventGroupClearBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
#else
#define xEventGroupClearBitsFromISR( xEventGroup, uxBitsToClear ) xTimerPendFunctionCallFromISR( vEventGroupClearBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToClear, NULL )
#endif
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet );
</pre>
*
* Set bits within an event group.
* This function cannot be called from an interrupt. xEventGroupSetBitsFromISR()
* is a version that can be called from an interrupt.
*
* Setting bits in an event group will automatically unblock tasks that are
* blocked waiting for the bits.
*
* @param xEventGroup The event group in which the bits are to be set.
*
* @param uxBitsToSet A bitwise value that indicates the bit or bits to set.
* For example, to set bit 3 only, set uxBitsToSet to 0x08. To set bit 3
* and bit 0 set uxBitsToSet to 0x09.
*
* @return The value of the event group at the time the call to
* xEventGroupSetBits() returns. There are two reasons why the returned value
* might have the bits specified by the uxBitsToSet parameter cleared. First,
* if setting a bit results in a task that was waiting for the bit leaving the
* blocked state then it is possible the bit will be cleared automatically
* (see the xClearBitOnExit parameter of xEventGroupWaitBits()). Second, any
* unblocked (or otherwise Ready state) task that has a priority above that of
* the task that called xEventGroupSetBits() will execute and may change the
* event group value before the call to xEventGroupSetBits() returns.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
void aFunction( EventGroupHandle_t xEventGroup )
{
EventBits_t uxBits;
// Set bit 0 and bit 4 in xEventGroup.
uxBits = xEventGroupSetBits(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 );// The bits being set.
if( ( uxBits & ( BIT_0 | BIT_4 ) ) == ( BIT_0 | BIT_4 ) )
{
// Both bit 0 and bit 4 remained set when the function returned.
}
else if( ( uxBits & BIT_0 ) != 0 )
{
// Bit 0 remained set when the function returned, but bit 4 was
// cleared. It might be that bit 4 was cleared automatically as a
// task that was waiting for bit 4 was removed from the Blocked
// state.
}
else if( ( uxBits & BIT_4 ) != 0 )
{
// Bit 4 remained set when the function returned, but bit 0 was
// cleared. It might be that bit 0 was cleared automatically as a
// task that was waiting for bit 0 was removed from the Blocked
// state.
}
else
{
// Neither bit 0 nor bit 4 remained set. It might be that a task
// was waiting for both of the bits to be set, and the bits were
// cleared as the task left the Blocked state.
}
}
</pre>
* \defgroup xEventGroupSetBits xEventGroupSetBits
* \ingroup EventGroup
*/
EventBits_t xEventGroupSetBits( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet ) PRIVILEGED_FUNCTION;
/**
* event_groups.h
*<pre>
BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken );
</pre>
*
* A version of xEventGroupSetBits() that can be called from an interrupt.
*
* Setting bits in an event group is not a deterministic operation because there
* are an unknown number of tasks that may be waiting for the bit or bits being
* set. FreeRTOS does not allow nondeterministic operations to be performed in
* interrupts or from critical sections. Therefore xEventGroupSetBitFromISR()
* sends a message to the timer task to have the set operation performed in the
* context of the timer task - where a scheduler lock is used in place of a
* critical section.
*
* @param xEventGroup The event group in which the bits are to be set.
*
* @param uxBitsToSet A bitwise value that indicates the bit or bits to set.
* For example, to set bit 3 only, set uxBitsToSet to 0x08. To set bit 3
* and bit 0 set uxBitsToSet to 0x09.
*
* @param pxHigherPriorityTaskWoken As mentioned above, calling this function
* will result in a message being sent to the timer daemon task. If the
* priority of the timer daemon task is higher than the priority of the
* currently running task (the task the interrupt interrupted) then
* *pxHigherPriorityTaskWoken will be set to pdTRUE by
* xEventGroupSetBitsFromISR(), indicating that a context switch should be
* requested before the interrupt exits. For that reason
* *pxHigherPriorityTaskWoken must be initialised to pdFALSE. See the
* example code below.
*
* @return If the request to execute the function was posted successfully then
* pdPASS is returned, otherwise pdFALSE is returned. pdFALSE will be returned
* if the timer service queue was full.
*
* Example usage:
<pre>
#define BIT_0 ( 1 << 0 )
#define BIT_4 ( 1 << 4 )
// An event group which it is assumed has already been created by a call to
// xEventGroupCreate().
EventGroupHandle_t xEventGroup;
void anInterruptHandler( void )
{
BaseType_t xHigherPriorityTaskWoken, xResult;
// xHigherPriorityTaskWoken must be initialised to pdFALSE.
xHigherPriorityTaskWoken = pdFALSE;
// Set bit 0 and bit 4 in xEventGroup.
xResult = xEventGroupSetBitsFromISR(
xEventGroup, // The event group being updated.
BIT_0 | BIT_4 // The bits being set.
&xHigherPriorityTaskWoken );
// Was the message posted successfully?
if( xResult == pdPASS )
{
// If xHigherPriorityTaskWoken is now set to pdTRUE then a context
// switch should be requested. The macro used is port specific and
// will be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() -
// refer to the documentation page for the port being used.
portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
}
}
</pre>
* \defgroup xEventGroupSetBitsFromISR xEventGroupSetBitsFromISR
* \ingroup EventGroup
*/
#if( configUSE_TRACE_FACILITY == 1 )
BaseType_t xEventGroupSetBitsFromISR( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, BaseType_t *pxHigherPriorityTaskWoken );
#else
#define xEventGroupSetBitsFromISR( xEventGroup, uxBitsToSet, pxHigherPriorityTaskWoken ) xTimerPendFunctionCallFromISR( vEventGroupSetBitsCallback, ( void * ) xEventGroup, ( uint32_t ) uxBitsToSet, pxHigherPriorityTaskWoken )
#endif
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup,
const EventBits_t uxBitsToSet,
const EventBits_t uxBitsToWaitFor,
TickType_t xTicksToWait );
</pre>
*
* Atomically set bits within an event group, then wait for a combination of
* bits to be set within the same event group. This functionality is typically
* used to synchronise multiple tasks, where each task has to wait for the other
* tasks to reach a synchronisation point before proceeding.
*
* This function cannot be used from an interrupt.
*
* The function will return before its block time expires if the bits specified
* by the uxBitsToWait parameter are set, or become set within that time. In
* this case all the bits specified by uxBitsToWait will be automatically
* cleared before the function returns.
*
* @param xEventGroup The event group in which the bits are being tested. The
* event group must have previously been created using a call to
* xEventGroupCreate().
*
* @param uxBitsToSet The bits to set in the event group before determining
* if, and possibly waiting for, all the bits specified by the uxBitsToWait
* parameter are set.
*
* @param uxBitsToWaitFor A bitwise value that indicates the bit or bits to test
* inside the event group. For example, to wait for bit 0 and bit 2 set
* uxBitsToWaitFor to 0x05. To wait for bits 0 and bit 1 and bit 2 set
* uxBitsToWaitFor to 0x07. Etc.
*
* @param xTicksToWait The maximum amount of time (specified in 'ticks') to wait
* for all of the bits specified by uxBitsToWaitFor to become set.
*
* @return The value of the event group at the time either the bits being waited
* for became set, or the block time expired. Test the return value to know
* which bits were set. If xEventGroupSync() returned because its timeout
* expired then not all the bits being waited for will be set. If
* xEventGroupSync() returned because all the bits it was waiting for were
* set then the returned value is the event group value before any bits were
* automatically cleared.
*
* Example usage:
<pre>
// Bits used by the three tasks.
#define TASK_0_BIT ( 1 << 0 )
#define TASK_1_BIT ( 1 << 1 )
#define TASK_2_BIT ( 1 << 2 )
#define ALL_SYNC_BITS ( TASK_0_BIT | TASK_1_BIT | TASK_2_BIT )
// Use an event group to synchronise three tasks. It is assumed this event
// group has already been created elsewhere.
EventGroupHandle_t xEventBits;
void vTask0( void *pvParameters )
{
EventBits_t uxReturn;
TickType_t xTicksToWait = 100 / portTICK_PERIOD_MS;
for( ;; )
{
// Perform task functionality here.
// Set bit 0 in the event flag to note this task has reached the
// sync point. The other two tasks will set the other two bits defined
// by ALL_SYNC_BITS. All three tasks have reached the synchronisation
// point when all the ALL_SYNC_BITS are set. Wait a maximum of 100ms
// for this to happen.
uxReturn = xEventGroupSync( xEventBits, TASK_0_BIT, ALL_SYNC_BITS, xTicksToWait );
if( ( uxReturn & ALL_SYNC_BITS ) == ALL_SYNC_BITS )
{
// All three tasks reached the synchronisation point before the call
// to xEventGroupSync() timed out.
}
}
}
void vTask1( void *pvParameters )
{
for( ;; )
{
// Perform task functionality here.
// Set bit 1 in the event flag to note this task has reached the
// synchronisation point. The other two tasks will set the other two
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
// indefinitely for this to happen.
xEventGroupSync( xEventBits, TASK_1_BIT, ALL_SYNC_BITS, portMAX_DELAY );
// xEventGroupSync() was called with an indefinite block time, so
// this task will only reach here if the syncrhonisation was made by all
// three tasks, so there is no need to test the return value.
}
}
void vTask2( void *pvParameters )
{
for( ;; )
{
// Perform task functionality here.
// Set bit 2 in the event flag to note this task has reached the
// synchronisation point. The other two tasks will set the other two
// bits defined by ALL_SYNC_BITS. All three tasks have reached the
// synchronisation point when all the ALL_SYNC_BITS are set. Wait
// indefinitely for this to happen.
xEventGroupSync( xEventBits, TASK_2_BIT, ALL_SYNC_BITS, portMAX_DELAY );
// xEventGroupSync() was called with an indefinite block time, so
// this task will only reach here if the syncrhonisation was made by all
// three tasks, so there is no need to test the return value.
}
}
</pre>
* \defgroup xEventGroupSync xEventGroupSync
* \ingroup EventGroup
*/
EventBits_t xEventGroupSync( EventGroupHandle_t xEventGroup, const EventBits_t uxBitsToSet, const EventBits_t uxBitsToWaitFor, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupGetBits( EventGroupHandle_t xEventGroup );
</pre>
*
* Returns the current value of the bits in an event group. This function
* cannot be used from an interrupt.
*
* @param xEventGroup The event group being queried.
*
* @return The event group bits at the time xEventGroupGetBits() was called.
*
* \defgroup xEventGroupGetBits xEventGroupGetBits
* \ingroup EventGroup
*/
#define xEventGroupGetBits( xEventGroup ) xEventGroupClearBits( xEventGroup, 0 )
/**
* event_groups.h
*<pre>
EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup );
</pre>
*
* A version of xEventGroupGetBits() that can be called from an ISR.
*
* @param xEventGroup The event group being queried.
*
* @return The event group bits at the time xEventGroupGetBitsFromISR() was called.
*
* \defgroup xEventGroupGetBitsFromISR xEventGroupGetBitsFromISR
* \ingroup EventGroup
*/
EventBits_t xEventGroupGetBitsFromISR( EventGroupHandle_t xEventGroup );
/**
* event_groups.h
*<pre>
void xEventGroupDelete( EventGroupHandle_t xEventGroup );
</pre>
*
* Delete an event group that was previously created by a call to
* xEventGroupCreate(). Tasks that are blocked on the event group will be
* unblocked and obtain 0 as the event group's value.
*
* @param xEventGroup The event group being deleted.
*/
void vEventGroupDelete( EventGroupHandle_t xEventGroup );
/* For internal use only. */
void vEventGroupSetBitsCallback( void *pvEventGroup, const uint32_t ulBitsToSet );
void vEventGroupClearBitsCallback( void *pvEventGroup, const uint32_t ulBitsToClear );
#if (configUSE_TRACE_FACILITY == 1)
UBaseType_t uxEventGroupGetNumber( void* xEventGroup );
#endif
#ifdef __cplusplus
}
#endif
#endif /* EVENT_GROUPS_H */

View file

@ -0,0 +1,403 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*
* This is the list implementation used by the scheduler. While it is tailored
* heavily for the schedulers needs, it is also available for use by
* application code.
*
* list_ts can only store pointers to list_item_ts. Each ListItem_t contains a
* numeric value (xItemValue). Most of the time the lists are sorted in
* descending item value order.
*
* Lists are created already containing one list item. The value of this
* item is the maximum possible that can be stored, it is therefore always at
* the end of the list and acts as a marker. The list member pxHead always
* points to this marker - even though it is at the tail of the list. This
* is because the tail contains a wrap back pointer to the true head of
* the list.
*
* In addition to it's value, each list item contains a pointer to the next
* item in the list (pxNext), a pointer to the list it is in (pxContainer)
* and a pointer to back to the object that contains it. These later two
* pointers are included for efficiency of list manipulation. There is
* effectively a two way link between the object containing the list item and
* the list item itself.
*
*
* \page ListIntroduction List Implementation
* \ingroup FreeRTOSIntro
*/
#ifndef LIST_H
#define LIST_H
/*
* The list structure members are modified from within interrupts, and therefore
* by rights should be declared volatile. However, they are only modified in a
* functionally atomic way (within critical sections of with the scheduler
* suspended) and are either passed by reference into a function or indexed via
* a volatile variable. Therefore, in all use cases tested so far, the volatile
* qualifier can be omitted in order to provide a moderate performance
* improvement without adversely affecting functional behaviour. The assembly
* instructions generated by the IAR, ARM and GCC compilers when the respective
* compiler's options were set for maximum optimisation has been inspected and
* deemed to be as intended. That said, as compiler technology advances, and
* especially if aggressive cross module optimisation is used (a use case that
* has not been exercised to any great extend) then it is feasible that the
* volatile qualifier will be needed for correct optimisation. It is expected
* that a compiler removing essential code because, without the volatile
* qualifier on the list structure members and with aggressive cross module
* optimisation, the compiler deemed the code unnecessary will result in
* complete and obvious failure of the scheduler. If this is ever experienced
* then the volatile qualifier can be inserted in the relevant places within the
* list structures by simply defining configLIST_VOLATILE to volatile in
* FreeRTOSConfig.h (as per the example at the bottom of this comment block).
* If configLIST_VOLATILE is not defined then the preprocessor directives below
* will simply #define configLIST_VOLATILE away completely.
*
* To use volatile list structure members then add the following line to
* FreeRTOSConfig.h (without the quotes):
* "#define configLIST_VOLATILE volatile"
*/
#ifndef configLIST_VOLATILE
#define configLIST_VOLATILE
#endif /* configSUPPORT_CROSS_MODULE_OPTIMISATION */
#ifdef __cplusplus
extern "C" {
#endif
/*
* Definition of the only type of object that a list can contain.
*/
struct xLIST_ITEM
{
configLIST_VOLATILE TickType_t xItemValue; /*< The value being listed. In most cases this is used to sort the list in descending order. */
struct xLIST_ITEM * configLIST_VOLATILE pxNext; /*< Pointer to the next ListItem_t in the list. */
struct xLIST_ITEM * configLIST_VOLATILE pxPrevious; /*< Pointer to the previous ListItem_t in the list. */
void * pvOwner; /*< Pointer to the object (normally a TCB) that contains the list item. There is therefore a two way link between the object containing the list item and the list item itself. */
void * configLIST_VOLATILE pvContainer; /*< Pointer to the list in which this list item is placed (if any). */
};
typedef struct xLIST_ITEM ListItem_t; /* For some reason lint wants this as two separate definitions. */
struct xMINI_LIST_ITEM
{
configLIST_VOLATILE TickType_t xItemValue;
struct xLIST_ITEM * configLIST_VOLATILE pxNext;
struct xLIST_ITEM * configLIST_VOLATILE pxPrevious;
};
typedef struct xMINI_LIST_ITEM MiniListItem_t;
/*
* Definition of the type of queue used by the scheduler.
*/
typedef struct xLIST
{
configLIST_VOLATILE UBaseType_t uxNumberOfItems;
ListItem_t * configLIST_VOLATILE pxIndex; /*< Used to walk through the list. Points to the last item returned by a call to listGET_OWNER_OF_NEXT_ENTRY (). */
MiniListItem_t xListEnd; /*< List item that contains the maximum possible item value meaning it is always at the end of the list and is therefore used as a marker. */
} List_t;
/*
* Access macro to set the owner of a list item. The owner of a list item
* is the object (usually a TCB) that contains the list item.
*
* \page listSET_LIST_ITEM_OWNER listSET_LIST_ITEM_OWNER
* \ingroup LinkedList
*/
#define listSET_LIST_ITEM_OWNER( pxListItem, pxOwner ) ( ( pxListItem )->pvOwner = ( void * ) ( pxOwner ) )
/*
* Access macro to get the owner of a list item. The owner of a list item
* is the object (usually a TCB) that contains the list item.
*
* \page listSET_LIST_ITEM_OWNER listSET_LIST_ITEM_OWNER
* \ingroup LinkedList
*/
#define listGET_LIST_ITEM_OWNER( pxListItem ) ( ( pxListItem )->pvOwner )
/*
* Access macro to set the value of the list item. In most cases the value is
* used to sort the list in descending order.
*
* \page listSET_LIST_ITEM_VALUE listSET_LIST_ITEM_VALUE
* \ingroup LinkedList
*/
#define listSET_LIST_ITEM_VALUE( pxListItem, xValue ) ( ( pxListItem )->xItemValue = ( xValue ) )
/*
* Access macro to retrieve the value of the list item. The value can
* represent anything - for example the priority of a task, or the time at
* which a task should be unblocked.
*
* \page listGET_LIST_ITEM_VALUE listGET_LIST_ITEM_VALUE
* \ingroup LinkedList
*/
#define listGET_LIST_ITEM_VALUE( pxListItem ) ( ( pxListItem )->xItemValue )
/*
* Access macro to retrieve the value of the list item at the head of a given
* list.
*
* \page listGET_LIST_ITEM_VALUE listGET_LIST_ITEM_VALUE
* \ingroup LinkedList
*/
#define listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext->xItemValue )
/*
* Return the list item at the head of the list.
*
* \page listGET_HEAD_ENTRY listGET_HEAD_ENTRY
* \ingroup LinkedList
*/
#define listGET_HEAD_ENTRY( pxList ) ( ( ( pxList )->xListEnd ).pxNext )
/*
* Return the list item at the head of the list.
*
* \page listGET_NEXT listGET_NEXT
* \ingroup LinkedList
*/
#define listGET_NEXT( pxListItem ) ( ( pxListItem )->pxNext )
/*
* Return the list item that marks the end of the list
*
* \page listGET_END_MARKER listGET_END_MARKER
* \ingroup LinkedList
*/
#define listGET_END_MARKER( pxList ) ( ( ListItem_t const * ) ( &( ( pxList )->xListEnd ) ) )
/*
* Access macro to determine if a list contains any items. The macro will
* only have the value true if the list is empty.
*
* \page listLIST_IS_EMPTY listLIST_IS_EMPTY
* \ingroup LinkedList
*/
#define listLIST_IS_EMPTY( pxList ) ( ( BaseType_t ) ( ( pxList )->uxNumberOfItems == ( UBaseType_t ) 0 ) )
/*
* Access macro to return the number of items in the list.
*/
#define listCURRENT_LIST_LENGTH( pxList ) ( ( pxList )->uxNumberOfItems )
/*
* Access function to obtain the owner of the next entry in a list.
*
* The list member pxIndex is used to walk through a list. Calling
* listGET_OWNER_OF_NEXT_ENTRY increments pxIndex to the next item in the list
* and returns that entry's pxOwner parameter. Using multiple calls to this
* function it is therefore possible to move through every item contained in
* a list.
*
* The pxOwner parameter of a list item is a pointer to the object that owns
* the list item. In the scheduler this is normally a task control block.
* The pxOwner parameter effectively creates a two way link between the list
* item and its owner.
*
* @param pxTCB pxTCB is set to the address of the owner of the next list item.
* @param pxList The list from which the next item owner is to be returned.
*
* \page listGET_OWNER_OF_NEXT_ENTRY listGET_OWNER_OF_NEXT_ENTRY
* \ingroup LinkedList
*/
#define listGET_OWNER_OF_NEXT_ENTRY( pxTCB, pxList ) \
{ \
List_t * const pxConstList = ( pxList ); \
/* Increment the index to the next item and return the item, ensuring */ \
/* we don't return the marker used at the end of the list. */ \
( pxConstList )->pxIndex = ( pxConstList )->pxIndex->pxNext; \
if( ( void * ) ( pxConstList )->pxIndex == ( void * ) &( ( pxConstList )->xListEnd ) ) \
{ \
( pxConstList )->pxIndex = ( pxConstList )->pxIndex->pxNext; \
} \
( pxTCB ) = ( pxConstList )->pxIndex->pvOwner; \
}
/*
* Access function to obtain the owner of the first entry in a list. Lists
* are normally sorted in ascending item value order.
*
* This function returns the pxOwner member of the first item in the list.
* The pxOwner parameter of a list item is a pointer to the object that owns
* the list item. In the scheduler this is normally a task control block.
* The pxOwner parameter effectively creates a two way link between the list
* item and its owner.
*
* @param pxList The list from which the owner of the head item is to be
* returned.
*
* \page listGET_OWNER_OF_HEAD_ENTRY listGET_OWNER_OF_HEAD_ENTRY
* \ingroup LinkedList
*/
#define listGET_OWNER_OF_HEAD_ENTRY( pxList ) ( (&( ( pxList )->xListEnd ))->pxNext->pvOwner )
/*
* Check to see if a list item is within a list. The list item maintains a
* "container" pointer that points to the list it is in. All this macro does
* is check to see if the container and the list match.
*
* @param pxList The list we want to know if the list item is within.
* @param pxListItem The list item we want to know if is in the list.
* @return pdTRUE if the list item is in the list, otherwise pdFALSE.
*/
#define listIS_CONTAINED_WITHIN( pxList, pxListItem ) ( ( BaseType_t ) ( ( pxListItem )->pvContainer == ( void * ) ( pxList ) ) )
/*
* Return the list a list item is contained within (referenced from).
*
* @param pxListItem The list item being queried.
* @return A pointer to the List_t object that references the pxListItem
*/
#define listLIST_ITEM_CONTAINER( pxListItem ) ( ( pxListItem )->pvContainer )
/*
* This provides a crude means of knowing if a list has been initialised, as
* pxList->xListEnd.xItemValue is set to portMAX_DELAY by the vListInitialise()
* function.
*/
#define listLIST_IS_INITIALISED( pxList ) ( ( pxList )->xListEnd.xItemValue == portMAX_DELAY )
/*
* Must be called before a list is used! This initialises all the members
* of the list structure and inserts the xListEnd item into the list as a
* marker to the back of the list.
*
* @param pxList Pointer to the list being initialised.
*
* \page vListInitialise vListInitialise
* \ingroup LinkedList
*/
void vListInitialise( List_t * const pxList );
/*
* Must be called before a list item is used. This sets the list container to
* null so the item does not think that it is already contained in a list.
*
* @param pxItem Pointer to the list item being initialised.
*
* \page vListInitialiseItem vListInitialiseItem
* \ingroup LinkedList
*/
void vListInitialiseItem( ListItem_t * const pxItem );
/*
* Insert a list item into a list. The item will be inserted into the list in
* a position determined by its item value (descending item value order).
*
* @param pxList The list into which the item is to be inserted.
*
* @param pxNewListItem The item that is to be placed in the list.
*
* \page vListInsert vListInsert
* \ingroup LinkedList
*/
void vListInsert( List_t * const pxList, ListItem_t * const pxNewListItem );
/*
* Insert a list item into a list. The item will be inserted in a position
* such that it will be the last item within the list returned by multiple
* calls to listGET_OWNER_OF_NEXT_ENTRY.
*
* The list member pvIndex is used to walk through a list. Calling
* listGET_OWNER_OF_NEXT_ENTRY increments pvIndex to the next item in the list.
* Placing an item in a list using vListInsertEnd effectively places the item
* in the list position pointed to by pvIndex. This means that every other
* item within the list will be returned by listGET_OWNER_OF_NEXT_ENTRY before
* the pvIndex parameter again points to the item being inserted.
*
* @param pxList The list into which the item is to be inserted.
*
* @param pxNewListItem The list item to be inserted into the list.
*
* \page vListInsertEnd vListInsertEnd
* \ingroup LinkedList
*/
void vListInsertEnd( List_t * const pxList, ListItem_t * const pxNewListItem );
/*
* Remove an item from a list. The list item has a pointer to the list that
* it is in, so only the list item need be passed into the function.
*
* @param uxListRemove The item to be removed. The item will remove itself from
* the list pointed to by it's pxContainer parameter.
*
* @return The number of items that remain in the list after the list item has
* been removed.
*
* \page uxListRemove uxListRemove
* \ingroup LinkedList
*/
UBaseType_t uxListRemove( ListItem_t * const pxItemToRemove );
#ifdef __cplusplus
}
#endif
#endif

View file

@ -0,0 +1,153 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef MPU_WRAPPERS_H
#define MPU_WRAPPERS_H
/* This file redefines API functions to be called through a wrapper macro, but
only for ports that are using the MPU. */
#ifdef portUSING_MPU_WRAPPERS
/* MPU_WRAPPERS_INCLUDED_FROM_API_FILE will be defined when this file is
included from queue.c or task.c to prevent it from having an effect within
those files. */
#ifndef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
#define xTaskGenericCreate MPU_xTaskGenericCreate
#define vTaskAllocateMPURegions MPU_vTaskAllocateMPURegions
#define vTaskDelete MPU_vTaskDelete
#define vTaskDelayUntil MPU_vTaskDelayUntil
#define vTaskDelay MPU_vTaskDelay
#define uxTaskPriorityGet MPU_uxTaskPriorityGet
#define vTaskPrioritySet MPU_vTaskPrioritySet
#define eTaskGetState MPU_eTaskGetState
#define vTaskSuspend MPU_vTaskSuspend
#define vTaskResume MPU_vTaskResume
#define vTaskSuspendAll MPU_vTaskSuspendAll
#define xTaskResumeAll MPU_xTaskResumeAll
#define xTaskGetTickCount MPU_xTaskGetTickCount
#define uxTaskGetNumberOfTasks MPU_uxTaskGetNumberOfTasks
#define vTaskList MPU_vTaskList
#define vTaskGetRunTimeStats MPU_vTaskGetRunTimeStats
#define vTaskSetApplicationTaskTag MPU_vTaskSetApplicationTaskTag
#define xTaskGetApplicationTaskTag MPU_xTaskGetApplicationTaskTag
#define xTaskCallApplicationTaskHook MPU_xTaskCallApplicationTaskHook
#define uxTaskGetStackHighWaterMark MPU_uxTaskGetStackHighWaterMark
#define xTaskGetCurrentTaskHandle MPU_xTaskGetCurrentTaskHandle
#define xTaskGetSchedulerState MPU_xTaskGetSchedulerState
#define xTaskGetIdleTaskHandle MPU_xTaskGetIdleTaskHandle
#define uxTaskGetSystemState MPU_uxTaskGetSystemState
#define xQueueGenericCreate MPU_xQueueGenericCreate
#define xQueueCreateMutex MPU_xQueueCreateMutex
#define xQueueGiveMutexRecursive MPU_xQueueGiveMutexRecursive
#define xQueueTakeMutexRecursive MPU_xQueueTakeMutexRecursive
#define xQueueCreateCountingSemaphore MPU_xQueueCreateCountingSemaphore
#define xQueueGenericSend MPU_xQueueGenericSend
#define xQueueAltGenericSend MPU_xQueueAltGenericSend
#define xQueueAltGenericReceive MPU_xQueueAltGenericReceive
#define xQueueGenericReceive MPU_xQueueGenericReceive
#define uxQueueMessagesWaiting MPU_uxQueueMessagesWaiting
#define vQueueDelete MPU_vQueueDelete
#define xQueueGenericReset MPU_xQueueGenericReset
#define xQueueCreateSet MPU_xQueueCreateSet
#define xQueueSelectFromSet MPU_xQueueSelectFromSet
#define xQueueAddToSet MPU_xQueueAddToSet
#define xQueueRemoveFromSet MPU_xQueueRemoveFromSet
#define xQueuePeekFromISR MPU_xQueuePeekFromISR
#define xQueueGetMutexHolder MPU_xQueueGetMutexHolder
#define pvPortMalloc MPU_pvPortMalloc
#define vPortFree MPU_vPortFree
#define xPortGetFreeHeapSize MPU_xPortGetFreeHeapSize
#define vPortInitialiseBlocks MPU_vPortInitialiseBlocks
#if configQUEUE_REGISTRY_SIZE > 0
#define vQueueAddToRegistry MPU_vQueueAddToRegistry
#define vQueueUnregisterQueue MPU_vQueueUnregisterQueue
#endif
/* Remove the privileged function macro. */
#define PRIVILEGED_FUNCTION
#else /* MPU_WRAPPERS_INCLUDED_FROM_API_FILE */
/* Ensure API functions go in the privileged execution section. */
#define PRIVILEGED_FUNCTION __attribute__((section("privileged_functions")))
#define PRIVILEGED_DATA __attribute__((section("privileged_data")))
#endif /* MPU_WRAPPERS_INCLUDED_FROM_API_FILE */
#else /* portUSING_MPU_WRAPPERS */
#define PRIVILEGED_FUNCTION
#define PRIVILEGED_DATA
#define portUSING_MPU_WRAPPERS 0
#endif /* portUSING_MPU_WRAPPERS */
#endif /* MPU_WRAPPERS_H */

View file

@ -0,0 +1,426 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
/*-----------------------------------------------------------
* Portable layer API. Each function must be defined for each port.
*----------------------------------------------------------*/
#ifndef PORTABLE_H
#define PORTABLE_H
/* Include the macro file relevant to the port being used.
NOTE: The following definitions are *DEPRECATED* as it is preferred to instead
just add the path to the correct portmacro.h header file to the compiler's
include path. */
#ifdef OPEN_WATCOM_INDUSTRIAL_PC_PORT
#include "..\..\Source\portable\owatcom\16bitdos\pc\portmacro.h"
typedef void ( __interrupt __far *pxISR )();
#endif
#ifdef OPEN_WATCOM_FLASH_LITE_186_PORT
#include "..\..\Source\portable\owatcom\16bitdos\flsh186\portmacro.h"
typedef void ( __interrupt __far *pxISR )();
#endif
#ifdef GCC_MEGA_AVR
#include "../portable/GCC/ATMega323/portmacro.h"
#endif
#ifdef IAR_MEGA_AVR
#include "../portable/IAR/ATMega323/portmacro.h"
#endif
#ifdef MPLAB_PIC24_PORT
#include "../../Source/portable/MPLAB/PIC24_dsPIC/portmacro.h"
#endif
#ifdef MPLAB_DSPIC_PORT
#include "../../Source/portable/MPLAB/PIC24_dsPIC/portmacro.h"
#endif
#ifdef MPLAB_PIC18F_PORT
#include "../../Source/portable/MPLAB/PIC18F/portmacro.h"
#endif
#ifdef MPLAB_PIC32MX_PORT
#include "../../Source/portable/MPLAB/PIC32MX/portmacro.h"
#endif
#ifdef _FEDPICC
#include "libFreeRTOS/Include/portmacro.h"
#endif
#ifdef SDCC_CYGNAL
#include "../../Source/portable/SDCC/Cygnal/portmacro.h"
#endif
#ifdef GCC_ARM7
#include "../../Source/portable/GCC/ARM7_LPC2000/portmacro.h"
#endif
#ifdef GCC_ARM7_ECLIPSE
#include "portmacro.h"
#endif
#ifdef ROWLEY_LPC23xx
#include "../../Source/portable/GCC/ARM7_LPC23xx/portmacro.h"
#endif
#ifdef IAR_MSP430
#include "..\..\Source\portable\IAR\MSP430\portmacro.h"
#endif
#ifdef GCC_MSP430
#include "../../Source/portable/GCC/MSP430F449/portmacro.h"
#endif
#ifdef ROWLEY_MSP430
#include "../../Source/portable/Rowley/MSP430F449/portmacro.h"
#endif
#ifdef ARM7_LPC21xx_KEIL_RVDS
#include "..\..\Source\portable\RVDS\ARM7_LPC21xx\portmacro.h"
#endif
#ifdef SAM7_GCC
#include "../../Source/portable/GCC/ARM7_AT91SAM7S/portmacro.h"
#endif
#ifdef SAM7_IAR
#include "..\..\Source\portable\IAR\AtmelSAM7S64\portmacro.h"
#endif
#ifdef SAM9XE_IAR
#include "..\..\Source\portable\IAR\AtmelSAM9XE\portmacro.h"
#endif
#ifdef LPC2000_IAR
#include "..\..\Source\portable\IAR\LPC2000\portmacro.h"
#endif
#ifdef STR71X_IAR
#include "..\..\Source\portable\IAR\STR71x\portmacro.h"
#endif
#ifdef STR75X_IAR
#include "..\..\Source\portable\IAR\STR75x\portmacro.h"
#endif
#ifdef STR75X_GCC
#include "..\..\Source\portable\GCC\STR75x\portmacro.h"
#endif
#ifdef STR91X_IAR
#include "..\..\Source\portable\IAR\STR91x\portmacro.h"
#endif
#ifdef GCC_H8S
#include "../../Source/portable/GCC/H8S2329/portmacro.h"
#endif
#ifdef GCC_AT91FR40008
#include "../../Source/portable/GCC/ARM7_AT91FR40008/portmacro.h"
#endif
#ifdef RVDS_ARMCM3_LM3S102
#include "../../Source/portable/RVDS/ARM_CM3/portmacro.h"
#endif
#ifdef GCC_ARMCM3_LM3S102
#include "../../Source/portable/GCC/ARM_CM3/portmacro.h"
#endif
#ifdef GCC_ARMCM3
#include "../../Source/portable/GCC/ARM_CM3/portmacro.h"
#endif
#ifdef IAR_ARM_CM3
#include "../../Source/portable/IAR/ARM_CM3/portmacro.h"
#endif
#ifdef IAR_ARMCM3_LM
#include "../../Source/portable/IAR/ARM_CM3/portmacro.h"
#endif
#ifdef HCS12_CODE_WARRIOR
#include "../../Source/portable/CodeWarrior/HCS12/portmacro.h"
#endif
#ifdef MICROBLAZE_GCC
#include "../../Source/portable/GCC/MicroBlaze/portmacro.h"
#endif
#ifdef TERN_EE
#include "..\..\Source\portable\Paradigm\Tern_EE\small\portmacro.h"
#endif
#ifdef GCC_HCS12
#include "../../Source/portable/GCC/HCS12/portmacro.h"
#endif
#ifdef GCC_MCF5235
#include "../../Source/portable/GCC/MCF5235/portmacro.h"
#endif
#ifdef COLDFIRE_V2_GCC
#include "../../../Source/portable/GCC/ColdFire_V2/portmacro.h"
#endif
#ifdef COLDFIRE_V2_CODEWARRIOR
#include "../../Source/portable/CodeWarrior/ColdFire_V2/portmacro.h"
#endif
#ifdef GCC_PPC405
#include "../../Source/portable/GCC/PPC405_Xilinx/portmacro.h"
#endif
#ifdef GCC_PPC440
#include "../../Source/portable/GCC/PPC440_Xilinx/portmacro.h"
#endif
#ifdef _16FX_SOFTUNE
#include "..\..\Source\portable\Softune\MB96340\portmacro.h"
#endif
#ifdef BCC_INDUSTRIAL_PC_PORT
/* A short file name has to be used in place of the normal
FreeRTOSConfig.h when using the Borland compiler. */
#include "frconfig.h"
#include "..\portable\BCC\16BitDOS\PC\prtmacro.h"
typedef void ( __interrupt __far *pxISR )();
#endif
#ifdef BCC_FLASH_LITE_186_PORT
/* A short file name has to be used in place of the normal
FreeRTOSConfig.h when using the Borland compiler. */
#include "frconfig.h"
#include "..\portable\BCC\16BitDOS\flsh186\prtmacro.h"
typedef void ( __interrupt __far *pxISR )();
#endif
#ifdef __GNUC__
#ifdef __AVR32_AVR32A__
#include "portmacro.h"
#endif
#endif
#ifdef __ICCAVR32__
#ifdef __CORE__
#if __CORE__ == __AVR32A__
#include "portmacro.h"
#endif
#endif
#endif
#ifdef __91467D
#include "portmacro.h"
#endif
#ifdef __96340
#include "portmacro.h"
#endif
#ifdef __IAR_V850ES_Fx3__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_V850ES_Jx3__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_V850ES_Jx3_L__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_V850ES_Jx2__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_V850ES_Hx2__
#include "../../Source/portable/IAR/V850ES/portmacro.h"
#endif
#ifdef __IAR_78K0R_Kx3__
#include "../../Source/portable/IAR/78K0R/portmacro.h"
#endif
#ifdef __IAR_78K0R_Kx3L__
#include "../../Source/portable/IAR/78K0R/portmacro.h"
#endif
/* Catch all to ensure portmacro.h is included in the build. Newer demos
have the path as part of the project options, rather than as relative from
the project location. If portENTER_CRITICAL() has not been defined then
portmacro.h has not yet been included - as every portmacro.h provides a
portENTER_CRITICAL() definition. Check the demo application for your demo
to find the path to the correct portmacro.h file. */
#ifndef portENTER_CRITICAL
#include "portmacro.h"
#endif
#if portBYTE_ALIGNMENT == 8
#define portBYTE_ALIGNMENT_MASK ( 0x0007U )
#endif
#if portBYTE_ALIGNMENT == 4
#define portBYTE_ALIGNMENT_MASK ( 0x0003 )
#endif
#if portBYTE_ALIGNMENT == 2
#define portBYTE_ALIGNMENT_MASK ( 0x0001 )
#endif
#if portBYTE_ALIGNMENT == 1
#define portBYTE_ALIGNMENT_MASK ( 0x0000 )
#endif
#ifndef portBYTE_ALIGNMENT_MASK
#error "Invalid portBYTE_ALIGNMENT definition"
#endif
#ifndef portNUM_CONFIGURABLE_REGIONS
#define portNUM_CONFIGURABLE_REGIONS 1
#endif
#ifdef __cplusplus
extern "C" {
#endif
#include "mpu_wrappers.h"
/*
* Setup the stack of a new task so it is ready to be placed under the
* scheduler control. The registers have to be placed on the stack in
* the order that the port expects to find them.
*
*/
#if( portUSING_MPU_WRAPPERS == 1 )
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged ) PRIVILEGED_FUNCTION;
#else
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters ) PRIVILEGED_FUNCTION;
#endif
/* Used by heap_5.c. */
typedef struct HeapRegion
{
uint8_t *pucStartAddress;
size_t xSizeInBytes;
} HeapRegion_t;
/*
* Used to define multiple heap regions for use by heap_5.c. This function
* must be called before any calls to pvPortMalloc() - not creating a task,
* queue, semaphore, mutex, software timer, event group, etc. will result in
* pvPortMalloc being called.
*
* pxHeapRegions passes in an array of HeapRegion_t structures - each of which
* defines a region of memory that can be used as the heap. The array is
* terminated by a HeapRegions_t structure that has a size of 0. The region
* with the lowest start address must appear first in the array.
*/
void vPortDefineHeapRegions( const HeapRegion_t * const pxHeapRegions );
/*
* Map to the memory management routines required for the port.
*/
void *pvPortMalloc( size_t xSize ) PRIVILEGED_FUNCTION;
void vPortFree( void *pv ) PRIVILEGED_FUNCTION;
void vPortInitialiseBlocks( void ) PRIVILEGED_FUNCTION;
size_t xPortGetFreeHeapSize( void ) PRIVILEGED_FUNCTION;
size_t xPortGetMinimumEverFreeHeapSize( void ) PRIVILEGED_FUNCTION;
/*
* Setup the hardware ready for the scheduler to take control. This generally
* sets up a tick interrupt and sets timers for the correct tick frequency.
*/
BaseType_t xPortStartScheduler( void ) PRIVILEGED_FUNCTION;
/*
* Undo any hardware/ISR setup that was performed by xPortStartScheduler() so
* the hardware is left in its original condition after the scheduler stops
* executing.
*/
void vPortEndScheduler( void ) PRIVILEGED_FUNCTION;
/*
* The structures and methods of manipulating the MPU are contained within the
* port layer.
*
* Fills the xMPUSettings structure with the memory region information
* contained in xRegions.
*/
#if( portUSING_MPU_WRAPPERS == 1 )
struct xMEMORY_REGION;
void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION * const xRegions, StackType_t *pxBottomOfStack, uint16_t usStackDepth ) PRIVILEGED_FUNCTION;
#endif
#ifdef __cplusplus
}
#endif
#endif /* PORTABLE_H */

View file

@ -0,0 +1,94 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PROJDEFS_H
#define PROJDEFS_H
/*
* Defines the prototype to which task functions must conform. Defined in this
* file to ensure the type is known before portable.h is included.
*/
typedef void (*TaskFunction_t)( void * );
/* Converts a time in milliseconds to a time in ticks. */
#define pdMS_TO_TICKS( xTimeInMs ) ( ( ( TickType_t ) ( xTimeInMs ) * configTICK_RATE_HZ ) / ( TickType_t ) 1000 )
#define pdFALSE ( ( BaseType_t ) 0 )
#define pdTRUE ( ( BaseType_t ) 1 )
#define pdPASS ( pdTRUE )
#define pdFAIL ( pdFALSE )
#define errQUEUE_EMPTY ( ( BaseType_t ) 0 )
#define errQUEUE_FULL ( ( BaseType_t ) 0 )
/* Error definitions. */
#define errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY ( -1 )
#define errQUEUE_BLOCKED ( -4 )
#define errQUEUE_YIELD ( -5 )
#endif /* PROJDEFS_H */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,840 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef SEMAPHORE_H
#define SEMAPHORE_H
#ifndef INC_FREERTOS_H
#error "include FreeRTOS.h" must appear in source files before "include semphr.h"
#endif
#include "queue.h"
typedef QueueHandle_t SemaphoreHandle_t;
#define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( uint8_t ) 1U )
#define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( uint8_t ) 0U )
#define semGIVE_BLOCK_TIME ( ( TickType_t ) 0U )
/**
* semphr. h
* <pre>vSemaphoreCreateBinary( SemaphoreHandle_t xSemaphore )</pre>
*
* This old vSemaphoreCreateBinary() macro is now deprecated in favour of the
* xSemaphoreCreateBinary() function. Note that binary semaphores created using
* the vSemaphoreCreateBinary() macro are created in a state such that the
* first call to 'take' the semaphore would pass, whereas binary semaphores
* created using xSemaphoreCreateBinary() are created in a state such that the
* the semaphore must first be 'given' before it can be 'taken'.
*
* <i>Macro</i> that implements a semaphore by using the existing queue mechanism.
* The queue length is 1 as this is a binary semaphore. The data size is 0
* as we don't want to actually store any data - we just want to know if the
* queue is empty or full.
*
* This type of semaphore can be used for pure synchronisation between tasks or
* between an interrupt and a task. The semaphore need not be given back once
* obtained, so one task/interrupt can continuously 'give' the semaphore while
* another continuously 'takes' the semaphore. For this reason this type of
* semaphore does not use a priority inheritance mechanism. For an alternative
* that does use priority inheritance see xSemaphoreCreateMutex().
*
* @param xSemaphore Handle to the created semaphore. Should be of type SemaphoreHandle_t.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore = NULL;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
// This is a macro so pass the variable in directly.
vSemaphoreCreateBinary( xSemaphore );
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
* \ingroup Semaphores
*/
#define vSemaphoreCreateBinary( xSemaphore ) \
{ \
( xSemaphore ) = xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ); \
if( ( xSemaphore ) != NULL ) \
{ \
( void ) xSemaphoreGive( ( xSemaphore ) ); \
} \
}
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateBinary( void )</pre>
*
* The old vSemaphoreCreateBinary() macro is now deprecated in favour of this
* xSemaphoreCreateBinary() function. Note that binary semaphores created using
* the vSemaphoreCreateBinary() macro are created in a state such that the
* first call to 'take' the semaphore would pass, whereas binary semaphores
* created using xSemaphoreCreateBinary() are created in a state such that the
* the semaphore must first be 'given' before it can be 'taken'.
*
* Function that creates a semaphore by using the existing queue mechanism.
* The queue length is 1 as this is a binary semaphore. The data size is 0
* as nothing is actually stored - all that is important is whether the queue is
* empty or full (the binary semaphore is available or not).
*
* This type of semaphore can be used for pure synchronisation between tasks or
* between an interrupt and a task. The semaphore need not be given back once
* obtained, so one task/interrupt can continuously 'give' the semaphore while
* another continuously 'takes' the semaphore. For this reason this type of
* semaphore does not use a priority inheritance mechanism. For an alternative
* that does use priority inheritance see xSemaphoreCreateMutex().
*
* @return Handle to the created semaphore.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore = NULL;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to vSemaphoreCreateBinary ().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateBinary();
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary
* \ingroup Semaphores
*/
#define xSemaphoreCreateBinary() xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE )
/**
* semphr. h
* <pre>xSemaphoreTake(
* SemaphoreHandle_t xSemaphore,
* TickType_t xBlockTime
* )</pre>
*
* <i>Macro</i> to obtain a semaphore. The semaphore must have previously been
* created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
* xSemaphoreCreateCounting().
*
* @param xSemaphore A handle to the semaphore being taken - obtained when
* the semaphore was created.
*
* @param xBlockTime The time in ticks to wait for the semaphore to become
* available. The macro portTICK_PERIOD_MS can be used to convert this to a
* real time. A block time of zero can be used to poll the semaphore. A block
* time of portMAX_DELAY can be used to block indefinitely (provided
* INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h).
*
* @return pdTRUE if the semaphore was obtained. pdFALSE
* if xBlockTime expired without the semaphore becoming available.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore = NULL;
// A task that creates a semaphore.
void vATask( void * pvParameters )
{
// Create the semaphore to guard a shared resource.
vSemaphoreCreateBinary( xSemaphore );
}
// A task that uses the semaphore.
void vAnotherTask( void * pvParameters )
{
// ... Do other things.
if( xSemaphore != NULL )
{
// See if we can obtain the semaphore. If the semaphore is not available
// wait 10 ticks to see if it becomes free.
if( xSemaphoreTake( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
{
// We were able to obtain the semaphore and can now access the
// shared resource.
// ...
// We have finished accessing the shared resource. Release the
// semaphore.
xSemaphoreGive( xSemaphore );
}
else
{
// We could not obtain the semaphore and can therefore not access
// the shared resource safely.
}
}
}
</pre>
* \defgroup xSemaphoreTake xSemaphoreTake
* \ingroup Semaphores
*/
#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
/**
* semphr. h
* xSemaphoreTakeRecursive(
* SemaphoreHandle_t xMutex,
* TickType_t xBlockTime
* )
*
* <i>Macro</i> to recursively obtain, or 'take', a mutex type semaphore.
* The mutex must have previously been created using a call to
* xSemaphoreCreateRecursiveMutex();
*
* configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
* macro to be available.
*
* This macro must not be used on mutexes created using xSemaphoreCreateMutex().
*
* A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
* doesn't become available again until the owner has called
* xSemaphoreGiveRecursive() for each successful 'take' request. For example,
* if a task successfully 'takes' the same mutex 5 times then the mutex will
* not be available to any other task until it has also 'given' the mutex back
* exactly five times.
*
* @param xMutex A handle to the mutex being obtained. This is the
* handle returned by xSemaphoreCreateRecursiveMutex();
*
* @param xBlockTime The time in ticks to wait for the semaphore to become
* available. The macro portTICK_PERIOD_MS can be used to convert this to a
* real time. A block time of zero can be used to poll the semaphore. If
* the task already owns the semaphore then xSemaphoreTakeRecursive() will
* return immediately no matter what the value of xBlockTime.
*
* @return pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime
* expired without the semaphore becoming available.
*
* Example usage:
<pre>
SemaphoreHandle_t xMutex = NULL;
// A task that creates a mutex.
void vATask( void * pvParameters )
{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();
}
// A task that uses the mutex.
void vAnotherTask( void * pvParameters )
{
// ... Do other things.
if( xMutex != NULL )
{
// See if we can obtain the mutex. If the mutex is not available
// wait 10 ticks to see if it becomes free.
if( xSemaphoreTakeRecursive( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
{
// We were able to obtain the mutex and can now access the
// shared resource.
// ...
// For some reason due to the nature of the code further calls to
// xSemaphoreTakeRecursive() are made on the same mutex. In real
// code these would not be just sequential calls as this would make
// no sense. Instead the calls are likely to be buried inside
// a more complex call structure.
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
// The mutex has now been 'taken' three times, so will not be
// available to another task until it has also been given back
// three times. Again it is unlikely that real code would have
// these calls sequentially, but instead buried in a more complex
// call structure. This is just for illustrative purposes.
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
// Now the mutex can be taken by other tasks.
}
else
{
// We could not obtain the mutex and can therefore not access
// the shared resource safely.
}
}
}
</pre>
* \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive
* \ingroup Semaphores
*/
#define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) )
/*
* xSemaphoreAltTake() is an alternative version of xSemaphoreTake().
*
* The source code that implements the alternative (Alt) API is much
* simpler because it executes everything from within a critical section.
* This is the approach taken by many other RTOSes, but FreeRTOS.org has the
* preferred fully featured API too. The fully featured API has more
* complex code that takes longer to execute, but makes much less use of
* critical sections. Therefore the alternative API sacrifices interrupt
* responsiveness to gain execution speed, whereas the fully featured API
* sacrifices execution speed to ensure better interrupt responsiveness.
*/
#define xSemaphoreAltTake( xSemaphore, xBlockTime ) xQueueAltGenericReceive( ( QueueHandle_t ) ( xSemaphore ), NULL, ( xBlockTime ), pdFALSE )
/**
* semphr. h
* <pre>xSemaphoreGive( SemaphoreHandle_t xSemaphore )</pre>
*
* <i>Macro</i> to release a semaphore. The semaphore must have previously been
* created with a call to vSemaphoreCreateBinary(), xSemaphoreCreateMutex() or
* xSemaphoreCreateCounting(). and obtained using sSemaphoreTake().
*
* This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for
* an alternative which can be used from an ISR.
*
* This macro must also not be used on semaphores created using
* xSemaphoreCreateRecursiveMutex().
*
* @param xSemaphore A handle to the semaphore being released. This is the
* handle returned when the semaphore was created.
*
* @return pdTRUE if the semaphore was released. pdFALSE if an error occurred.
* Semaphores are implemented using queues. An error can occur if there is
* no space on the queue to post a message - indicating that the
* semaphore was not first obtained correctly.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore = NULL;
void vATask( void * pvParameters )
{
// Create the semaphore to guard a shared resource.
vSemaphoreCreateBinary( xSemaphore );
if( xSemaphore != NULL )
{
if( xSemaphoreGive( xSemaphore ) != pdTRUE )
{
// We would expect this call to fail because we cannot give
// a semaphore without first "taking" it!
}
// Obtain the semaphore - don't block if the semaphore is not
// immediately available.
if( xSemaphoreTake( xSemaphore, ( TickType_t ) 0 ) )
{
// We now have the semaphore and can access the shared resource.
// ...
// We have finished accessing the shared resource so can free the
// semaphore.
if( xSemaphoreGive( xSemaphore ) != pdTRUE )
{
// We would not expect this call to fail because we must have
// obtained the semaphore to get here.
}
}
}
}
</pre>
* \defgroup xSemaphoreGive xSemaphoreGive
* \ingroup Semaphores
*/
#define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
/**
* semphr. h
* <pre>xSemaphoreGiveRecursive( SemaphoreHandle_t xMutex )</pre>
*
* <i>Macro</i> to recursively release, or 'give', a mutex type semaphore.
* The mutex must have previously been created using a call to
* xSemaphoreCreateRecursiveMutex();
*
* configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this
* macro to be available.
*
* This macro must not be used on mutexes created using xSemaphoreCreateMutex().
*
* A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
* doesn't become available again until the owner has called
* xSemaphoreGiveRecursive() for each successful 'take' request. For example,
* if a task successfully 'takes' the same mutex 5 times then the mutex will
* not be available to any other task until it has also 'given' the mutex back
* exactly five times.
*
* @param xMutex A handle to the mutex being released, or 'given'. This is the
* handle returned by xSemaphoreCreateMutex();
*
* @return pdTRUE if the semaphore was given.
*
* Example usage:
<pre>
SemaphoreHandle_t xMutex = NULL;
// A task that creates a mutex.
void vATask( void * pvParameters )
{
// Create the mutex to guard a shared resource.
xMutex = xSemaphoreCreateRecursiveMutex();
}
// A task that uses the mutex.
void vAnotherTask( void * pvParameters )
{
// ... Do other things.
if( xMutex != NULL )
{
// See if we can obtain the mutex. If the mutex is not available
// wait 10 ticks to see if it becomes free.
if( xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ) == pdTRUE )
{
// We were able to obtain the mutex and can now access the
// shared resource.
// ...
// For some reason due to the nature of the code further calls to
// xSemaphoreTakeRecursive() are made on the same mutex. In real
// code these would not be just sequential calls as this would make
// no sense. Instead the calls are likely to be buried inside
// a more complex call structure.
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 );
// The mutex has now been 'taken' three times, so will not be
// available to another task until it has also been given back
// three times. Again it is unlikely that real code would have
// these calls sequentially, it would be more likely that the calls
// to xSemaphoreGiveRecursive() would be called as a call stack
// unwound. This is just for demonstrative purposes.
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
xSemaphoreGiveRecursive( xMutex );
// Now the mutex can be taken by other tasks.
}
else
{
// We could not obtain the mutex and can therefore not access
// the shared resource safely.
}
}
}
</pre>
* \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive
* \ingroup Semaphores
*/
#define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( ( xMutex ) )
/*
* xSemaphoreAltGive() is an alternative version of xSemaphoreGive().
*
* The source code that implements the alternative (Alt) API is much
* simpler because it executes everything from within a critical section.
* This is the approach taken by many other RTOSes, but FreeRTOS.org has the
* preferred fully featured API too. The fully featured API has more
* complex code that takes longer to execute, but makes much less use of
* critical sections. Therefore the alternative API sacrifices interrupt
* responsiveness to gain execution speed, whereas the fully featured API
* sacrifices execution speed to ensure better interrupt responsiveness.
*/
#define xSemaphoreAltGive( xSemaphore ) xQueueAltGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK )
/**
* semphr. h
* <pre>
xSemaphoreGiveFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
)</pre>
*
* <i>Macro</i> to release a semaphore. The semaphore must have previously been
* created with a call to vSemaphoreCreateBinary() or xSemaphoreCreateCounting().
*
* Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
* must not be used with this macro.
*
* This macro can be used from an ISR.
*
* @param xSemaphore A handle to the semaphore being released. This is the
* handle returned when the semaphore was created.
*
* @param pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if giving the semaphore caused a task
* to unblock, and the unblocked task has a priority higher than the currently
* running task. If xSemaphoreGiveFromISR() sets this value to pdTRUE then
* a context switch should be requested before the interrupt is exited.
*
* @return pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL.
*
* Example usage:
<pre>
\#define LONG_TIME 0xffff
\#define TICKS_TO_WAIT 10
SemaphoreHandle_t xSemaphore = NULL;
// Repetitive task.
void vATask( void * pvParameters )
{
for( ;; )
{
// We want this task to run every 10 ticks of a timer. The semaphore
// was created before this task was started.
// Block waiting for the semaphore to become available.
if( xSemaphoreTake( xSemaphore, LONG_TIME ) == pdTRUE )
{
// It is time to execute.
// ...
// We have finished our task. Return to the top of the loop where
// we will block on the semaphore until it is time to execute
// again. Note when using the semaphore for synchronisation with an
// ISR in this manner there is no need to 'give' the semaphore back.
}
}
}
// Timer ISR
void vTimerISR( void * pvParameters )
{
static uint8_t ucLocalTickCount = 0;
static BaseType_t xHigherPriorityTaskWoken;
// A timer tick has occurred.
// ... Do other time functions.
// Is it time for vATask () to run?
xHigherPriorityTaskWoken = pdFALSE;
ucLocalTickCount++;
if( ucLocalTickCount >= TICKS_TO_WAIT )
{
// Unblock the task by releasing the semaphore.
xSemaphoreGiveFromISR( xSemaphore, &xHigherPriorityTaskWoken );
// Reset the count so we release the semaphore again in 10 ticks time.
ucLocalTickCount = 0;
}
if( xHigherPriorityTaskWoken != pdFALSE )
{
// We can force a context switch here. Context switching from an
// ISR uses port specific syntax. Check the demo task for your port
// to find the syntax required.
}
}
</pre>
* \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR
* \ingroup Semaphores
*/
#define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueGenericSendFromISR( ( QueueHandle_t ) ( xSemaphore ), NULL, ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
/**
* semphr. h
* <pre>
xSemaphoreTakeFromISR(
SemaphoreHandle_t xSemaphore,
BaseType_t *pxHigherPriorityTaskWoken
)</pre>
*
* <i>Macro</i> to take a semaphore from an ISR. The semaphore must have
* previously been created with a call to vSemaphoreCreateBinary() or
* xSemaphoreCreateCounting().
*
* Mutex type semaphores (those created using a call to xSemaphoreCreateMutex())
* must not be used with this macro.
*
* This macro can be used from an ISR, however taking a semaphore from an ISR
* is not a common operation. It is likely to only be useful when taking a
* counting semaphore when an interrupt is obtaining an object from a resource
* pool (when the semaphore count indicates the number of resources available).
*
* @param xSemaphore A handle to the semaphore being taken. This is the
* handle returned when the semaphore was created.
*
* @param pxHigherPriorityTaskWoken xSemaphoreTakeFromISR() will set
* *pxHigherPriorityTaskWoken to pdTRUE if taking the semaphore caused a task
* to unblock, and the unblocked task has a priority higher than the currently
* running task. If xSemaphoreTakeFromISR() sets this value to pdTRUE then
* a context switch should be requested before the interrupt is exited.
*
* @return pdTRUE if the semaphore was successfully taken, otherwise
* pdFALSE
*/
#define xSemaphoreTakeFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueReceiveFromISR( ( QueueHandle_t ) ( xSemaphore ), NULL, ( pxHigherPriorityTaskWoken ) )
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateMutex( void )</pre>
*
* <i>Macro</i> that implements a mutex semaphore by using the existing queue
* mechanism.
*
* Mutexes created using this macro can be accessed using the xSemaphoreTake()
* and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and
* xSemaphoreGiveRecursive() macros should not be used.
*
* This type of semaphore uses a priority inheritance mechanism so a task
* 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
* semaphore it is no longer required.
*
* Mutex type semaphores cannot be used from within interrupt service routines.
*
* See vSemaphoreCreateBinary() for an alternative implementation that can be
* used for pure synchronisation (where one task or interrupt always 'gives' the
* semaphore and another always 'takes' the semaphore) and from within interrupt
* service routines.
*
* @return xSemaphore Handle to the created mutex semaphore. Should be of type
* SemaphoreHandle_t.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to xSemaphoreCreateMutex().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateMutex();
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
* \ingroup Semaphores
*/
#define xSemaphoreCreateMutex() xQueueCreateMutex( queueQUEUE_TYPE_MUTEX )
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutex( void )</pre>
*
* <i>Macro</i> that implements a recursive mutex by using the existing queue
* mechanism.
*
* Mutexes created using this macro can be accessed using the
* xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The
* xSemaphoreTake() and xSemaphoreGive() macros should not be used.
*
* A mutex used recursively can be 'taken' repeatedly by the owner. The mutex
* doesn't become available again until the owner has called
* xSemaphoreGiveRecursive() for each successful 'take' request. For example,
* if a task successfully 'takes' the same mutex 5 times then the mutex will
* not be available to any other task until it has also 'given' the mutex back
* exactly five times.
*
* This type of semaphore uses a priority inheritance mechanism so a task
* 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the
* semaphore it is no longer required.
*
* Mutex type semaphores cannot be used from within interrupt service routines.
*
* See vSemaphoreCreateBinary() for an alternative implementation that can be
* used for pure synchronisation (where one task or interrupt always 'gives' the
* semaphore and another always 'takes' the semaphore) and from within interrupt
* service routines.
*
* @return xSemaphore Handle to the created mutex semaphore. Should be of type
* SemaphoreHandle_t.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore;
void vATask( void * pvParameters )
{
// Semaphore cannot be used before a call to xSemaphoreCreateMutex().
// This is a macro so pass the variable in directly.
xSemaphore = xSemaphoreCreateRecursiveMutex();
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup vSemaphoreCreateMutex vSemaphoreCreateMutex
* \ingroup Semaphores
*/
#define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex( queueQUEUE_TYPE_RECURSIVE_MUTEX )
/**
* semphr. h
* <pre>SemaphoreHandle_t xSemaphoreCreateCounting( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount )</pre>
*
* <i>Macro</i> that creates a counting semaphore by using the existing
* queue mechanism.
*
* Counting semaphores are typically used for two things:
*
* 1) Counting events.
*
* In this usage scenario an event handler will 'give' a semaphore each time
* an event occurs (incrementing the semaphore count value), and a handler
* task will 'take' a semaphore each time it processes an event
* (decrementing the semaphore count value). The count value is therefore
* the difference between the number of events that have occurred and the
* number that have been processed. In this case it is desirable for the
* initial count value to be zero.
*
* 2) Resource management.
*
* In this usage scenario the count value indicates the number of resources
* available. To obtain control of a resource a task must first obtain a
* semaphore - decrementing the semaphore count value. When the count value
* reaches zero there are no free resources. When a task finishes with the
* resource it 'gives' the semaphore back - incrementing the semaphore count
* value. In this case it is desirable for the initial count value to be
* equal to the maximum count value, indicating that all resources are free.
*
* @param uxMaxCount The maximum count value that can be reached. When the
* semaphore reaches this value it can no longer be 'given'.
*
* @param uxInitialCount The count value assigned to the semaphore when it is
* created.
*
* @return Handle to the created semaphore. Null if the semaphore could not be
* created.
*
* Example usage:
<pre>
SemaphoreHandle_t xSemaphore;
void vATask( void * pvParameters )
{
SemaphoreHandle_t xSemaphore = NULL;
// Semaphore cannot be used before a call to xSemaphoreCreateCounting().
// The max value to which the semaphore can count should be 10, and the
// initial value assigned to the count should be 0.
xSemaphore = xSemaphoreCreateCounting( 10, 0 );
if( xSemaphore != NULL )
{
// The semaphore was created successfully.
// The semaphore can now be used.
}
}
</pre>
* \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting
* \ingroup Semaphores
*/
#define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) )
/**
* semphr. h
* <pre>void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );</pre>
*
* Delete a semaphore. This function must be used with care. For example,
* do not delete a mutex type semaphore if the mutex is held by a task.
*
* @param xSemaphore A handle to the semaphore to be deleted.
*
* \defgroup vSemaphoreDelete vSemaphoreDelete
* \ingroup Semaphores
*/
#define vSemaphoreDelete( xSemaphore ) vQueueDelete( ( QueueHandle_t ) ( xSemaphore ) )
/**
* semphr.h
* <pre>TaskHandle_t xSemaphoreGetMutexHolder( SemaphoreHandle_t xMutex );</pre>
*
* If xMutex is indeed a mutex type semaphore, return the current mutex holder.
* If xMutex is not a mutex type semaphore, or the mutex is available (not held
* by a task), return NULL.
*
* Note: This is a good way of determining if the calling task is the mutex
* holder, but not a good way of determining the identity of the mutex holder as
* the holder may change between the function exiting and the returned value
* being tested.
*/
#define xSemaphoreGetMutexHolder( xSemaphore ) xQueueGetMutexHolder( ( xSemaphore ) )
#endif /* SEMAPHORE_H */

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,32 @@
include $(MAKE_INCLUDE_GEN)
.PHONY: all clean
MODULE_IFLAGS =
#*****************************************************************************#
# Object FILE LIST #
#*****************************************************************************#
OBJS = port.o
ifeq ($(CONFIG_RELEASE_BUILD),y)
OBJS =
else
endif
#*****************************************************************************#
# RULES TO GENERATE TARGETS #
#*****************************************************************************#
# Define the Rules to build the core targets
all: CORE_TARGETS COPY_RAM_OBJS
#*****************************************************************************#
# GENERATE OBJECT FILE
#*****************************************************************************#
CORE_TARGETS: $(OBJS)
-include $(DEPS)

View file

@ -0,0 +1,197 @@
/*
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
All rights reserved
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS provides completely free yet professionally developed, *
* robust, strictly quality controlled, supported, and cross *
* platform software that has become a de facto standard. *
* *
* Help yourself get started quickly and support the FreeRTOS *
* project by purchasing a FreeRTOS tutorial book, reference *
* manual, or both from: http://www.FreeRTOS.org/Documentation *
* *
* Thank you! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
>>! NOTE: The modification to the GPL is included to allow you to !<<
>>! distribute a combined work that includes FreeRTOS without being !<<
>>! obliged to provide the source code for proprietary components !<<
>>! outside of the FreeRTOS kernel. !<<
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. Full license text is available from the following
link: http://www.freertos.org/a00114.html
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
license and Real Time Engineers Ltd. contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
compatible FAT file system, and our tiny thread aware UDP/IP stack.
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
licenses offer ticketed support, indemnification and middleware.
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
engineered and independently SIL3 certified version for use in safety and
mission critical applications that require provable dependability.
1 tab == 4 spaces!
*/
#ifndef PORTMACRO_H
#define PORTMACRO_H
#ifdef __cplusplus
extern "C" {
#endif
#include "rtl8195a.h"
/*-----------------------------------------------------------
* Port specific definitions.
*
* The settings in this file configure FreeRTOS correctly for the
* given hardware and compiler.
*
* These settings should not be altered.
*-----------------------------------------------------------
*/
/* Type definitions. */
#define portCHAR char
#define portFLOAT float
#define portDOUBLE double
#define portLONG long
#define portSHORT short
#define portSTACK_TYPE uint32_t
#define portBASE_TYPE long
typedef portSTACK_TYPE StackType_t;
typedef long BaseType_t;
typedef unsigned long UBaseType_t;
#if( configUSE_16_BIT_TICKS == 1 )
typedef uint16_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffff
#else
typedef uint32_t TickType_t;
#define portMAX_DELAY ( TickType_t ) 0xffffffffUL
#endif
/*-----------------------------------------------------------*/
/* Architecture specifics. */
#define portSTACK_GROWTH ( -1 )
#define portTICK_PERIOD_MS ( ( TickType_t ) 1000 / configTICK_RATE_HZ )
#define portBYTE_ALIGNMENT 8
/*-----------------------------------------------------------*/
/* Scheduler utilities. */
extern void vPortYield( void );
#define portNVIC_INT_CTRL_REG ( * ( ( volatile uint32_t * ) 0xe000ed04 ) )
#define portNVIC_PENDSVSET_BIT ( 1UL << 28UL )
#define portYIELD() vPortYield()
#define portEND_SWITCHING_ISR( xSwitchRequired ) if( xSwitchRequired ) portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT
#define portYIELD_FROM_ISR( x ) portEND_SWITCHING_ISR( x )
/*-----------------------------------------------------------*/
/* Critical section management. */
extern void vPortEnterCritical( void );
extern void vPortExitCritical( void );
extern uint32_t ulPortSetInterruptMask( void );
extern void vPortClearInterruptMask( uint32_t ulNewMaskValue );
#define portSET_INTERRUPT_MASK_FROM_ISR() ulPortSetInterruptMask()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR(x) vPortClearInterruptMask(x)
#define portDISABLE_INTERRUPTS() ulPortSetInterruptMask()
#define portENABLE_INTERRUPTS() vPortClearInterruptMask(0)
#define portENTER_CRITICAL() vPortEnterCritical()
#define portEXIT_CRITICAL() vPortExitCritical()
/*-----------------------------------------------------------*/
/* Task function macros as described on the FreeRTOS.org WEB site. These are
not necessary for to use this port. They are defined so the common demo files
(which build with all the ports) will build. */
#define portTASK_FUNCTION_PROTO( vFunction, pvParameters ) void vFunction( void *pvParameters )
#define portTASK_FUNCTION( vFunction, pvParameters ) void vFunction( void *pvParameters )
/*-----------------------------------------------------------*/
/* Tickless idle/low power functionality. */
#ifndef portSUPPRESS_TICKS_AND_SLEEP
extern void vPortSuppressTicksAndSleep( TickType_t xExpectedIdleTime );
#define portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime ) vPortSuppressTicksAndSleep( xExpectedIdleTime )
#endif
/*-----------------------------------------------------------*/
/* Architecture specific optimisations. */
#ifndef configUSE_PORT_OPTIMISED_TASK_SELECTION
#define configUSE_PORT_OPTIMISED_TASK_SELECTION 1
#endif
#if configUSE_PORT_OPTIMISED_TASK_SELECTION == 1
/* Generic helper function. */
__attribute__( ( always_inline ) ) static inline uint8_t ucPortCountLeadingZeros( uint32_t ulBitmap )
{
uint8_t ucReturn;
__asm volatile ( "clz %0, %1" : "=r" ( ucReturn ) : "r" ( ulBitmap ) );
return ucReturn;
}
/* Check the configuration. */
#if( configMAX_PRIORITIES > 32 )
#error configUSE_PORT_OPTIMISED_TASK_SELECTION can only be set to 1 when configMAX_PRIORITIES is less than or equal to 32. It is very rare that a system requires more than 10 to 15 difference priorities as tasks that share a priority will time slice.
#endif
/* Store/clear the ready priorities in a bit map. */
#define portRECORD_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) |= ( 1UL << ( uxPriority ) )
#define portRESET_READY_PRIORITY( uxPriority, uxReadyPriorities ) ( uxReadyPriorities ) &= ~( 1UL << ( uxPriority ) )
/*-----------------------------------------------------------*/
#define portGET_HIGHEST_PRIORITY( uxTopPriority, uxReadyPriorities ) uxTopPriority = ( 31 - ucPortCountLeadingZeros( ( uxReadyPriorities ) ) )
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/
#ifdef configASSERT
void vPortValidateInterruptPriority( void );
#define portASSERT_IF_INTERRUPT_PRIORITY_INVALID() vPortValidateInterruptPriority()
#endif
/* portNOP() is not required by this port. */
#define portNOP()
#ifdef __cplusplus
}
#endif
#endif /* PORTMACRO_H */

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,636 @@
/**************************************************************************//**
* @file core_cmFunc.h
* @brief CMSIS Cortex-M Core Function Access Header File
* @version V3.20
* @date 25. February 2013
*
* @note
*
******************************************************************************/
/* Copyright (c) 2009 - 2013 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
#ifndef __CORE_CMFUNC_H
#define __CORE_CMFUNC_H
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
/* intrinsic void __enable_irq(); */
/* intrinsic void __disable_irq(); */
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
}
/** \brief Get IPSR Register
This function returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xff);
}
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1);
}
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
#include <cmsis_ccs.h>
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/** \brief Enable IRQ Interrupts
This function enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i" : : : "memory");
}
/** \brief Disable IRQ Interrupts
This function disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
{
__ASM volatile ("cpsid i" : : : "memory");
}
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
{
uint32_t result;
__ASM volatile ("MRS %0, control" : "=r" (result) );
return(result);
}
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
{
__ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
}
/** \brief Get IPSR Register
This function returns the content of the IPSR Register.
\return IPSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, ipsr" : "=r" (result) );
return(result);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, apsr" : "=r" (result) );
return(result);
}
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, xpsr" : "=r" (result) );
return(result);
}
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, psp\n" : "=r" (result) );
return(result);
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
__ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp");
}
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, msp\n" : "=r" (result) );
return(result);
}
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
__ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp");
}
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, primask" : "=r" (result) );
return(result);
}
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
__ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
}
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
{
__ASM volatile ("cpsie f" : : : "memory");
}
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
{
__ASM volatile ("cpsid f" : : : "memory");
}
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
{
uint32_t result;
__ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
return(result);
}
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
{
__ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
}
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );
return(result);
}
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
}
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
uint32_t result;
/* Empty asm statement works as a scheduling barrier */
__ASM volatile ("");
__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
__ASM volatile ("");
return(result);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
/* Empty asm statement works as a scheduling barrier */
__ASM volatile ("");
__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
__ASM volatile ("");
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all instrinsics,
* Including the CMSIS ones.
*/
#endif
/*@} end of CMSIS_Core_RegAccFunctions */
#endif /* __CORE_CMFUNC_H */

View file

@ -0,0 +1,688 @@
/**************************************************************************//**
* @file core_cmInstr.h
* @brief CMSIS Cortex-M Core Instruction Access Header File
* @version V3.20
* @date 05. March 2013
*
* @note
*
******************************************************************************/
/* Copyright (c) 2009 - 2013 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
#ifndef __CORE_CMINSTR_H
#define __CORE_CMINSTR_H
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
#define __WFI __wfi
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
#define __ISB() __isb(0xF)
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() __dsb(0xF)
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() __dmb(0xF)
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
#endif
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
#ifndef __NO_EMBEDDED_ASM
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
{
revsh r0, r0
bx lr
}
#endif
/** \brief Rotate Right in unsigned value (32 bit)
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] value Value to rotate
\param [in] value Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
/** \brief Breakpoint
This function causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __breakpoint(value)
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __RBIT __rbit
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXB(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXH(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXW(value, ptr) __strex(value, ptr)
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#endif /* (__CORTEX_M >= 0x03) */
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
#include <cmsis_ccs.h>
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/* Define macros for porting to both thumb1 and thumb2.
* For thumb1, use low register (r0-r7), specified by constrant "l"
* Otherwise, use general registers, specified by constrant "r" */
#if defined (__thumb__) && !defined (__thumb2__)
#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
#define __CMSIS_GCC_USE_REG(r) "l" (r)
#else
#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
#define __CMSIS_GCC_USE_REG(r) "r" (r)
#endif
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void)
{
__ASM volatile ("nop");
}
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void)
{
__ASM volatile ("wfi");
}
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void)
{
__ASM volatile ("wfe");
}
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void)
{
__ASM volatile ("sev");
}
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void)
{
__ASM volatile ("isb");
}
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void)
{
__ASM volatile ("dsb");
}
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void)
{
__ASM volatile ("dmb");
}
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value)
{
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
return __builtin_bswap32(value);
#else
uint32_t result;
__ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return(result);
#endif
}
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return(result);
}
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value)
{
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
return (short)__builtin_bswap16(value);
#else
uint32_t result;
__ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
return(result);
#endif
}
/** \brief Rotate Right in unsigned value (32 bit)
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] value Value to rotate
\param [in] value Number of Bits to rotate
\return Rotated value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
return (op1 >> op2) | (op1 << (32 - op2));
}
/** \brief Breakpoint
This function causes the processor to enter Debug state.
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
\param [in] value is ignored by the processor.
If required, a debugger can use it to store additional information about the breakpoint.
*/
#define __BKPT(value) __ASM volatile ("bkpt "#value)
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return(result);
}
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
{
uint32_t result;
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
__ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
#else
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
accepted by assembler. So has to use following less efficient pattern.
*/
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
#endif
return(result);
}
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
return(result);
}
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
{
uint32_t result;
__ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
return(result);
}
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
{
uint32_t result;
__ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
return(result);
}
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
return(result);
}
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void)
{
__ASM volatile ("clrex" ::: "memory");
}
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value)
{
uint32_t result;
__ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
#endif /* (__CORTEX_M >= 0x03) */
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#endif
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
#endif /* __CORE_CMINSTR_H */

View file

@ -0,0 +1,843 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _DIAG_H_
#define _DIAG_H_
#include "platform_autoconf.h"
#include "basic_types.h"
#include <stddef.h> /* for size_t */
extern u32 ConfigDebugErr;
extern u32 ConfigDebugInfo;
extern u32 ConfigDebugWarn;
extern u32 CfgSysDebugErr;
extern u32 CfgSysDebugInfo;
extern u32 CfgSysDebugWarn;
#define DBG_ERR_MSG_ON(x) (ConfigDebugErr |= (x))
#define DBG_WARN_MSG_ON(x) (ConfigDebugWarn |= (x))
#define DBG_INFO_MSG_ON(x) (ConfigDebugInfo |= (x))
#define DBG_ERR_MSG_OFF(x) (ConfigDebugErr &= ~(x))
#define DBG_WARN_MSG_OFF(x) (ConfigDebugWarn &= ~(x))
#define DBG_INFO_MSG_OFF(x) (ConfigDebugInfo &= ~(x))
// Define debug group
#define _DBG_BOOT_ 0x00000001
#define _DBG_GDMA_ 0x00000002
#define _DBG_GPIO_ 0x00000004
#define _DBG_TIMER_ 0x00000008
#define _DBG_I2C_ 0x00000010
#define _DBG_I2S_ 0x00000020
#define _DBG_MII_ 0x00000040
#define _DBG_NFC_ 0x00000080
#define _DBG_PCM_ 0x00000100
#define _DBG_PWM_ 0x00000200
#define _DBG_SDIO_ 0x00000400
#define _DBG_SSI_ 0x00000800
#define _DBG_SPI_FLASH_ 0x00001000
#define _DBG_SDR_ 0x00002000
#define _DBG_UART_ 0x00004000
#define _DBG_USB_OTG_ 0x00008000
#define _DBG_USB_CORE_ 0x00010000
#define _DBG_CRYPTO_ 0x00020000
#define _DBG_ADC_ 0x00040000
#define _DBG_DAC_ 0x00080000
#define _DBG_MISC_ 0x40000000
#define _DBG_FAULT_ 0x80000000
typedef enum _SYSTEM_DBG_DEFINE_ {
_SYSDBG_MISC_ = 1<<0,
_SYSDBG_MAILBOX_ = 1<<1,
_SYSDBG_TIMER_ = 1<<2
} SYSTEM_DBG;
extern
_LONG_CALL_ROM_ u32
DiagPrintf(
IN const char *fmt, ...
);
u32
DiagSPrintf(
IN u8 *buf,
IN const char *fmt, ...
);
int
prvDiagPrintf(
IN const char *fmt, ...
);
int
prvDiagSPrintf(
IN char *buf,
IN const char *fmt, ...
);
#define _DbgDump DiagPrintf
#define DRIVER_PREFIX "RTL8195A[Driver]: "
#define HAL_PREFIX "RTL8195A[HAL]: "
#define DMA_PREFIX "RTL8195A[DMA]: "
#define SDIO_PREFIX "RTL8195A[SDIO]"
#define MBOX_PREFIX "[OS-MBOX]"
#define TIMER_PREFIX "[OS-TMR]"
#define BOOT_ERR_PREFIX "[BOOT Err]"
#define BOOT_WARN_PREFIX "[BOOT Wrn]"
#define BOOT_INFO_PREFIX "[BOOT Inf]"
#define GDMA_ERR_PREFIX "[GDMA Err]"
#define GDMA_WARN_PREFIX "[GDMA Wrn]"
#define GDMA_INFO_PREFIX "[GDMA Inf]"
#define GPIO_ERR_PREFIX "[GPIO Err]"
#define GPIO_WARN_PREFIX "[GPIO Wrn]"
#define GPIO_INFO_PREFIX "[GPIO Inf]"
#define TIMER_ERR_PREFIX "[TIMR Err]"
#define TIMER_WARN_PREFIX "[TIMR Wrn]"
#define TIMER_INFO_PREFIX "[TIMR Inf]"
#define I2C_ERR_PREFIX "[I2C Err]"
#define I2C_WARN_PREFIX "[I2C Wrn]"
#define I2C_INFO_PREFIX "[I2C Inf]"
#define I2S_ERR_PREFIX "[I2S Err]"
#define I2S_WARN_PREFIX "[I2S Wrn]"
#define I2S_INFO_PREFIX "[I2S Inf]"
#define MII_ERR_PREFIX "[MII Err]"
#define MII_WARN_PREFIX "[MII Wrn]"
#define MII_INFO_PREFIX "[MII Inf]"
#define NFC_ERR_PREFIX "[NFC Err]"
#define NFC_WARN_PREFIX "[NFC Wrn]"
#define NFC_INFO_PREFIX "[NFC Inf]"
#define PCM_ERR_PREFIX "[PCM Err]"
#define PCM_WARN_PREFIX "[PCM Wrn]"
#define PCM_INFO_PREFIX "[PCM Inf]"
#define PWM_ERR_PREFIX "[PWM Err]"
#define PWM_WARN_PREFIX "[PWM Wrn]"
#define PWM_INFO_PREFIX "[PWM Inf]"
#define SSI_ERR_PREFIX "[SSI Err]"
#define SSI_WARN_PREFIX "[SSI Wrn]"
#define SSI_INFO_PREFIX "[SSI Inf]"
#define SDIO_ERR_PREFIX "[SDIO Err]"
#define SDIO_WARN_PREFIX "[SDIO Wrn]"
#define SDIO_INFO_PREFIX "[SDIO Inf]"
#define SPIF_ERR_PREFIX "[SPIF Err]"
#define SPIF_WARN_PREFIX "[SPIF Wrn]"
#define SPIF_INFO_PREFIX "[SPIF Inf]"
#define SDR_ERR_PREFIX "[SDR Err]"
#define SDR_WARN_PREFIX "[SDR Wrn]"
#define SDR_INFO_PREFIX "[SDR Inf]"
#define UART_ERR_PREFIX "[UART Err]"
#define UART_WARN_PREFIX "[UART Wrn]"
#define UART_INFO_PREFIX "[UART Inf]"
#define USB_ERR_PREFIX "[USB Err]"
#define USB_WARN_PREFIX "[USB Wrn]"
#define USB_INFO_PREFIX "[USB Inf]"
#define IPSEC_ERR_PREFIX "[CRYP Err]"
#define IPSEC_WARN_PREFIX "[CRYP Wrn]"
#define IPSEC_INFO_PREFIX "[CRYP Inf]"
#define ADC_ERR_PREFIX "[ADC Err]"
#define ADC_WARN_PREFIX "[ADC Wrn]"
#define ADC_INFO_PREFIX "[ADC Inf]"
#define DAC_ERR_PREFIX "[DAC Err]"
#define DAC_WARN_PREFIX "[DAC Wrn]"
#define DAC_INFO_PREFIX "[DAC Inf]"
#define MISC_ERR_PREFIX "[MISC Err]"
#define MISC_WARN_PREFIX "[MISC Wrn]"
#define MISC_INFO_PREFIX "[MISC Inf]"
#define OTG_ERR_PREFIX "[OTG Err]"
#define OTG_WARN_PREFIX "[OTG Wrn]"
#define OTG_INFO_PREFIX "[OTG Inf]"
#define OTG_PREFIX "RTL8195A[OTG]: "
#define OTG_PREFIX_LVL "RTL8195A[OTG_LVL_%2x]: "
//#ifdef
#define CONFIG_DEBUG_ERROR 1
#define CONFIG_DEBUG_WARN 1
#define CONFIG_DEBUG_INFO 1
#ifndef likely
#define likely(x) (x)
#define unlikely(x) (x)
#endif
#ifdef CONFIG_DEBUG_LOG
#if CONFIG_DEBUG_ERROR // if Build-In Debug Error Message
#define DBG_BOOT_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_BOOT_)) \
_DbgDump("\r"BOOT_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_GDMA_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_GDMA_)) \
_DbgDump("\r"GDMA_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_GPIO_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_GPIO_)) \
_DbgDump("\r"GPIO_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_TIMER_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_TIMER_)) \
_DbgDump("\r"TIMER_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_I2C_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_I2C_)) \
_DbgDump("\r"I2C_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_I2S_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_I2S_)) \
_DbgDump("\r"I2S_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_MII_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_MII_)) \
_DbgDump("\r"MII_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_NFC_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_NFC_)) \
_DbgDump("\r"NFC_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_PCM_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_PCM_)) \
_DbgDump("\r"PCM_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_PWM_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_PWM_)) \
_DbgDump("\r"PWM_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SSI_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_SSI_)) \
_DbgDump("\r"SSI_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SDIO_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_SDIO_)) \
_DbgDump("\r"SDIO_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SPIF_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_SPI_FLASH_)) \
_DbgDump("\r"SPIF_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SDR_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_SDR_)) \
_DbgDump("\r"SDR_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_UART_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_UART_)) \
_DbgDump("\r"UART_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_USBOTG_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_USB_OTG_)) \
_DbgDump("\r" __VA_ARGS__);\
}while(0)
#define DBG_USBCOR_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_USB_CORE_)) \
_DbgDump("\r"USB_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_CRYPTO_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_CRYPTO_)) \
_DbgDump("\r"IPSEC_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_ADC_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_ADC_)) \
_DbgDump("\r"ADC_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_DAC_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_DAC_)) \
_DbgDump("\r"DAC_ERR_PREFIX __VA_ARGS__);\
}while(0)
#define MSG_MBOX_ERR(...) do {\
if (likely(CfgSysDebugErr & _SYSDBG_MAILBOX_)) \
_DbgDump("\r"MBOX_PREFIX __VA_ARGS__);\
}while(0)
#define MSG_TIMER_ERR(...) do {\
if (likely(CfgSysDebugErr & _SYSDBG_TIMER_)) \
_DbgDump("\r"TIMER_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A_OTG(...) do{\
if (unlikely(ConfigDebugInfo & _DBG_USB_OTG_)) \
_DbgDump("\r"OTG_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A_OTG_INFO(...) do{\
if (unlikely(ConfigDebugInfo & _DBG_USB_OTG_)) \
_DbgDump("\r"OTG_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A_OTG_WARN(...) do{\
if (unlikely(ConfigDebugWarn & _DBG_USB_OTG_)) \
_DbgDump("\r"OTG_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A_OTG_ERR(...) do{\
if (unlikely(ConfigDebugErr & _DBG_USB_OTG_)) \
_DbgDump("\r"OTG_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A_OTG_LVL(LVL,...) do{\
if (unlikely(ConfigDebugInfo & _DBG_USB_OTG_)){ \
_DbgDump("\r"OTG_PREFIX_LVL,LVL);\
_DbgDump(__VA_ARGS__);\
}\
}while(0)
#define DBG_MISC_ERR(...) do {\
if (likely(ConfigDebugErr & _DBG_MISC_)) \
_DbgDump("\r"MISC_ERR_PREFIX __VA_ARGS__);\
}while(0)
#else // else of "#if CONFIG_DEBUG_ERROR"
#define DBG_BOOT_ERR(...)
#define DBG_GDMA_ERR(...)
#define DBG_GPIO_ERR(...)
#define DBG_TIMER_ERR(...)
#define DBG_I2C_ERR(...)
#define DBG_I2S_ERR(...)
#define DBG_MII_ERR(...)
#define DBG_NFC_ERR(...)
#define DBG_PCM_ERR(...)
#define DBG_PWM_ERR(...)
#define DBG_SSI_ERR(...)
#define DBG_SDIO_ERR(...)
#define DBG_SPIF_ERR(...)
#define DBG_SDR_ERR(...)
#define DBG_UART_ERR(...)
#define DBG_USBOTG_ERR(...)
#define DBG_USBCOR_ERR(...)
#define DBG_CRYPTO_ERR(...)
#define DBG_ADC_ERR(...)
#define DBG_DAC_ERR(...)
#define MSG_MBOX_ERR(...)
#define MSG_TIMER_ERR(...)
#define DBG_8195A_OTG(...)
#define DBG_8195A_OTG_LVL(LVL,...)
#define DBG_8195A_OTG_INFO(...)
#define DBG_8195A_OTG_WARN(...)
#define DBG_8195A_OTG_ERR(...)
#endif // end of else of "#if CONFIG_DEBUG_ERROR"
// =============================================================
#if CONFIG_DEBUG_WARN // if Build-In Debug Warring Message
#define DBG_BOOT_WARN(...) do {\
if (unlikely(ConfigDebugWarn& _DBG_BOOT_)) \
_DbgDump("\r"BOOT_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_GDMA_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_GDMA_)) \
_DbgDump("\r"GDMA_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_GPIO_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_GPIO_)) \
_DbgDump("\r"GPIO_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_TIMER_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_TIMER_)) \
_DbgDump("\r"TIMER_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_I2C_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_I2C_)) \
_DbgDump("\r"I2C_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_I2S_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_I2S_)) \
_DbgDump("\r"I2S_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_MII_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_MII_)) \
_DbgDump("\r"MII_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_NFC_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_NFC_)) \
_DbgDump("\r"NFC_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_PCM_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_PCM_)) \
_DbgDump("\r"PCM_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_PWM_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_PWM_)) \
_DbgDump("\r"PWM_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SSI_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_SSI_)) \
_DbgDump("\r"SSI_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SDIO_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_SDIO_)) \
_DbgDump("\r"SDIO_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SPIF_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_SPI_FLASH_)) \
_DbgDump("\r"SPIF_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SDR_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_SDR_)) \
_DbgDump("\r"SDR_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_UART_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_UART_)) \
_DbgDump("\r"UART_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_USBOTG_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_USB_OTG_)) \
_DbgDump("\r" __VA_ARGS__);\
}while(0)
#define DBG_USBCOR_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_USB_CORE_)) \
_DbgDump("\r"USB_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_CRYPTO_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_CRYPTO_)) \
_DbgDump("\r"IPSEC_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_ADC_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_ADC_)) \
_DbgDump("\r"ADC_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_DAC_WARN(...) do {\
if (unlikely(ConfigDebugWarn & _DBG_DAC_)) \
_DbgDump("\r"DAC_WARN_PREFIX __VA_ARGS__);\
}while(0)
#define MSG_MBOX_WARN(...) do {\
if (unlikely(CfgSysDebugWarn& _SYSDBG_MAILBOX_)) \
_DbgDump("\r"MBOX_PREFIX __VA_ARGS__);\
}while(0)
#define MSG_TIMER_WARN(...) do {\
if (unlikely(CfgSysDebugWarn & _SYSDBG_TIMER_)) \
_DbgDump("\r"TIMER_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_MISC_WARN(...) do {\
if (likely(ConfigDebugWarn & _DBG_MISC_)) \
_DbgDump("\r"MISC_WARN_PREFIX __VA_ARGS__);\
}while(0)
#else // else of "#if CONFIG_DEBUG_WARN"
#define DBG_BOOT_WARN(...)
#define DBG_GDMA_WARN(...)
#define DBG_GPIO_WARN(...)
#define DBG_TIMER_WARN(...)
#define DBG_I2C_WARN(...)
#define DBG_I2S_WARN(...)
#define DBG_MII_WARN(...)
#define DBG_NFC_WARN(...)
#define DBG_PCM_WARN(...)
#define DBG_PWM_WARN(...)
#define DBG_SSI_WARN(...)
#define DBG_SDIO_WARN(...)
#define DBG_SPIF_WARN(...)
#define DBG_SDR_WARN(...)
#define DBG_UART_WARN(...)
#define DBG_USBOTG_WARN(...)
#define DBG_USBCOR_WARN(...)
#define DBG_CRYPTO_WARN(...)
#define DBG_ADC_WARN(...)
#define DBG_DAC_WARN(...)
#define DBG_MISC_WARN(...)
#define MSG_MBOX_WARN(...)
#define MSG_TIMER_WARN(...)
#endif // end of else of "#if CONFIG_DEBUG_WARN"
// =============================================================
#if CONFIG_DEBUG_INFO // if Build-In Debug Information Message
#define DBG_BOOT_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_BOOT_)) \
_DbgDump("\r"BOOT_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_GDMA_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_GDMA_)) \
_DbgDump("\r"GDMA_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_GPIO_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_GPIO_)) \
_DbgDump("\r"GPIO_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_TIMER_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_TIMER_)) \
_DbgDump("\r"TIMER_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_I2C_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_I2C_)) \
_DbgDump("\r"I2C_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_I2S_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_I2S_)) \
_DbgDump("\r"I2S_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_MII_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_MII_)) \
_DbgDump("\r"MII_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_NFC_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_NFC_)) \
_DbgDump("\r"NFC_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_PCM_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_PCM_)) \
_DbgDump("\r"PCM_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_PWM_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_PWM_)) \
_DbgDump("\r"PWM_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SSI_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_SSI_)) \
_DbgDump("\r"SSI_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SDIO_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_SDIO_)) \
_DbgDump("\r"SDIO_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SPIF_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_SPI_FLASH_)) \
_DbgDump("\r"SPIF_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_SDR_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_SDR_)) \
_DbgDump("\r"SDR_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_UART_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_UART_)) \
_DbgDump("\r"UART_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_USBOTG_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_USB_OTG_)) \
_DbgDump("\r" __VA_ARGS__);\
}while(0)
#define DBG_USBCOR_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_USB_CORE_)) \
_DbgDump("\r"USB_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_CRYPTO_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_CRYPTO_)) \
_DbgDump("\r"IPSEC_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_ADC_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_ADC_)) \
_DbgDump("\r"ADC_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_DAC_INFO(...) do {\
if (unlikely(ConfigDebugInfo & _DBG_DAC_)) \
_DbgDump("\r"DAC_INFO_PREFIX __VA_ARGS__);\
}while(0)
#define MSG_MBOX_INFO(...) do {\
if (unlikely(CfgSysDebugInfo & _SYSDBG_MAILBOX_)) \
_DbgDump("\r"MBOX_PREFIX __VA_ARGS__);\
}while(0)
#define MSG_TIMER_INFO(...) do {\
if (unlikely(CfgSysDebugInfo & _SYSDBG_TIMER_)) \
_DbgDump("\r"TIMER_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_MISC_INFO(...) do {\
if (likely(ConfigDebugInfo & _DBG_MISC_)) \
_DbgDump("\r"MISC_INFO_PREFIX __VA_ARGS__);\
}while(0)
#else // else of "#if CONFIG_DEBUG_INFO"
#define DBG_BOOT_INFO(...)
#define DBG_GDMA_INFO(...)
#define DBG_GPIO_INFO(...)
#define DBG_TIMER_INFO(...)
#define DBG_I2C_INFO(...)
#define DBG_I2S_INFO(...)
#define DBG_MII_INFO(...)
#define DBG_NFC_INFO(...)
#define DBG_PCM_INFO(...)
#define DBG_PWM_INFO(...)
#define DBG_SSI_INFO(...)
#define DBG_SDIO_INFO(...)
#define DBG_SPIF_INFO(...)
#define DBG_SDR_INFO(...)
#define DBG_UART_INFO(...)
#define DBG_USBOTG_INFO(...)
#define DBG_USBCOR_INFO(...)
#define DBG_CRYPTO_INFO(...)
#define DBG_ADC_INFO(...)
#define DBG_DAC_INFO(...)
#define DBG_MISC_INFO(...)
#define MSG_MBOX_INFO(...)
#define MSG_TIMER_INFO(...)
#endif // end of else of "#if CONFIG_DEBUG_INFO"
#define DBG_8195A_DRIVER(...) do {\
if (unlikely(ConfigDebugErr & (_DBG_I2S_|_DBG_PCM_|_DBG_TIMER_))) \
_DbgDump("\r"DRIVER_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A_HAL(...) do {\
if (unlikely(ConfigDebugErr & (_DBG_SDR_|_DBG_MISC_))) \
_DbgDump("\r"HAL_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A_DMA(...) do {\
if (unlikely(ConfigDebugErr & _DBG_GDMA_)) \
_DbgDump("\r"DMA_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A_SDIO(...) do {\
if (unlikely(ConfigDebugErr & _DBG_SDIO_)) \
_DbgDump("\r"SDIO_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A(...) do {\
if (unlikely(ConfigDebugErr & _DBG_MISC_)) \
_DbgDump("\r" __VA_ARGS__);\
}while(0)
#define MONITOR_LOG(...) do {\
if (unlikely(ConfigDebugErr & _DBG_MISC_)) \
_DbgDump( __VA_ARGS__);\
}while(0)
#define DBG_ERROR_LOG(...) do {\
if (unlikely(ConfigDebugErr & _DBG_FAULT_)) \
_DbgDump( __VA_ARGS__);\
}while(0)
#ifdef __GNUC__
#define DBG_ASSERT(x) do {\
if (unlikely(!(x))) \
_DbgDump("Assertion: %s:%s, %d\n", __FILE__, __func__, __LINE__);\
}while(0)
#endif
#ifdef __ICCARM__
#define DBG_ASSERT(x) do {\
if (unlikely(!(x))) \
_DbgDump("Assertion: %s:%s, %d\n", __FILE__, __func__, __LINE__);\
}while(0)
#endif
#else // else of "#if CONFIG_DEBUG_LOG"
#define DBG_8195A_DRIVER(...)
#define DBG_8195A_HAL(...)
#define DBG_8195A(...)
#define DBG_8195A_DMA(...)
#define MONITOR_LOG(...)
#define DBG_ERROR_LOG(...)
#define DBG_8195A_SDIO(...)
#define DBG_BOOT_ERR(...)
#define DBG_GDMA_ERR(...)
#define DBG_GPIO_ERR(...)
#define DBG_TIMER_ERR(...)
#define DBG_I2C_ERR(...)
#define DBG_I2S_ERR(...)
#define DBG_MII_ERR(...)
#define DBG_NFC_ERR(...)
#define DBG_PCM_ERR(...)
#define DBG_PWM_ERR(...)
#define DBG_SSI_ERR(...)
#define DBG_SDIO_ERR(...)
#define DBG_SPIF_ERR(...)
#define DBG_SDR_ERR(...)
#define DBG_UART_ERR(...)
#define DBG_USBOTG_ERR(...)
#define DBG_USBCOR_ERR(...)
#define DBG_CRYPTO_ERR(...)
#define DBG_ADC_ERR(...)
#define DBG_DAC_ERR(...)
#define MSG_MBOX_ERR(...)
#define MSG_TIMER_ERR(...)
#define DBG_BOOT_WARN(...)
#define DBG_GDMA_WARN(...)
#define DBG_GPIO_WARN(...)
#define DBG_TIMER_WARN(...)
#define DBG_I2C_WARN(...)
#define DBG_I2S_WARN(...)
#define DBG_MII_WARN(...)
#define DBG_NFC_WARN(...)
#define DBG_PCM_WARN(...)
#define DBG_PWM_WARN(...)
#define DBG_SSI_WARN(...)
#define DBG_SDIO_WARN(...)
#define DBG_SPIF_WARN(...)
#define DBG_SDR_WARN(...)
#define DBG_UART_WARN(...)
#define DBG_USBOTG_WARN(...)
#define DBG_USBCOR_WARN(...)
#define DBG_CRYPTO_WARN(...)
#define DBG_ADC_WARN(...)
#define DBG_DAC_WARN(...)
#define MSG_MBOX_WARN(...)
#define MSG_TIMER_WARN(...)
#define DBG_BOOT_INFO(...)
#define DBG_GDMA_INFO(...)
#define DBG_GPIO_INFO(...)
#define DBG_TIMER_INFO(...)
#define DBG_I2C_INFO(...)
#define DBG_I2S_INFO(...)
#define DBG_MII_INFO(...)
#define DBG_NFC_INFO(...)
#define DBG_PCM_INFO(...)
#define DBG_PWM_INFO(...)
#define DBG_SSI_INFO(...)
#define DBG_SDIO_INFO(...)
#define DBG_SPIF_INFO(...)
#define DBG_SDR_INFO(...)
#define DBG_UART_INFO(...)
#define DBG_USBOTG_INFO(...)
#define DBG_USBCOR_INFO(...)
#define DBG_CRYPTO_INFO(...)
#define DBG_ADC_INFO(...)
#define DBG_DAC_INFO(...)
#define MSG_MBOX_INFO(...)
#define MSG_TIMER_INFO(...)
#define DBG_ASSERT(x)
#endif
#define ANSI_COLOR_GREEN "\x1b[32m"
#define ANSI_COLOR_CYAN "\x1b[36m"
#define ANSI_COLOR_YELLOW "\x1b[33m"
#define ANSI_COLOR_MAGENTA "\x1b[35m"
#define ANSI_COLOR_RED "\x1b[31m"
#define ANSI_COLOR_BLUE "\x1b[34m"
#define ANSI_COLOR_RESET "\x1b[0m"
#define IDENT_ONE_SPACE " "
#define IDENT_TWO_SPACE " "
#define IDENT_FOUR_SPACE " "
#define IDENT_SIX_SPACE " "
#define IDENT_EIGHT_SPACE " "
#ifdef CONFIG_DEBUG_LOG
typedef enum _DBG_CFG_TYPE_ {
DBG_CFG_ERR=0,
DBG_CFG_WARN=1,
DBG_CFG_INFO=2
} DBG_CFG_TYPE;
typedef struct _DBG_CFG_CMD_ {
u8 cmd_name[16];
u32 cmd_type;
} DBG_CFG_CMD, *PDBG_CFG_CMD;
#endif
typedef enum _CONSOLE_OP_STAGE_ {
ROM_STAGE = 0,
RAM_STAGE = 1
}CONSOLE_OP_STAGE;
#endif //_DIAG_H_

View file

@ -0,0 +1,319 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_ADC_H_
#define _HAL_ADC_H_
#include "rtl8195a.h"
#include "rtl8195a_adc.h"
#include "hal_gdma.h"
//================ ADC Configuration =========================
#define ADC_INTR_OP_TYPE 1
#define ADC_DMA_OP_TYPE 1
// ADC SAL management macros
#define SAL_ADC_USER_CB_NUM (sizeof(SAL_ADC_USER_CB) / sizeof(PSAL_ADC_USERCB_ADPT))
// ADC used module.
// Please set the ADC module flag to 1 to enable the related
#define ADC0_USED 1
#define ADC1_USED 1
#define ADC2_USED 1
#define ADC3_USED 1
//================ Debug MSG Definition =======================
#define ADC_PREFIX "RTL8195A[adc]: "
#define ADC_PREFIX_LVL " [ADC_DBG]: "
typedef enum _ADC_DBG_LVL_ {
HAL_ADC_LVL = 0x01,
SAL_ADC_LVL = 0x02,
VERI_ADC_LVL = 0x04,
}ADC_DBG_LVL,*PADC_DBG_LVL;
#ifdef CONFIG_DEBUG_LOG
#ifdef CONFIG_DEBUG_LOG_ADC_HAL
#define DBG_8195A_ADC(...) do{ \
_DbgDump("\r"ADC_PREFIX __VA_ARGS__);\
}while(0)
#define ADCDBGLVL 0xFF
#define DBG_8195A_ADC_LVL(LVL,...) do{\
if (LVL&ADCDBGLVL){\
_DbgDump("\r"ADC_PREFIX_LVL __VA_ARGS__);\
}\
}while(0)
#else
#define DBG_ADC_LOG_PERD 100
#define DBG_8195A_ADC(...)
#define DBG_8195A_ADC_LVL(...)
#endif
#endif
//================ ADC HAL Related Enumeration ==================
// ADC Module Selection
typedef enum _ADC_MODULE_SEL_ {
ADC0_SEL = 0x0,
ADC1_SEL = 0x1,
ADC2_SEL = 0x2,
ADC3_SEL = 0x3,
}ADC_MODULE_SEL,*PADC_MODULE_SEL;
// ADC module status
typedef enum _ADC_MODULE_STATUS_ {
ADC_DISABLE = 0x0,
ADC_ENABLE = 0x1,
}ADC_MODULE_STATUS, *PADC_MODULE_STATUS;
// ADC Data Endian
typedef enum _ADC_DATA_ENDIAN_ {
ADC_DATA_ENDIAN_LITTLE = 0x0,
ADC_DATA_ENDIAN_BIG = 0x1,
}ADC_DATA_ENDIAN,*PADC_DATA_ENDIAN;
// ADC Debug Select
typedef enum _ADC_DEBUG_SEL_ {
ADC_DBG_SEL_DISABLE = 0x0,
ADC_DBG_SEL_ENABLE = 0x1,
}ADC_DEBUG_SEL,*PADC_DEBUG_SEL;
typedef enum _ADC_COMPARE_SET_ {
ADC_COMP_SMALLER_THAN = 0x0,
ADC_COMP_GREATER_THAN = 0x1,
}ADC_COMPARE_SET, *PADC_COMPARE_SET;
// ADC feature status
typedef enum _ADC_FEATURE_STATUS_{
ADC_FEATURE_DISABLED = 0,
ADC_FEATURE_ENABLED = 1,
}ADC_FEATURE_STATUS,*PADC_FEATURE_STATUS;
// ADC operation type
typedef enum _ADC_OP_TYPE_ {
ADC_RDREG_TYPE = 0x0,
ADC_DMA_TYPE = 0x1,
ADC_INTR_TYPE = 0x2,
}ADC_OP_TYPE, *PADC_OP_TYPE;
// ADC device status
typedef enum _ADC_DEVICE_STATUS_ {
ADC_STS_UNINITIAL = 0x00,
ADC_STS_INITIALIZED = 0x01,
ADC_STS_IDLE = 0x02,
ADC_STS_TX_READY = 0x03,
ADC_STS_TX_ING = 0x04,
ADC_STS_RX_READY = 0x05,
ADC_STS_RX_ING = 0x06,
ADC_STS_ERROR = 0x07,
ADC_STS_FULL = 0x08,
}ADC_DEVICE_STATUS, *PADC_DEVICE_STATUS;
// ADC error type
typedef enum _ADC_ERR_TYPE_ {
ADC_ERR_FIFO_RD_ERROR = 0x40, //ADC FIFO read error
}ADC_ERR_TYPE, *PADC_ERR_TYPE;
// ADC initial status
typedef enum _ADC_INITAIL_STATUS_ {
ADC0_INITED = 0x1,
ADC1_INITED = 0x2,
ADC2_INITED = 0x4,
ADC3_INITED = 0x8,
}ADC_INITAIL_STATUS, *PADC_INITAIL_STATUS;
//================ ADC HAL Data Structure ======================
// ADC HAL initial data structure
typedef struct _HAL_ADC_INIT_DAT_ {
u8 ADCIdx; //ADC index used
u8 ADCEn; //ADC module enable
u8 ADCEndian; //ADC endian selection,
//but actually it's for 32-bit ADC data swap control
//1'b0: no swap,
//1'b1: swap the upper 16-bit and the lower 16-bit
u8 ADCBurstSz; //ADC DMA operation threshold
u8 ADCCompOnly; //ADC compare mode only enable (without FIFO enable)
u8 ADCOneShotEn; //ADC one-shot mode enable
u8 ADCOverWREn; //ADC overwrite mode enable
u8 ADCOneShotTD; //ADC one shot mode threshold
u16 ADCCompCtrl; //ADC compare mode control,
//1'b0:less than the compare threshold
//1'b1:greater than the compare threshod
u16 ADCCompTD; //ADC compare mode threshold
u8 ADCDataRate; //ADC down sample data rate,
u8 ADCAudioEn; //ADC audio mode enable
u8 ADCEnManul; //ADC enable manually
u8 ADCDbgSel;
u32 RSVD0;
u32 *ADCData; //ADC data pointer
u32 ADCPWCtrl; //ADC0 power control
u32 ADCIntrMSK; //ADC Interrupt Mask
u32 ADCAnaParAd3; //ADC analog parameter 3
u32 ADCInInput; //ADC Input is internal?
}HAL_ADC_INIT_DAT,*PHAL_ADC_INIT_DAT;
// ADC HAL Operations
typedef struct _HAL_ADC_OP_ {
RTK_STATUS (*HalADCInit) (VOID *Data); //HAL ADC initialization
RTK_STATUS (*HalADCDeInit) (VOID *Data); //HAL ADC de-initialization
RTK_STATUS (*HalADCEnable) (VOID *Data); //HAL ADC de-initialization
u32 (*HalADCReceive) (VOID *Data); //HAL ADC receive
RTK_STATUS (*HalADCIntrCtrl) (VOID *Data); //HAL ADC interrupt control
u32 (*HalADCReadReg) (VOID *Data, u8 ADCReg);//HAL ADC read register
}HAL_ADC_OP, *PHAL_ADC_OP;
// ADC user callback adapter
typedef struct _SAL_ADC_USERCB_ADPT_ {
VOID (*USERCB) (VOID *Data);
u32 USERData;
}SAL_ADC_USERCB_ADPT, *PSAL_ADC_USERCB_ADPT;
// ADC user callback structure
typedef struct _SAL_ADC_USER_CB_ {
PSAL_ADC_USERCB_ADPT pTXCB; //ADC Transmit Callback
PSAL_ADC_USERCB_ADPT pTXCCB; //ADC Transmit Complete Callback
PSAL_ADC_USERCB_ADPT pRXCB; //ADC Receive Callback
PSAL_ADC_USERCB_ADPT pRXCCB; //ADC Receive Complete Callback
PSAL_ADC_USERCB_ADPT pRDREQCB; //ADC Read Request Callback
PSAL_ADC_USERCB_ADPT pERRCB; //ADC Error Callback
PSAL_ADC_USERCB_ADPT pDMATXCB; //ADC DMA Transmit Callback
PSAL_ADC_USERCB_ADPT pDMATXCCB; //ADC DMA Transmit Complete Callback
PSAL_ADC_USERCB_ADPT pDMARXCB; //ADC DMA Receive Callback
PSAL_ADC_USERCB_ADPT pDMARXCCB; //ADC DMA Receive Complete Callback
}SAL_ADC_USER_CB, *PSAL_ADC_USER_CB;
// ADC Transmit Buffer
typedef struct _SAL_ADC_TRANSFER_BUF_ {
u32 DataLen; //ADC Transmfer Length
u32 *pDataBuf; //ADC Transfer Buffer Pointer
u32 RSVD; //
}SAL_ADC_TRANSFER_BUF,*PSAL_ADC_TRANSFER_BUF;
typedef struct _SAL_ADC_DMA_USER_DEF_ {
u8 TxDatSrcWdth;
u8 TxDatDstWdth;
u8 TxDatSrcBstSz;
u8 TxDatDstBstSz;
u8 TxChNo;
u8 LlpCtrl;
u16 RSVD0;
u32 MaxMultiBlk;
u32 pLlix;
u32 pBlockSizeList;
}SAL_ADC_DMA_USER_DEF, *PSAL_ADC_DMA_USER_DEF;
// Software API Level ADC Handler
typedef struct _SAL_ADC_HND_ {
u8 DevNum; //ADC device number
u8 PinMux; //ADC pin mux seletion
u8 OpType; //ADC operation type selection
volatile u8 DevSts; //ADC device status
u32 ADCExd; //ADC extended options:
//bit 0: example
//bit 31~bit 1: Reserved
u32 ErrType; //
u32 TimeOut; //ADC IO Timeout count
PHAL_ADC_INIT_DAT pInitDat; //Pointer to ADC initial data struct
PSAL_ADC_TRANSFER_BUF pRXBuf; //Pointer to ADC TX buffer
PSAL_ADC_USER_CB pUserCB; //Pointer to ADC User Callback
}SAL_ADC_HND, *PSAL_ADC_HND;
// ADC SAL handle private
typedef struct _SAL_ADC_HND_PRIV_ {
VOID **ppSalADCHnd; //Pointer to SAL_ADC_HND pointer
SAL_ADC_HND SalADCHndPriv; //Private SAL_ADC_HND
}SAL_ADC_HND_PRIV, *PSAL_ADC_HND_PRIV;
//ADC SAL management adapter
typedef struct _SAL_ADC_MNGT_ADPT_ {
PSAL_ADC_HND_PRIV pSalHndPriv; //Pointer to SAL_ADC_HND
PHAL_ADC_INIT_DAT pHalInitDat; //Pointer to HAL ADC initial data( HAL_ADC_INIT_DAT )
PHAL_ADC_OP pHalOp; //Pointer to HAL ADC operation( HAL_ADC_OP )
VOID (*pHalOpInit)(VOID*);//Pointer to HAL ADC initialize function
PIRQ_HANDLE pIrqHnd; //Pointer to IRQ handler in SAL layer( IRQ_HANDLE )
VOID (*pSalIrqFunc)(VOID*); //Used for SAL ADC interrupt function
PSAL_ADC_DMA_USER_DEF pDMAConf; //Pointer to DAC User Define DMA config
PHAL_GDMA_ADAPTER pHalGdmaAdp;
PHAL_GDMA_OP pHalGdmaOp;
PIRQ_HANDLE pIrqGdmaHnd;
VOID (*pHalGdmaOpInit)(VOID*); //Pointer to HAL DAC initialize function
PSAL_ADC_USER_CB pUserCB; //Pointer to SAL user callbacks (SAL_ADC_USER_CB )
VOID (*pSalDMAIrqFunc)(VOID*); //Used for SAL DAC interrupt function
}SAL_ADC_MNGT_ADPT, *PSAL_ADC_MNGT_ADPT;
//================ ADC HAL Function Prototype ===================
// ADC HAL inline function
// For checking I2C input index valid or not
static inline RTK_STATUS
RtkADCIdxChk(
IN u8 ADCIdx
)
{
#if !ADC0_USED
if (ADCIdx == ADC0_SEL)
return _EXIT_FAILURE;
#endif
#if !ADC1_USED
if (ADCIdx == ADC1_SEL)
return _EXIT_FAILURE;
#endif
#if !ADC2_USED
if (ADCIdx == ADC2_SEL)
return _EXIT_FAILURE;
#endif
#if !ADC3_USED
if (ADCIdx == ADC3_SEL)
return _EXIT_FAILURE;
#endif
return _EXIT_SUCCESS;
}
VOID HalADCOpInit(IN VOID *Data);
PSAL_ADC_HND RtkADCGetSalHnd(IN u8 DACIdx);
RTK_STATUS RtkADCFreeSalHnd(IN PSAL_ADC_HND pSalADCHND);
RTK_STATUS RtkADCLoadDefault(IN VOID *Data);
RTK_STATUS RtkADCInit(IN VOID *Data);
RTK_STATUS RtkADCDeInit(IN VOID *Data);
//RTK_STATUS RtkADCReceive(IN VOID *Data);
u32 RtkADCReceive(IN VOID *Data);
u32 RtkADCReceiveBuf(IN VOID *Data,IN u32 *pBuf);
PSAL_ADC_MNGT_ADPT RtkADCGetMngtAdpt(IN u8 ADCIdx);
RTK_STATUS RtkADCFreeMngtAdpt(IN PSAL_ADC_MNGT_ADPT pSalADCMngtAdpt);
VOID ADCISRHandle(IN VOID *Data);
VOID ADCGDMAISRHandle(IN VOID *Data);
HAL_Status RtkADCDisablePS(IN VOID *Data);
HAL_Status RtkADCEnablePS(IN VOID *Data);
#endif

View file

@ -0,0 +1,126 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_API_H_
#define _HAL_API_H_
#include "basic_types.h"
#include "hal_irqn.h"
#define HAL_READ32(base, addr) \
rtk_le32_to_cpu(*((volatile u32*)(base + addr)))
#define HAL_WRITE32(base, addr, value32) \
((*((volatile u32*)(base + addr))) = rtk_cpu_to_le32(value32))
#define HAL_READ16(base, addr) \
rtk_le16_to_cpu(*((volatile u16*)(base + addr)))
#define HAL_WRITE16(base, addr, value) \
((*((volatile u16*)(base + addr))) = rtk_cpu_to_le16(value))
#define HAL_READ8(base, addr) \
(*((volatile u8*)(base + addr)))
#define HAL_WRITE8(base, addr, value) \
((*((volatile u8*)(base + addr))) = value)
#if 0
// These "extern _LONG_CALL_" function declaration are for RAM code building only
// For ROM code building, thses code should be marked off
extern _LONG_CALL_ u8
HalPinCtrlRtl8195A(
IN u32 Function,
IN u32 PinLocation,
IN BOOL Operation
);
extern _LONG_CALL_ VOID
HalSerialPutcRtl8195a(
IN u8 c
);
extern _LONG_CALL_ u8
HalSerialGetcRtl8195a(
IN BOOL PullMode
);
extern _LONG_CALL_ u32
HalSerialGetIsrEnRegRtl8195a(VOID);
extern _LONG_CALL_ VOID
HalSerialSetIrqEnRegRtl8195a (
IN u32 SetValue
);
extern _LONG_CALL_ VOID
VectorTableInitForOSRtl8195A(
IN VOID *PortSVC,
IN VOID *PortPendSVH,
IN VOID *PortSysTick
);
extern _LONG_CALL_ BOOL
VectorIrqRegisterRtl8195A(
IN PIRQ_HANDLE pIrqHandle
);
extern _LONG_CALL_ BOOL
VectorIrqUnRegisterRtl8195A(
IN PIRQ_HANDLE pIrqHandle
);
extern _LONG_CALL_ VOID
VectorIrqEnRtl8195A(
IN PIRQ_HANDLE pIrqHandle
);
extern _LONG_CALL_ VOID
VectorIrqDisRtl8195A(
IN PIRQ_HANDLE pIrqHandle
);
#endif
extern BOOLEAN SpicFlashInitRtl8195A(u8 SpicBitMode);
extern VOID InitWDGIRQ(VOID);
#define PinCtrl HalPinCtrlRtl8195A
#define DiagPutChar HalSerialPutcRtl8195a
#define DiagGetChar HalSerialGetcRtl8195a
#define DiagGetIsrEnReg HalSerialGetIsrEnRegRtl8195a
#define DiagSetIsrEnReg HalSerialSetIrqEnRegRtl8195a
#define InterruptForOSInit VectorTableInitForOSRtl8195A
#define InterruptRegister VectorIrqRegisterRtl8195A
#define InterruptUnRegister VectorIrqUnRegisterRtl8195A
#define InterruptEn VectorIrqEnRtl8195A
#define InterruptDis VectorIrqDisRtl8195A
#define SpicFlashInit SpicFlashInitRtl8195A
#define Calibration32k En32KCalibration
#define WDGInit InitWDGIRQ
typedef enum _HAL_Status
{
HAL_OK = 0x00,
HAL_BUSY = 0x01,
HAL_TIMEOUT = 0x02,
HAL_ERR_PARA = 0x03, // error with invaild parameters
HAL_ERR_MEM = 0x04, // error with memory allocation failed
HAL_ERR_HW = 0x05, // error with hardware error
HAL_ERR_UNKNOWN = 0xee // unknown error
} HAL_Status;
#endif //_HAL_API_H_

View file

@ -0,0 +1,17 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_COMMON_H_
#define _HAL_COMMON_H_
//================= Function Prototype START ===================
HAL_Status HalCommonInit(void);
//================= Function Prototype END ===================
#endif

View file

@ -0,0 +1,313 @@
//======================================================
// Routines to access hardware
//
// Copyright (c) 2013 Realtek Semiconductor Corp.
//
// This module is a confidential and proprietary property of RealTek and
// possession or use of this module requires written permission of RealTek.
//======================================================
#ifndef _HAL_DAC_H_
#define _HAL_DAC_H_
#include "rtl8195a.h"
#include "rtl8195a_dac.h"
#include "hal_api.h"
#include "hal_gdma.h"
//================ DAC Configuration =========================
#define DAC_INTR_OP_TYPE 1
#define DAC_DMA_OP_TYPE 1
// DAC SAL management macros
#define SAL_DAC_USER_CB_NUM (sizeof(SAL_DAC_USER_CB) / sizeof(PSAL_DAC_USERCB_ADPT))
// DAC SAL used module.
// Please set the DAC module flag to 1 to enable the related DAC module functions.
#define DAC0_USED 1
#define DAC1_USED 1
//================ Debug MSG Definition =======================
#define DAC_PREFIX "RTL8195A[dac]: "
#define DAC_PREFIX_LVL " [DAC_DBG]: "
typedef enum _DAC_DBG_LVL_ {
HAL_DAC_LVL = 0x00,
SAL_DAC_LVL = 0x02,
VERI_DAC_LVL = 0x04,
}DAC_DBG_LVL,*PDAC_DBG_LVL;
#ifdef CONFIG_DEBUG_LOG
#ifdef CONFIG_DEBUG_LOG_DAC_HAL
#define DBG_8195A_DAC(...) do{ \
_DbgDump("\r"DAC_PREFIX __VA_ARGS__);\
}while(0)
#define DACDBGLVL 0xFF
#define DBG_8195A_DAC_LVL(LVL,...) do{\
if (LVL&DACDBGLVL){\
_DbgDump("\r"DAC_PREFIX_LVL __VA_ARGS__);\
}\
}while(0)
#else
#define DBG_DAC_LOG_PERD 100
#define DBG_8195A_DAC(...)
#define DBG_8195A_DAC_LVL(...)
#endif
#endif
//================ DAC HAL Related Enumeration ==================
// DAC Module Selection
typedef enum _DAC_MODULE_SEL_ {
DAC0_SEL = 0x0,
DAC1_SEL = 0x1,
}DAC_MODULE_SEL,*PDAC_MODULE_SEL;
// DAC module status
typedef enum _DAC_MODULE_STATUS_ {
DAC_DISABLE = 0x0,
DAC_ENABLE = 0x1,
}DAC_MODULE_STATUS, *PDAC_MODULE_STATUS;
// DAC Data Rate
typedef enum _DAC_DATA_RATE_ {
DAC_DATA_RATE_10K = 0x0,
DAC_DATA_RATE_250K = 0x1,
}DAC_DATA_RATE,*PDAC_DATA_RATE;
// DAC Data Endian
typedef enum _DAC_DATA_ENDIAN_ {
DAC_DATA_ENDIAN_LITTLE = 0x0,
DAC_DATA_ENDIAN_BIG = 0x1,
}DAC_DATA_ENDIAN,*PDAC_DATA_ENDIAN;
// DAC Debug Select
typedef enum _DAC_DEBUG_SEL_ {
DAC_DBG_SEL_DISABLE = 0x0,
DAC_DBG_SEL_ENABLE = 0x1,
}DAC_DEBUG_SEL,*PDAC_DEBUG_SEL;
// DAC Dsc Debug Select
typedef enum _DAC_DSC_DEBUG_SEL_ {
DAC_DSC_DBG_SEL_DISABLE = 0x0,
DAC_DSC_DBG_SEL_ENABLE = 0x1,
}DAC_DSC_DEBUG_SEL,*PDAC_DSC_DEBUG_SEL;
// DAC Bypass Dsc Debug Select
typedef enum _DAC_BYPASS_DSC_SEL_ {
DAC_BYPASS_DSC_SEL_DISABLE = 0x0,
DAC_BYPASS_DSC_SEL_ENABLE = 0x1,
}DAC_BYPASS_DSC_SEL,*PDAC_BYPASS_DSC_SEL;
// DAC feature status
typedef enum _DAC_FEATURE_STATUS_{
DAC_FEATURE_DISABLED = 0,
DAC_FEATURE_ENABLED = 1,
}DAC_FEATURE_STATUS,*PDAC_FEATURE_STATUS;
// DAC operation type
typedef enum _DAC_OP_TYPE_ {
DAC_POLL_TYPE = 0x0,
DAC_DMA_TYPE = 0x1,
DAC_INTR_TYPE = 0x2,
}DAC_OP_TYPE, *PDAC_OP_TYPE;
// DAC device status
typedef enum _DAC_Device_STATUS_ {
DAC_STS_UNINITIAL = 0x00,
DAC_STS_INITIALIZED = 0x01,
DAC_STS_IDLE = 0x02,
DAC_STS_TX_READY = 0x03,
DAC_STS_TX_ING = 0x04,
DAC_STS_RX_READY = 0x05,
DAC_STS_RX_ING = 0x06,
DAC_STS_ERROR = 0x07,
}DAC_Device_STATUS, *PDAC_Device_STATUS;
//DAC device error type
typedef enum _DAC_ERR_TYPE_ {
DAC_ERR_FIFO_OVER = 0x04, //DAC FIFO overflow.
DAC_ERR_FIFO_STOP = 0x08, //DAC FIFO is completely empty, and it will be stopped automatically.
DAC_ERR_FIFO_WRFAIL = 0x10, //When DAC is NOT enabled, a write operation attempts to access DAC register.
DAC_ERR_FIFO_DSC_OVER0 = 0x20,
DAC_ERR_FIFO_DSC_OVER1 = 0x40,
}DAC_ERR_TYPE, *PDAC_ERR_TYPE;
// DAC data input method
typedef enum _DAC_INPUT_TYPE_{
DAC_INPUT_SINGLE_WR = 0x1, //DAC input by using single register write
DAC_INPUT_DMA_ONEBLK = 0x2, //DAC input by using single DMA block
DAC_INPUT_DMA_LLP = 0x3, //DAC input by using DMA linked list mode
}DAC_INPUT_TYPE,*PDAC_INPUT_TYPE;
//======================================================
// DAC HAL initial data structure
typedef struct _HAL_DAC_INIT_DAT_ {
u8 DACIdx; //DAC index used
u8 DACEn; //DAC module enable
u8 DACDataRate; //DAC data rate, 1'b0:10KHz, 1'b1:250KHz
u8 DACEndian; //DAC endian selection,
//but actually it's for 32-bit DAC data swap control
//1'b0: no swap,
//1'b1: swap the upper 16-bit and the lower 16-bit
u8 DACFilterSet; //DAC filter settle
u8 DACBurstSz; //DAC burst size
u8 DACDbgSel; //DAC debug sel
u8 DACDscDbgSel; //DAC debug dsc sel
u8 DACBPDsc; //DAC bypass delta sigma for loopback
u8 DACDeltaSig; //DAC bypass value of delta sigma
u16 RSVD1;
u32 *DACData; //DAC data pointer
u32 DACPWCtrl; //DAC0 and DAC1 power control
u32 DACAnaCtrl0; //DAC anapar_da control 0
u32 DACAnaCtrl1; //DAC anapar_da control 1
u32 DACIntrMSK; //DAC Interrupt Mask
}HAL_DAC_INIT_DAT,*PHAL_DAC_INIT_DAT;
// DAC HAL Operations
typedef struct _HAL_DAC_OP_ {
RTK_STATUS (*HalDACInit) (VOID *Data); //HAL DAC initialization
RTK_STATUS (*HalDACDeInit) (VOID *Data); //HAL DAC de-initialization
RTK_STATUS (*HalDACEnable) (VOID *Data); //HAL DAC de-initialization
u8 (*HalDACSend) (VOID *Data); //HAL DAC receive
RTK_STATUS (*HalDACIntrCtrl) (VOID *Data); //HAL DAC interrupt control
u32 (*HalDACReadReg) (VOID *Data, u8 DACReg);//HAL DAC read register
}HAL_DAC_OP, *PHAL_DAC_OP;
// DAC user callback adapter
typedef struct _SAL_DAC_USERCB_ADPT_ {
VOID (*USERCB) (VOID *Data);
u32 USERData;
}SAL_DAC_USERCB_ADPT, *PSAL_DAC_USERCB_ADPT;
// DAC user callback structure
typedef struct _SAL_DAC_USER_CB_ {
PSAL_DAC_USERCB_ADPT pTXCB; //DAC Transmit Callback
PSAL_DAC_USERCB_ADPT pTXCCB; //DAC Transmit Complete Callback
PSAL_DAC_USERCB_ADPT pRXCB; //DAC Receive Callback
PSAL_DAC_USERCB_ADPT pRXCCB; //DAC Receive Complete Callback
PSAL_DAC_USERCB_ADPT pRDREQCB; //DAC Read Request Callback
PSAL_DAC_USERCB_ADPT pERRCB; //DAC Error Callback
PSAL_DAC_USERCB_ADPT pDMATXCB; //DAC DMA Transmit Callback
PSAL_DAC_USERCB_ADPT pDMATXCCB; //DAC DMA Transmit Complete Callback
PSAL_DAC_USERCB_ADPT pDMARXCB; //DAC DMA Receive Callback
PSAL_DAC_USERCB_ADPT pDMARXCCB; //DAC DMA Receive Complete Callback
}SAL_DAC_USER_CB, *PSAL_DAC_USER_CB;
// DAC Transmit Buffer
typedef struct _SAL_DAC_TRANSFER_BUF_ {
u32 DataLen; //DAC Transmfer Length
u32 *pDataBuf; //DAC Transfer Buffer Pointer
u32 RSVD; //
}SAL_DAC_TRANSFER_BUF,*PSAL_DAC_TRANSFER_BUF;
typedef struct _SAL_DAC_DMA_USER_DEF_ {
u8 TxDatSrcWdth;
u8 TxDatDstWdth;
u8 TxDatSrcBstSz;
u8 TxDatDstBstSz;
u8 TxChNo;
u8 LlpCtrl;
u16 RSVD0;
u32 MaxMultiBlk;
u32 pLlix;
u32 pBlockSizeList;
}SAL_DAC_DMA_USER_DEF, *PSAL_DAC_DMA_USER_DEF;
// Software API Level DAC Handler
typedef struct _SAL_DAC_HND_ {
u8 DevNum; //DAC device number
u8 PinMux; //DAC pin mux seletion
u8 OpType; //DAC operation type selection
volatile u8 DevSts; //DAC device status
u8 DACInType; //DAC input type
u8 RSVD0;
u16 RSVD1;
u32 DACExd; //DAC extended options:
//bit 0: example
//bit 31~bit 1: Reserved
u32 ErrType; //
u32 TimeOut; //DAC IO Timeout count
PHAL_DAC_INIT_DAT pInitDat; //Pointer to DAC initial data struct
PSAL_DAC_TRANSFER_BUF pTXBuf; //Pointer to DAC TX buffer
PSAL_DAC_USER_CB pUserCB; //Pointer to DAC User Callback
PSAL_DAC_DMA_USER_DEF pDMAConf; //Pointer to DAC User Define DMA Config
}SAL_DAC_HND, *PSAL_DAC_HND;
// DAC SAL handle private
typedef struct _SAL_DAC_HND_PRIV_ {
VOID **ppSalDACHnd; //Pointer to SAL_DAC_HND pointer
SAL_DAC_HND SalDACHndPriv; //Private SAL_DAC_HND
}SAL_DAC_HND_PRIV, *PSAL_DAC_HND_PRIV;
//DAC SAL management adapter
typedef struct _SAL_DAC_MNGT_ADPT_ {
PSAL_DAC_HND_PRIV pSalHndPriv; //Pointer to SAL_DAC_HND
PHAL_DAC_INIT_DAT pHalInitDat; //Pointer to HAL DAC initial data( HAL_I2C_INIT_DAT )
PHAL_DAC_OP pHalOp; //Pointer to HAL DAC operation( HAL_DAC_OP )
VOID (*pHalOpInit)(VOID*); //Pointer to HAL DAC initialize function
PIRQ_HANDLE pIrqHnd; //Pointer to IRQ handler in SAL layer( IRQ_HANDLE )
PSAL_DAC_USER_CB pUserCB; //Pointer to SAL user callbacks (SAL_DAC_USER_CB )
VOID (*pSalIrqFunc)(VOID*); //Used for SAL DAC interrupt function
PSAL_DAC_DMA_USER_DEF pDMAConf; //Pointer to DAC User Define DMA config
PHAL_GDMA_ADAPTER pHalGdmaAdp;
PHAL_GDMA_OP pHalGdmaOp;
VOID (*pHalGdmaOpInit)(VOID*); //Pointer to HAL DAC initialize function
PIRQ_HANDLE pIrqGdmaHnd;
VOID (*pSalDMAIrqFunc)(VOID*); //Used for SAL DAC interrupt function
}SAL_DAC_MNGT_ADPT, *PSAL_DAC_MNGT_ADPT;
//================ DAC HAL Function Prototype ===================
// DAC HAL inline function
// For checking DAC input index valid or not
static inline RTK_STATUS
RtkDACIdxChk(
IN u8 DACIdx
)
{
#if !DAC0_USED
if (DACIdx == DAC0_SEL)
return _EXIT_FAILURE;
#endif
#if !DAC1_USED
if (DACIdx == DAC1_SEL)
return _EXIT_FAILURE;
#endif
return _EXIT_SUCCESS;
}
VOID HalDACOpInit(IN VOID *Data);
RTK_STATUS RtkDACLoadDefault(IN VOID *Data);
RTK_STATUS RtkDACInit(IN VOID *Data);
RTK_STATUS RtkDACDeInit(IN VOID *Data);
RTK_STATUS RtkDACSend(IN VOID *Data);
PSAL_DAC_HND RtkDACGetSalHnd(IN u8 DACIdx);
RTK_STATUS RtkDACFreeSalHnd(IN PSAL_DAC_HND pSalDACHND);
PSAL_DAC_MNGT_ADPT RtkDACGetMngtAdpt(IN u8 DACIdx);
RTK_STATUS RtkDACFreeMngtAdpt(IN PSAL_DAC_MNGT_ADPT pSalDACMngtAdpt);
#endif

View file

@ -0,0 +1,107 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_DIAG_H_
#define _HAL_DIAG_H_
//Register offset
#define UART_REV_BUF_OFF 0x00
#define UART_TRAN_HOLD_OFF 0x00
#define UART_DLH_OFF 0x04
#define UART_DLL_OFF 0x00
#define UART_INTERRUPT_EN_REG_OFF 0x04
#define UART_INTERRUPT_IDEN_REG_OFF 0x08
#define UART_FIFO_CTL_REG_OFF 0x08
#define UART_LINE_CTL_REG_OFF 0x0c
#define UART_MODEM_CTL_REG_OFF 0x10
#define UART_LINE_STATUS_REG_OFF 0x14
#define UART_MODEM_STATUS_REG_OFF 0x18
#define UART_FIFO_ACCESS_REG_OFF 0x70
#define UART_STATUS_REG_OFF 0x7c
#define UART_TFL_OFF 0x80
#define UART_RFL_OFF 0x84
//Buad rate
#define UART_BAUD_RATE_2400 2400
#define UART_BAUD_RATE_4800 4800
#define UART_BAUD_RATE_9600 9600
#define UART_BAUD_RATE_19200 19200
#define UART_BAUD_RATE_38400 38400
#define UART_BAUD_RATE_57600 57600
#define UART_BAUD_RATE_115200 115200
#define UART_BAUD_RATE_921600 921600
#define UART_BAUD_RATE_1152000 1152000
#define UART_PARITY_ENABLE 0x08
#define UART_PARITY_DISABLE 0
#define UART_DATA_LEN_5BIT 0x0
#define UART_DATA_LEN_6BIT 0x1
#define UART_DATA_LEN_7BIT 0x2
#define UART_DATA_LEN_8BIT 0x3
#define UART_STOP_1BIT 0x0
#define UART_STOP_2BIT 0x4
#define HAL_UART_READ32(addr) HAL_READ32(LOG_UART_REG_BASE, addr)
#define HAL_UART_WRITE32(addr, value) HAL_WRITE32(LOG_UART_REG_BASE, addr, value)
#define HAL_UART_READ16(addr) HAL_READ16(LOG_UART_REG_BASE, addr)
#define HAL_UART_WRITE16(addr, value) HAL_WRITE16(LOG_UART_REG_BASE, addr, value)
#define HAL_UART_READ8(addr) HAL_READ8(LOG_UART_REG_BASE, addr)
#define HAL_UART_WRITE8(addr, value) HAL_WRITE8(LOG_UART_REG_BASE, addr, value)
typedef struct _LOG_UART_ADAPTER_ {
u32 BaudRate;
u32 FIFOControl;
u32 IntEnReg;
u8 Parity;
u8 Stop;
u8 DataLength;
}LOG_UART_ADAPTER, *PLOG_UART_ADAPTER;
typedef struct _COMMAND_TABLE_ {
const u8* cmd;
u16 ArgvCnt;
u32 (*func)(u16 argc, u8* argv[]);
const u8* msg;
}COMMAND_TABLE, *PCOMMAND_TABLE;
//VOID
//HalLogUartHandle(void);
extern _LONG_CALL_ROM_ u32
HalLogUartInit(
IN LOG_UART_ADAPTER UartAdapter
);
extern _LONG_CALL_ROM_ VOID
HalSerialPutcRtl8195a(
IN u8 c
);
extern _LONG_CALL_ROM_ u8
HalSerialGetcRtl8195a(
IN BOOL PullMode
);
extern _LONG_CALL_ROM_ u32
HalSerialGetIsrEnRegRtl8195a(VOID);
extern _LONG_CALL_ROM_ VOID
HalSerialSetIrqEnRegRtl8195a (
IN u32 SetValue
);
#endif//_HAL_DIAG_H_

View file

@ -0,0 +1,22 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_EFUSE_H_
#define _HAL_EFUSE_H_
_LONG_CALL_ROM_ extern VOID HalEFUSEPowerSwitch8195AROM(IN u8 bWrite, IN u8 PwrState, IN u8 L25OutVoltage);
_LONG_CALL_ extern u32 HALEFUSEOneByteReadROM(IN u32 CtrlSetting, IN u16 Addr, OUT u8 *Data, IN u8 L25OutVoltage);
_LONG_CALL_ extern u32 HALEFUSEOneByteWriteROM(IN u32 CtrlSetting, IN u16 Addr, IN u8 Data, IN u8 L25OutVoltage);
#define EFUSERead8 HALEFUSEOneByteReadROM
#define EFUSEWrite8 HALEFUSEOneByteWriteROM
#define L25EOUTVOLTAGE 7
#endif

View file

@ -0,0 +1,141 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_GDMA_H_
#define _HAL_GDMA_H_
#include "rtl8195a_gdma.h"
typedef struct _GDMA_CH_LLI_ELE_ {
u32 Sarx;
u32 Darx;
u32 Llpx;
u32 CtlxLow;
u32 CtlxUp;
u32 Temp;
}GDMA_CH_LLI_ELE, *PGDMA_CH_LLI_ELE;
#if 1
#if 0
typedef struct _GDMA_CH_LLI_ {
PGDMA_CH_LLI_ELE pLliEle;
PGDMA_CH_LLI pNextLli;
}GDMA_CH_LLI, *PGDMA_CH_LLI;
typedef struct _BLOCK_SIZE_LIST_ {
u32 BlockSize;
PBLOCK_SIZE_LIST pNextBlockSiz;
}BLOCK_SIZE_LIST, *PBLOCK_SIZE_LIST;
#else
struct GDMA_CH_LLI {
PGDMA_CH_LLI_ELE pLliEle;
struct GDMA_CH_LLI *pNextLli;
};
struct BLOCK_SIZE_LIST {
u32 BlockSize;
struct BLOCK_SIZE_LIST *pNextBlockSiz;
};
#endif
#endif
typedef struct _HAL_GDMA_ADAPTER_ {
u32 ChSar;
u32 ChDar;
GDMA_CHANNEL_NUM ChEn;
GDMA_CTL_REG GdmaCtl;
GDMA_CFG_REG GdmaCfg;
u32 PacketLen;
u32 BlockLen;
u32 MuliBlockCunt;
u32 MaxMuliBlock;
struct GDMA_CH_LLI *pLlix;
struct BLOCK_SIZE_LIST *pBlockSizeList;
PGDMA_CH_LLI_ELE pLli;
u32 NextPlli;
u8 TestItem;
u8 ChNum;
u8 GdmaIndex;
u8 IsrCtrl:1;
u8 GdmaOnOff:1;
u8 Llpctrl:1;
u8 Lli0:1;
u8 Rsvd4to7:4;
u8 GdmaIsrType;
}HAL_GDMA_ADAPTER, *PHAL_GDMA_ADAPTER;
typedef struct _HAL_GDMA_CHNL_ {
u8 GdmaIndx;
u8 GdmaChnl;
u8 IrqNum;
u8 Reserved;
}HAL_GDMA_CHNL, *PHAL_GDMA_CHNL;
typedef struct _HAL_GDMA_BLOCK_ {
u32 SrcAddr;
u32 DstAddr;
u32 BlockLength;
u32 SrcOffset;
u32 DstOffset;
}HAL_GDMA_BLOCK, *PHAL_GDMA_BLOCK;
typedef struct _HAL_GDMA_OP_ {
VOID (*HalGdmaOnOff)(VOID *Data);
BOOL (*HalGdamChInit)(VOID *Data);
BOOL (*HalGdmaChSeting)(VOID *Data);
BOOL (*HalGdmaChBlockSeting)(VOID *Data);
VOID (*HalGdmaChDis)(VOID *Data);
VOID (*HalGdmaChEn)(VOID *Data);
VOID (*HalGdmaChIsrEnAndDis) (VOID *Data);
u8 (*HalGdmaChIsrClean)(VOID *Data);
VOID (*HalGdmaChCleanAutoSrc)(VOID *Data);
VOID (*HalGdmaChCleanAutoDst)(VOID *Data);
}HAL_GDMA_OP, *PHAL_GDMA_OP;
typedef struct _HAL_GDMA_OBJ_ {
HAL_GDMA_ADAPTER HalGdmaAdapter;
IRQ_HANDLE GdmaIrqHandle;
volatile GDMA_CH_LLI_ELE GdmaChLli[16];
struct GDMA_CH_LLI Lli[16];
struct BLOCK_SIZE_LIST BlockSizeList[16];
u8 Busy; // is transfering
u8 BlockNum;
} HAL_GDMA_OBJ, *PHAL_GDMA_OBJ;
VOID HalGdmaOpInit(IN VOID *Data);
VOID HalGdmaOn(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
VOID HalGdmaOff(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
BOOL HalGdmaChInit(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
VOID HalGdmaChDis(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
VOID HalGdmaChEn(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
BOOL HalGdmaChSeting(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
BOOL HalGdmaChBlockSeting(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
VOID HalGdmaChIsrEn(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
VOID HalGdmaChIsrDis(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
u8 HalGdmaChIsrClean(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
VOID HalGdmaChCleanAutoSrc(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
VOID HalGdmaChCleanAutoDst(PHAL_GDMA_ADAPTER pHalGdmaAdapter);
extern HAL_Status HalGdmaChnlRegister (u8 GdmaIdx, u8 ChnlNum);
extern VOID HalGdmaChnlUnRegister (u8 GdmaIdx, u8 ChnlNum);
extern PHAL_GDMA_CHNL HalGdmaChnlAlloc (HAL_GDMA_CHNL *pChnlOption);
extern VOID HalGdmaChnlFree (HAL_GDMA_CHNL *pChnl);
extern BOOL HalGdmaMemCpyInit(PHAL_GDMA_OBJ pHalGdmaObj);
extern VOID HalGdmaMemCpyDeInit(PHAL_GDMA_OBJ pHalGdmaObj);
extern VOID* HalGdmaMemCpy(PHAL_GDMA_OBJ pHalGdmaObj, void* pDest, void* pSrc, u32 len);
extern VOID HalGdmaMemAggr(PHAL_GDMA_OBJ pHalGdmaObj, PHAL_GDMA_BLOCK pHalGdmaBlock);
extern BOOL HalGdmaMemCpyAggrInit(PHAL_GDMA_OBJ pHalGdmaObj);
extern const HAL_GDMA_OP _HalGdmaOp;
extern const HAL_GDMA_CHNL GDMA_Chnl_Option[];
extern const HAL_GDMA_CHNL GDMA_Multi_Block_Chnl_Option[];
extern const u16 HalGdmaChnlEn[6];
#endif

View file

@ -0,0 +1,236 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_GPIO_H_
#define _HAL_GPIO_H_
#define HAL_GPIO_PIN_INT_MODE 0x80
typedef enum {
_PORT_A = 0,
_PORT_B = 1,
_PORT_C = 2,
_PORT_D = 3,
_PORT_E = 4,
_PORT_F = 5,
_PORT_G = 6,
_PORT_H = 7,
_PORT_I = 8,
_PORT_J = 9,
_PORT_K = 10,
_PORT_MAX
} HAL_GPIO_PORT_NAME;
typedef enum {
_PA_0 = (_PORT_A<<4|0),
_PA_1 = (_PORT_A<<4|1),
_PA_2 = (_PORT_A<<4|2),
_PA_3 = (_PORT_A<<4|3),
_PA_4 = (_PORT_A<<4|4),
_PA_5 = (_PORT_A<<4|5),
_PA_6 = (_PORT_A<<4|6),
_PA_7 = (_PORT_A<<4|7),
_PB_0 = (_PORT_B<<4|0),
_PB_1 = (_PORT_B<<4|1),
_PB_2 = (_PORT_B<<4|2),
_PB_3 = (_PORT_B<<4|3),
_PB_4 = (_PORT_B<<4|4),
_PB_5 = (_PORT_B<<4|5),
_PB_6 = (_PORT_B<<4|6),
_PB_7 = (_PORT_B<<4|7),
_PC_0 = (_PORT_C<<4|0),
_PC_1 = (_PORT_C<<4|1),
_PC_2 = (_PORT_C<<4|2),
_PC_3 = (_PORT_C<<4|3),
_PC_4 = (_PORT_C<<4|4),
_PC_5 = (_PORT_C<<4|5),
_PC_6 = (_PORT_C<<4|6),
_PC_7 = (_PORT_C<<4|7),
_PC_8 = (_PORT_C<<4|8),
_PC_9 = (_PORT_C<<4|9),
_PD_0 = (_PORT_D<<4|0),
_PD_1 = (_PORT_D<<4|1),
_PD_2 = (_PORT_D<<4|2),
_PD_3 = (_PORT_D<<4|3),
_PD_4 = (_PORT_D<<4|4),
_PD_5 = (_PORT_D<<4|5),
_PD_6 = (_PORT_D<<4|6),
_PD_7 = (_PORT_D<<4|7),
_PD_8 = (_PORT_D<<4|8),
_PD_9 = (_PORT_D<<4|9),
_PE_0 = (_PORT_E<<4|0),
_PE_1 = (_PORT_E<<4|1),
_PE_2 = (_PORT_E<<4|2),
_PE_3 = (_PORT_E<<4|3),
_PE_4 = (_PORT_E<<4|4),
_PE_5 = (_PORT_E<<4|5),
_PE_6 = (_PORT_E<<4|6),
_PE_7 = (_PORT_E<<4|7),
_PE_8 = (_PORT_E<<4|8),
_PE_9 = (_PORT_E<<4|9),
_PE_A = (_PORT_E<<4|10),
_PF_0 = (_PORT_F<<4|0),
_PF_1 = (_PORT_F<<4|1),
_PF_2 = (_PORT_F<<4|2),
_PF_3 = (_PORT_F<<4|3),
_PF_4 = (_PORT_F<<4|4),
_PF_5 = (_PORT_F<<4|5),
// _PF_6 = (_PORT_F<<4|6),
// _PF_7 = (_PORT_F<<4|7),
_PG_0 = (_PORT_G<<4|0),
_PG_1 = (_PORT_G<<4|1),
_PG_2 = (_PORT_G<<4|2),
_PG_3 = (_PORT_G<<4|3),
_PG_4 = (_PORT_G<<4|4),
_PG_5 = (_PORT_G<<4|5),
_PG_6 = (_PORT_G<<4|6),
_PG_7 = (_PORT_G<<4|7),
_PH_0 = (_PORT_H<<4|0),
_PH_1 = (_PORT_H<<4|1),
_PH_2 = (_PORT_H<<4|2),
_PH_3 = (_PORT_H<<4|3),
_PH_4 = (_PORT_H<<4|4),
_PH_5 = (_PORT_H<<4|5),
_PH_6 = (_PORT_H<<4|6),
_PH_7 = (_PORT_H<<4|7),
_PI_0 = (_PORT_I<<4|0),
_PI_1 = (_PORT_I<<4|1),
_PI_2 = (_PORT_I<<4|2),
_PI_3 = (_PORT_I<<4|3),
_PI_4 = (_PORT_I<<4|4),
_PI_5 = (_PORT_I<<4|5),
_PI_6 = (_PORT_I<<4|6),
_PI_7 = (_PORT_I<<4|7),
_PJ_0 = (_PORT_J<<4|0),
_PJ_1 = (_PORT_J<<4|1),
_PJ_2 = (_PORT_J<<4|2),
_PJ_3 = (_PORT_J<<4|3),
_PJ_4 = (_PORT_J<<4|4),
_PJ_5 = (_PORT_J<<4|5),
_PJ_6 = (_PORT_J<<4|6),
// _PJ_7 = (_PORT_J<<4|7),
_PK_0 = (_PORT_K<<4|0),
_PK_1 = (_PORT_K<<4|1),
_PK_2 = (_PORT_K<<4|2),
_PK_3 = (_PORT_K<<4|3),
_PK_4 = (_PORT_K<<4|4),
_PK_5 = (_PORT_K<<4|5),
_PK_6 = (_PORT_K<<4|6),
// _PK_7 = (_PORT_K<<4|7),
// Not connected
_PIN_NC = (int)0xFFFFFFFF
} HAL_PIN_NAME;
typedef enum
{
GPIO_PIN_LOW = 0,
GPIO_PIN_HIGH = 1,
GPIO_PIN_ERR = 2 // read Pin error
} HAL_GPIO_PIN_STATE;
typedef enum {
DIN_PULL_NONE = 0, //floating or high impedance ?
DIN_PULL_LOW = 1,
DIN_PULL_HIGH = 2,
DOUT_PUSH_PULL = 3,
DOUT_OPEN_DRAIN = 4,
INT_LOW = (5|HAL_GPIO_PIN_INT_MODE), // Interrupt Low level trigger
INT_HIGH = (6|HAL_GPIO_PIN_INT_MODE), // Interrupt High level trigger
INT_FALLING = (7|HAL_GPIO_PIN_INT_MODE), // Interrupt Falling edge trigger
INT_RISING = (8|HAL_GPIO_PIN_INT_MODE) // Interrupt Rising edge trigger
} HAL_GPIO_PIN_MODE;
enum {
GPIO_PORT_A = 0,
GPIO_PORT_B = 1,
GPIO_PORT_C = 2,
GPIO_PORT_D = 3
};
typedef enum {
hal_PullNone = 0,
hal_PullUp = 1,
hal_PullDown = 2,
hal_OpenDrain = 3,
hal_PullDefault = hal_PullNone
} HAL_PinMode;
typedef struct _HAL_GPIO_PORT_ {
u32 out_data; // to write the GPIO port
u32 in_data; // to read the GPIO port
u32 dir; // config each pin direction
}HAL_GPIO_PORT, *PHAL_GPIO_PORT;
#define HAL_GPIO_PIN_NAME(port,pin) (((port)<<5)|(pin))
#define HAL_GPIO_GET_PORT_BY_NAME(x) ((x>>5) & 0x03)
#define HAL_GPIO_GET_PIN_BY_NAME(x) (x & 0x1f)
typedef struct _HAL_GPIO_PIN_ {
HAL_GPIO_PIN_MODE pin_mode;
u32 pin_name; // Pin: [7:5]: port number, [4:0]: pin number
}HAL_GPIO_PIN, *PHAL_GPIO_PIN;
typedef struct _HAL_GPIO_OP_ {
#if defined(__ICCARM__)
void* dummy;
#endif
}HAL_GPIO_OP, *PHAL_GPIO_OP;
typedef void (*GPIO_IRQ_FUN)(VOID *Data, u32 Id);
typedef void (*GPIO_USER_IRQ_FUN)(u32 Id);
typedef struct _HAL_GPIO_ADAPTER_ {
IRQ_HANDLE IrqHandle; // GPIO HAL IRQ Handle
GPIO_USER_IRQ_FUN UserIrqHandler; // GPIO IRQ Handler
GPIO_IRQ_FUN PortA_IrqHandler[32]; // The interrupt handler triggered by Port A[x]
VOID *PortA_IrqData[32];
VOID (*EnterCritical)(void);
VOID (*ExitCritical)(void);
u32 Local_Gpio_Dir[3]; // to record direction setting: 0- IN, 1- Out
u8 Gpio_Func_En; // Is GPIO HW function enabled ?
u8 Locked;
}HAL_GPIO_ADAPTER, *PHAL_GPIO_ADAPTER;
u32
HAL_GPIO_GetPinName(
u32 chip_pin
);
VOID
HAL_GPIO_PullCtrl(
u32 pin,
u32 mode
);
VOID
HAL_GPIO_Init(
HAL_GPIO_PIN *GPIO_Pin
);
VOID
HAL_GPIO_Irq_Init(
HAL_GPIO_PIN *GPIO_Pin
);
#endif // end of "#define _HAL_GPIO_H_"

View file

@ -0,0 +1,585 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_I2C_H_ //#ifndef _HAL_I2C_H_
#define _HAL_I2C_H_
#include "rtl8195a_i2c.h"
#include "hal_gdma.h"
//================= I2C CONFIGURATION START ==================
// I2C SAL User Configuration Flags
// I2C SAL operation types
#define I2C_POLL_OP_TYPE 1
#define I2C_INTR_OP_TYPE 1
#define I2C_DMA_OP_TYPE 1
// I2C supports user register address
#define I2C_USER_REG_ADDR 1 //I2C User specific register address by using
//the first I2C data as the register
//address
// I2C SAL used module. Please set the I2C module flag to 1 to enable the related
// I2C module functions.
#define I2C0_USED 1
#define I2C1_USED 1
#define I2C2_USED 1
#define I2C3_USED 1
//================= I2C CONFIGURATION END ===================
//================= I2C HAL START ==========================
// I2C debug output
#define I2C_PREFIX "RTL8195A[i2c]: "
#define I2C_PREFIX_LVL " [i2c_DBG]: "
typedef enum _I2C_DBG_LVL_ {
HAL_I2C_LVL = 0x01,
SAL_I2C_LVL = 0x02,
VERI_I2C_LVL = 0x03,
}I2C_DBG_LVL,*PI2C_DBG_LVL;
#ifdef CONFIG_DEBUG_LOG
#ifdef CONFIG_DEBUG_LOG_I2C_HAL
#define DBG_I2C_LOG_PERD 100
#define I2CDBGLVL 0xFF
#define DBG_8195A_I2C(...) do{ \
_DbgDump("\r"I2C_PREFIX __VA_ARGS__);\
}while(0)
#define DBG_8195A_I2C_LVL(LVL,...) do{\
if (LVL&I2CDBGLVL){\
_DbgDump("\r"I2C_PREFIX_LVL __VA_ARGS__);\
}\
}while(0)
#else
#define DBG_I2C_LOG_PERD 100
#define DBG_8195A_I2C(...)
#define DBG_8195A_I2C_LVL(...)
#endif
#else
#define DBG_I2C_LOG_PERD 100
#define DBG_8195A_I2C(...)
#define DBG_8195A_I2C_LVL(...)
#endif
//======================================================
// I2C HAL related enumeration
// I2C Module Selection
typedef enum _I2C_MODULE_SEL_ {
I2C0_SEL = 0x0,
I2C1_SEL = 0x1,
I2C2_SEL = 0x2,
I2C3_SEL = 0x3,
}I2C_MODULE_SEL,*PI2C_MODULE_SEL;
// I2C HAL initial data structure
typedef struct _HAL_I2C_INIT_DAT_ {
u8 I2CIdx; //I2C index used
u8 I2CEn; //I2C module enable
u8 I2CMaster; //Master or Slave mode
u8 I2CAddrMod; //I2C addressing mode(7-bit, 10-bit)
u8 I2CSpdMod; //I2C speed mode(Standard, Fast, High)
u8 I2CSetup; //I2C SDA setup time
u8 I2CRXTL; //I2C RX FIFO Threshold
u8 I2CTXTL; //I2C TX FIFO Threshold
u8 I2CBusLd; //I2C bus load (pf) for high speed mode
u8 I2CReSTR; //I2C restart support
u8 I2CGC; //I2C general support
u8 I2CStartB; //I2C start byte support
u8 I2CSlvNoAck; //I2C slave no ack support
u8 I2CDMACtrl; //I2C DMA feature support
u8 I2CCmd; //I2C Command
u8 I2CDataLen; //I2C Data Length
u8 I2CSlvAckGC; //I2C slave acks to General Call
u8 I2CStop; //I2C issues STOP bit or not
u16 RSVD0;
u8 *I2CRWData; //I2C Read/Write data pointer
u16 I2CIntrMSK; //I2C Interrupt Mask
u16 I2CIntrClr; //I2C Interrupt register to clear
u16 I2CAckAddr; //I2C target address in I2C Master mode,
//ack address in I2C Slave mode
u16 I2CSdaHd; //I2C SDA hold time
u32 I2CClk; //I2C bus clock (in kHz)
u8 I2CTxDMARqLv; //I2C TX DMA Empty Level
u8 I2CRxDMARqLv; //I2C RX DMA Full Level
u16 RSVD1; //Reserved
}HAL_I2C_INIT_DAT,*PHAL_I2C_INIT_DAT;
// I2C HAL Operations
typedef struct _HAL_I2C_OP_ {
HAL_Status (*HalI2CInit) (VOID *Data); //HAL I2C initialization
HAL_Status (*HalI2CDeInit) (VOID *Data); //HAL I2C de-initialization
HAL_Status (*HalI2CSend) (VOID *Data); //HAL I2C send
u8 (*HalI2CReceive) (VOID *Data); //HAL I2C receive
HAL_Status (*HalI2CEnable) (VOID *Data); //HAL I2C enable module
HAL_Status (*HalI2CIntrCtrl) (VOID *Data); //HAL I2C interrupt control
u32 (*HalI2CReadReg) (VOID *Data, u8 I2CReg);//HAL I2C read register
HAL_Status (*HalI2CWriteReg) (VOID *Data, u8 I2CReg, u32 RegVal);//HAL I2C write register
HAL_Status (*HalI2CSetCLK) (VOID *Data); //HAL I2C set bus clock
HAL_Status (*HalI2CMassSend) (VOID *Data); //HAL I2C mass send
HAL_Status (*HalI2CClrIntr) (VOID *Data); //HAL I2C clear interrupts
HAL_Status (*HalI2CClrAllIntr) (VOID *Data); //HAL I2C clear all interrupts
HAL_Status (*HalI2CDMACtrl) (VOID *Data); //HAL I2C DMA control
}HAL_I2C_OP, *PHAL_I2C_OP;
//================= I2C HAL END ===========================
//================= I2C SAL START ==========================
//I2C SAL Macros
//======================================================
// I2C SAL related enumerations
// I2C Extend Features
typedef enum _I2C_EXD_SUPPORT_{
I2C_EXD_RESTART = 0x1, //BIT_0, RESTART bit
I2C_EXD_GENCALL = 0x2, //BIT_1, Master generates General Call. All "send" operations generate General Call addresss
I2C_EXD_STARTB = 0x4, //BIT_2, Using START BYTE, instead of START Bit
I2C_EXD_SLVNOACK = 0x8, //BIT_3, Slave no ack to master
I2C_EXD_BUS400PF = 0x10, //BIT_4, I2C bus loading is 400pf
I2C_EXD_SLVACKGC = 0x20, //BIT_5, Slave acks to a General Call
I2C_EXD_USER_REG = 0x40, //BIT_6, Using User Register Address
I2C_EXD_USER_TWOB = 0x80, //BIT_7, User Register Address is 2-byte
I2C_EXD_MTR_ADDR_RTY= 0x100, //BIT_8, Master retries to send start condition and Slave address when the slave doesn't ack
// the address.
I2C_EXD_MTR_ADDR_UPD= 0x200, //BIT_9, Master dynamically updates slave address
I2C_EXD_MTR_HOLD_BUS= 0x400, //BIT_10, Master doesn't generate STOP when the FIFO is empty. This would make Master hold
// the bus.
}I2C_EXD_SUPPORT,*PI2C_EXD_SUPPORT;
// I2C operation type
typedef enum _I2C_OP_TYPE_ {
I2C_POLL_TYPE = 0x0,
I2C_DMA_TYPE = 0x1,
I2C_INTR_TYPE = 0x2,
}I2C_OP_TYPE, *PI2C_OP_TYPE;
// I2C pinmux selection
typedef enum _I2C_PINMUX_ {
I2C_PIN_S0 = 0x0,
I2C_PIN_S1 = 0x1,
I2C_PIN_S2 = 0x2,
I2C_PIN_S3 = 0x3, //Only valid for I2C0 and I2C3
}I2C_PINMUX, *PI2C_PINMUX;
// I2C module status
typedef enum _I2C_MODULE_STATUS_ {
I2C_DISABLE = 0x0,
I2C_ENABLE = 0x1,
}I2C_MODULE_STATUS, *PI2C_MODULE_STATUS;
// I2C device status
typedef enum _I2C_Device_STATUS_ {
I2C_STS_UNINITIAL = 0x00,
I2C_STS_INITIALIZED = 0x01,
I2C_STS_IDLE = 0x02,
I2C_STS_TX_READY = 0x03,
I2C_STS_TX_ING = 0x04,
I2C_STS_RX_READY = 0x05,
I2C_STS_RX_ING = 0x06,
I2C_STS_ERROR = 0x10,
I2C_STS_TIMEOUT = 0x11,
}I2C_Device_STATUS, *PI2C_Device_STATUS;
// I2C feature status
typedef enum _I2C_FEATURE_STATUS_{
I2C_FEATURE_DISABLED = 0,
I2C_FEATURE_ENABLED = 1,
}I2C_FEATURE_STATUS,*PI2C_FEATURE_STATUS;
// I2C device mode
typedef enum _I2C_DEV_MODE_ {
I2C_SLAVE_MODE = 0x0,
I2C_MASTER_MODE = 0x1,
}I2C_DEV_MODE, *PI2C_DEV_MODE;
// I2C Bus Transmit/Receive
typedef enum _I2C_DIRECTION_ {
I2C_ONLY_TX = 0x1,
I2C_ONLY_RX = 0x2,
I2C_TXRX = 0x3,
}I2C_DIRECTION, *PI2C_DIRECTION;
//I2C DMA module number
typedef enum _I2C_DMA_MODULE_SEL_ {
I2C_DMA_MODULE_0 = 0x0,
I2C_DMA_MODULE_1 = 0x1
}I2C_DMA_MODULE_SEL, *PI2C_DMA_MODULE_SEL;
// I2C0 DMA peripheral number
typedef enum _I2C0_DMA_PERI_NUM_ {
I2C0_DMA_TX_NUM = 0x8,
I2C0_DMA_RX_NUM = 0x9,
}I2C0_DMA_PERI_NUM,*PI2C0_DMA_PERI_NUM;
// I2C1 DMA peripheral number
typedef enum _I2C1_DMA_PERI_NUM_ {
I2C1_DMA_TX_NUM = 0xA,
I2C1_DMA_RX_NUM = 0xB,
}I2C1_DMA_PERI_NUM,*PI2C1_DMA_PERI_NUM;
// I2C0 DMA module used
typedef enum _I2C0_DMA_MODULE_ {
I2C0_DMA0 = 0x0,
I2C0_DMA1 = 0x1,
}I2C0_DMA_MODULE,*PI2C0_DMA_MODULE;
// I2C0 DMA module used
typedef enum _I2C1_DMA_MODULE_ {
I2C1_DMA0 = 0x0,
I2C1_DMA1 = 0x1,
}I2C1_DMA_MODULE,*PI2C1_DMA_MODULE;
// I2C command type
typedef enum _I2C_COMMAND_TYPE_ {
I2C_WRITE_CMD = 0x0,
I2C_READ_CMD = 0x1,
}I2C_COMMAND_TYPE,*PI2C_COMMAND_TYPE;
// I2C STOP BIT
typedef enum _I2C_STOP_TYPE_ {
I2C_STOP_DIS = 0x0,
I2C_STOP_EN = 0x1,
}I2C_STOP_TYPE, *PI2C_STOP_TYPE;
// I2C error type
typedef enum _I2C_ERR_TYPE_ {
I2C_ERR_RX_UNDER = 0x01, //I2C RX FIFO Underflow
I2C_ERR_RX_OVER = 0x02, //I2C RX FIFO Overflow
I2C_ERR_TX_OVER = 0x04, //I2C TX FIFO Overflow
I2C_ERR_TX_ABRT = 0x08, //I2C TX terminated
I2C_ERR_SLV_TX_NACK = 0x10, //I2C slave transmission terminated by master NACK,
//but there are data in slave TX FIFO
I2C_ERR_USER_REG_TO = 0x20,
I2C_ERR_RX_CMD_TO = 0x21,
I2C_ERR_RX_FF_TO = 0x22,
I2C_ERR_TX_CMD_TO = 0x23,
I2C_ERR_TX_FF_TO = 0x24,
I2C_ERR_TX_ADD_TO = 0x25,
I2C_ERR_RX_ADD_TO = 0x26,
}I2C_ERR_TYPE, *PI2C_ERR_TYPE;
// I2C Time Out type
typedef enum _I2C_TIMEOUT_TYPE_ {
I2C_TIMEOOUT_DISABLE = 0x00,
I2C_TIMEOOUT_ENDLESS = 0xFFFFFFFF,
}I2C_TIMEOUT_TYPE, *PI2C_TIMEOUT_TYPE;
//======================================================
// SAL I2C related data structures
// I2C user callback adapter
typedef struct _SAL_I2C_USERCB_ADPT_ {
VOID (*USERCB) (VOID *Data);
u32 USERData;
}SAL_I2C_USERCB_ADPT, *PSAL_I2C_USERCB_ADPT;
// I2C user callback structure
typedef struct _SAL_I2C_USER_CB_ {
PSAL_I2C_USERCB_ADPT pTXCB; //I2C Transmit Callback
PSAL_I2C_USERCB_ADPT pTXCCB; //I2C Transmit Complete Callback
PSAL_I2C_USERCB_ADPT pRXCB; //I2C Receive Callback
PSAL_I2C_USERCB_ADPT pRXCCB; //I2C Receive Complete Callback
PSAL_I2C_USERCB_ADPT pRDREQCB; //I2C Read Request Callback
PSAL_I2C_USERCB_ADPT pERRCB; //I2C Error Callback
PSAL_I2C_USERCB_ADPT pDMATXCB; //I2C DMA Transmit Callback
PSAL_I2C_USERCB_ADPT pDMATXCCB; //I2C DMA Transmit Complete Callback
PSAL_I2C_USERCB_ADPT pDMARXCB; //I2C DMA Receive Callback
PSAL_I2C_USERCB_ADPT pDMARXCCB; //I2C DMA Receive Complete Callback
PSAL_I2C_USERCB_ADPT pGENCALLCB; //I2C General Call Callback
}SAL_I2C_USER_CB, *PSAL_I2C_USER_CB;
// I2C Transmit Buffer
typedef struct _SAL_I2C_TRANSFER_BUF_ {
u16 DataLen; //I2C Transmfer Length
u16 TargetAddr; //I2C Target Address. It's only valid in Master Mode.
u32 RegAddr; //I2C Register Address. It's only valid in Master Mode.
u32 RSVD; //
u8 *pDataBuf; //I2C Transfer Buffer Pointer
}SAL_I2C_TRANSFER_BUF,*PSAL_I2C_TRANSFER_BUF;
typedef struct _SAL_I2C_DMA_USER_DEF_ {
u8 TxDatSrcWdth;
u8 TxDatDstWdth;
u8 TxDatSrcBstSz;
u8 TxDatDstBstSz;
u8 TxChNo;
u8 RSVD0;
u16 RSVD1;
u8 RxDatSrcWdth;
u8 RxDatDstWdth;
u8 RxDatSrcBstSz;
u8 RxDatDstBstSz;
u8 RxChNo;
u8 RSVD2;
u16 RSVD3;
}SAL_I2C_DMA_USER_DEF, *PSAL_I2C_DMA_USER_DEF;
// RTK I2C OP
typedef struct _RTK_I2C_OP_ {
HAL_Status (*Init) (VOID *Data);
HAL_Status (*DeInit) (VOID *Data);
HAL_Status (*Send) (VOID *Data);
HAL_Status (*Receive) (VOID *Data);
HAL_Status (*IoCtrl) (VOID *Data);
HAL_Status (*PowerCtrl) (VOID *Data);
}RTK_I2C_OP, *PRTK_I2C_OP;
// Software API Level I2C Handler
typedef struct _SAL_I2C_HND_ {
u8 DevNum; //I2C device number
u8 PinMux; //I2C pin mux seletion
u8 OpType; //I2C operation type selection
volatile u8 DevSts; //I2C device status
u8 I2CMaster; //I2C Master or Slave mode
u8 I2CAddrMod; //I2C 7-bit or 10-bit mode
u8 I2CSpdMod; //I2C SS/ FS/ HS speed mode
u8 I2CAckAddr; //I2C target address in Master
//mode or ack address in Slave
//mode
u16 I2CClk; //I2C bus clock
u8 MasterRead; //I2C Master Read Supported,
//An Address will be sent before
//read data back.
u8 I2CDmaSel; //I2C DMA module select
// 0 for DMA0,
// 1 for DMA1
u8 I2CTxDMARqLv; //I2C TX DMA Empty Level
u8 I2CRxDMARqLv; //I2C RX DMA Full Level
u16 RSVD0; //Reserved
u32 AddRtyTimeOut; //I2C TimeOut Value for master send address retry
//(Originally Reserved.)
u32 I2CExd; //I2C extended options:
//bit 0: I2C RESTART supported,
// 0 for NOT supported,
// 1 for supported
//bit 1: I2C General Call supported
// 0 for NOT supported,
// 1 for supported
//bit 2: I2C START Byte supported
// 0 for NOT supported,
// 1 for supported
//bit 3: I2C Slave-No-Ack
// supported
// 0 for NOT supported,
// 1 for supported
//bit 4: I2C bus loading,
// 0 for 100pf,
// 1 for 400pf
//bit 5: I2C slave ack to General
// Call
//bit 6: I2C User register address
//bit 7: I2C 2-Byte User register
// address
//bit 8: I2C slave address no ack retry,
// It's only for Master mode,
// when slave doesn't ack the
// address
//bit 31~bit 8: Reserved
u32 ErrType; //
u32 TimeOut; //I2C IO Timeout count, in ms
PHAL_I2C_INIT_DAT pInitDat; //Pointer to I2C initial data struct
PSAL_I2C_TRANSFER_BUF pTXBuf; //Pointer to I2C TX buffer
PSAL_I2C_TRANSFER_BUF pRXBuf; //Pointer to I2C RX buffer
PSAL_I2C_USER_CB pUserCB; //Pointer to I2C User Callback
PSAL_I2C_DMA_USER_DEF pDMAConf; //Pointer to I2C User Define DMA config
}SAL_I2C_HND, *PSAL_I2C_HND;
//======================================================
// I2C SAL Function Prototypes
// For checking I2C input index valid or not
static inline HAL_Status
RtkI2CIdxChk(
IN u8 I2CIdx
)
{
if (I2CIdx > I2C3_SEL)
return HAL_ERR_UNKNOWN;
return HAL_OK;
}
#if 0
//For checking I2C operation type valid or not
static inline HAL_Status
RtkI2COpTypeChk(
IN VOID *Data
)
{
PSAL_I2C_HND pSalI2CHND = (PSAL_I2C_HND) Data;
if (pSalI2CHND->OpType == I2C_POLL_TYPE)
return HAL_ERR_UNKNOWN;
if (pSalI2CHND->OpType == I2C_DMA_TYPE)
return HAL_ERR_UNKNOWN;
if (pSalI2CHND->OpType == I2C_INTR_TYPE)
return HAL_ERR_UNKNOWN;
pSalI2CHND = pSalI2CHND;
return HAL_OK;
}
#endif
//For checking I2C DMA available or not
static inline HAL_Status
RtkI2CDMAChk(
IN VOID *Data
)
{
PSAL_I2C_HND pSalI2CHND = (PSAL_I2C_HND) Data;
if (pSalI2CHND->OpType == I2C_DMA_TYPE) {
if (pSalI2CHND->DevNum >= I2C2_SEL)
return HAL_ERR_UNKNOWN;
}
else {
return HAL_ERR_UNKNOWN;
}
return HAL_OK;
}
//For checking I2C DMA available or not
static inline HAL_Status
RtkI2CDMAInitChk(
IN VOID *Data
)
{
PSAL_I2C_HND pSalI2CHND = (PSAL_I2C_HND) Data;
if (pSalI2CHND->OpType != I2C_DMA_TYPE) {
return HAL_ERR_UNKNOWN;
}
else {
return HAL_OK;
}
}
//======================================================
//SAL I2C management function prototype
_LONG_CALL_ROM_ HAL_Status RtkI2CLoadDefault(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status RtkI2CInit(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status RtkI2CDeInit(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status RtkI2CSend(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status RtkI2CReceive(IN VOID *Data);
_LONG_CALL_ROM_ VOID RtkSalI2COpInit(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status RtkI2CSendUserAddr(IN VOID *Data,IN u8 MtrWr);
_LONG_CALL_ROM_ HAL_Status RtkI2CIoCtrl(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status RtkI2CPowerCtrl(IN VOID *Data);
_LONG_CALL_ HAL_Status RtkI2CInitForPS(IN VOID *Data);
_LONG_CALL_ HAL_Status RtkI2CDeInitForPS(IN VOID *Data);
_LONG_CALL_ HAL_Status RtkI2CDisablePS(IN VOID *Data);
_LONG_CALL_ HAL_Status RtkI2CEnablePS(IN VOID *Data);
//================= I2C SAL END ===========================
//================= I2C SAL MANAGEMENT START =================
// I2C SAL management macros
#define SAL_USER_CB_NUM (sizeof(SAL_I2C_USER_CB) / sizeof(PSAL_I2C_USERCB_ADPT))
//======================================================
// I2C SAL management data structures
// I2C SAL handle private
typedef struct _SAL_I2C_HND_PRIV_ {
VOID **ppSalI2CHnd; //Pointer to SAL_I2C_HND pointer
SAL_I2C_HND SalI2CHndPriv; //Private SAL_I2C_HND
}SAL_I2C_HND_PRIV, *PSAL_I2C_HND_PRIV;
//I2C SAL management adapter
typedef struct _SAL_I2C_MNGT_ADPT_ {
PSAL_I2C_HND_PRIV pSalHndPriv; //Pointer to SAL_I2C_HND
PHAL_I2C_INIT_DAT pHalInitDat; //Pointer to HAL I2C initial data( HAL_I2C_INIT_DAT )
PHAL_I2C_OP pHalOp; //Pointer to HAL I2C operation( HAL_I2C_OP )
VOID (*pHalOpInit)(VOID*); //Pointer to HAL I2C initialize function
PIRQ_HANDLE pIrqHnd; //Pointer to IRQ handler in SAL layer( IRQ_HANDLE )
PSAL_I2C_USER_CB pUserCB; //Pointer to SAL user callbacks (SAL_I2C_USER_CB )
volatile u32 MstRDCmdCnt; //Used for Master Read command count
volatile u32 InnerTimeOut; //Used for SAL internal timeout count
VOID (*pSalIrqFunc)(VOID*); //Used for SAL I2C interrupt function
PSAL_I2C_DMA_USER_DEF pDMAConf; //Pointer to I2C User Define DMA config
PHAL_GDMA_ADAPTER pHalTxGdmaAdp; //Pointer to HAL_GDMA_ADAPTER
PHAL_GDMA_ADAPTER pHalRxGdmaAdp; //Pointer to HAL_GDMA_ADAPTER
PHAL_GDMA_OP pHalGdmaOp; //Pointer to HAL_GDMA_OP
VOID (*pHalGdmaOpInit)(VOID*); //Pointer to HAL I2C initialize function
PIRQ_HANDLE pIrqTxGdmaHnd; //Pointer to IRQ handler for Tx GDMA
PIRQ_HANDLE pIrqRxGdmaHnd; //Pointer to IRQ handler for Rx GDMA
VOID (*pSalDMATxIrqFunc)(VOID*); //Used for SAL I2C interrupt function
VOID (*pSalDMARxIrqFunc)(VOID*); //Used for SAL I2C interrupt function
u32 RSVD; //Reserved
}SAL_I2C_MNGT_ADPT, *PSAL_I2C_MNGT_ADPT;
//======================================================
//SAL I2C management function prototype
PSAL_I2C_MNGT_ADPT RtkI2CGetMngtAdpt(IN u8 I2CIdx);
HAL_Status RtkI2CFreeMngtAdpt(IN PSAL_I2C_MNGT_ADPT pSalI2CMngtAdpt);
PSAL_I2C_HND RtkI2CGetSalHnd(IN u8 I2CIdx);
HAL_Status RtkI2CFreeSalHnd(IN PSAL_I2C_HND pSalI2CHND);
u32 RtkSalI2CSts(IN VOID *Data);
extern _LONG_CALL_ VOID I2CISRHandle(IN VOID *Data);
extern _LONG_CALL_ VOID I2CTXGDMAISRHandle(IN VOID *Data);
extern _LONG_CALL_ VOID I2CRXGDMAISRHandle(IN VOID *Data);
extern HAL_Status I2CIsTimeout (IN u32 StartCount, IN u32 TimeoutCnt);
extern HAL_TIMER_OP HalTimerOp;
//======================================================
// Function Prototypes
_LONG_CALL_ VOID HalI2COpInit(IN VOID *Data);
//================= I2C SAL MANAGEMENT END ==================
//================= Rtl8195a I2C V02 function prototype ============
_LONG_CALL_ VOID HalI2COpInitV02(IN VOID *Data);
_LONG_CALL_ VOID I2CISRHandleV02(IN VOID *Data);
_LONG_CALL_ HAL_Status RtkI2CSendV02(IN VOID *Data);
_LONG_CALL_ HAL_Status RtkI2CReceiveV02(IN VOID *Data);
_LONG_CALL_ VOID RtkSalI2COpInitV02(IN VOID *Data);
//================= Rtl8195a I2C V02 function prototype END==========
//======================================================
//SAL I2C patch function prototype
HAL_Status RtkI2CSend_Patch(IN VOID *Data);
HAL_Status RtkI2CReceive_Patch(IN VOID *Data);
VOID HalI2COpInit_Patch(IN VOID *Data);
VOID I2CISRHandle_Patch(IN VOID *Data);
#ifndef CONFIG_RELEASE_BUILD_LIBRARIES
#define RtkI2CSend RtkI2CSend_Patch
#define RtkI2CReceive RtkI2CReceive_Patch
#endif
HAL_Status RtkI2CSend_Patch(IN VOID *Data);
HAL_Status RtkI2CReceive_Patch(IN VOID *Data);
//================= I2C SAL END ===========================
#endif //#ifndef _HAL_I2C_H_

View file

@ -0,0 +1,347 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_I2S_H_
#define _HAL_I2S_H_
#include "rtl8195a_i2s.h"
/* User Define Flags */
#define I2S_MAX_ID 1 // valid I2S index 0 ~ I2S_MAX_ID
/**********************************************************************/
/* I2S HAL initial data structure */
typedef struct _HAL_I2S_INIT_DAT_ {
u8 I2SIdx; /*I2S index used*/
u8 I2SEn; /*I2S module enable tx/rx/tx+rx*/
u8 I2SMaster; /*I2S Master or Slave mode*/
u8 I2SWordLen; /*I2S Word length 16 or 24bits*/
u8 I2SChNum; /*I2S Channel number mono or stereo*/
u8 I2SPageNum; /*I2S Page Number 2~4*/
u16 I2SPageSize; /*I2S page Size 1~4096 word*/
u8 *I2STxData; /*I2S Tx data pointer*/
u8 *I2SRxData; /*I2S Rx data pointer*/
u32 I2STxIntrMSK; /*I2S Tx Interrupt Mask*/
u32 I2STxIntrClr; /*I2S Tx Interrupt register to clear */
u32 I2SRxIntrMSK; /*I2S Rx Interrupt Mask*/
u32 I2SRxIntrClr; /*I2S Rx Interrupt register to clear*/
u16 I2STxIdx; /*I2S TX page index */
u16 I2SRxIdx; /*I2S RX page index */
u16 I2SHWTxIdx; /*I2S HW TX page index */
u16 I2SHWRxIdx; /*I2S HW RX page index */
u16 I2SRate; /*I2S sample rate*/
u8 I2STRxAct; /*I2S tx rx act*/
}HAL_I2S_INIT_DAT, *PHAL_I2S_INIT_DAT;
/**********************************************************************/
/* I2S Data Structures */
/* I2S Module Selection */
typedef enum _I2S_MODULE_SEL_ {
I2S0_SEL = 0x0,
I2S1_SEL = 0x1,
}I2S_MODULE_SEL,*PI2S_MODULE_SEL;
/*
typedef struct _HAL_I2S_ADAPTER_ {
u32 Enable:1;
I2S_CTL_REG I2sCtl;
I2S_SETTING_REG I2sSetting;
u32 abc;
u8 I2sIndex;
}HAL_I2S_ADAPTER, *PHAL_I2S_ADAPTER;
*/
/* I2S HAL Operations */
typedef struct _HAL_I2S_OP_ {
RTK_STATUS (*HalI2SInit) (VOID *Data);
RTK_STATUS (*HalI2SDeInit) (VOID *Data);
RTK_STATUS (*HalI2STx) (VOID *Data, u8 *pBuff);
RTK_STATUS (*HalI2SRx) (VOID *Data, u8 *pBuff);
RTK_STATUS (*HalI2SEnable) (VOID *Data);
RTK_STATUS (*HalI2SIntrCtrl) (VOID *Data);
u32 (*HalI2SReadReg) (VOID *Data, u8 I2SReg);
RTK_STATUS (*HalI2SSetRate) (VOID *Data);
RTK_STATUS (*HalI2SSetWordLen) (VOID *Data);
RTK_STATUS (*HalI2SSetChNum) (VOID *Data);
RTK_STATUS (*HalI2SSetPageNum) (VOID *Data);
RTK_STATUS (*HalI2SSetPageSize) (VOID *Data);
RTK_STATUS (*HalI2SClrIntr) (VOID *Data);
RTK_STATUS (*HalI2SClrAllIntr) (VOID *Data);
RTK_STATUS (*HalI2SDMACtrl) (VOID *Data);
/*
VOID (*HalI2sOnOff)(VOID *Data);
BOOL (*HalI2sInit)(VOID *Data);
BOOL (*HalI2sSetting)(VOID *Data);
BOOL (*HalI2sEn)(VOID *Data);
BOOL (*HalI2sIsrEnAndDis) (VOID *Data);
BOOL (*HalI2sDumpReg)(VOID *Data);
BOOL (*HalI2s)(VOID *Data);
*/
}HAL_I2S_OP, *PHAL_I2S_OP;
/**********************************************************************/
/* I2S Pinmux Selection */
#if 0
typedef enum _I2S0_PINMUX_ {
I2S0_TO_S0 = 0x0,
I2S0_TO_S1 = 0x1,
I2S0_TO_S2 = 0x2,
}I2S0_PINMUX, *PI2S0_PINMUX;
typedef enum _I2S1_PINMUX_ {
I2S1_TO_S0 = 0x0,
I2S1_TO_S1 = 0x1,
}I2S1_PINMUX, *PI2S1_PINMUX;
#endif
typedef enum _I2S_PINMUX_ {
I2S_S0 = 0,
I2S_S1 = 1,
I2S_S2 = 2,
I2S_S3 = 3
}I2S_PINMUX, *PI2S_PINMUX;
/* I2S Module Status */
typedef enum _I2S_MODULE_STATUS_ {
I2S_DISABLE = 0x0,
I2S_ENABLE = 0x1,
}I2S_MODULE_STATUS, *PI2S_MODULE_STATUS;
/* I2S Device Status */
typedef enum _I2S_Device_STATUS_ {
I2S_STS_UNINITIAL = 0x00,
I2S_STS_INITIALIZED = 0x01,
I2S_STS_IDLE = 0x02,
I2S_STS_TX_READY = 0x03,
I2S_STS_TX_ING = 0x04,
I2S_STS_RX_READY = 0x05,
I2S_STS_RX_ING = 0x06,
I2S_STS_TRX_READY = 0x07,
I2S_STS_TRX_ING = 0x08,
I2S_STS_ERROR = 0x09,
}I2S_Device_STATUS, *PI2S_Device_STATUS;
/* I2S Feature Status */
typedef enum _I2S_FEATURE_STATUS_{
I2S_FEATURE_DISABLED = 0,
I2S_FEATURE_ENABLED = 1,
}I2S_FEATURE_STATUS,*PI2S_FEATURE_STATUS;
/* I2S Device Mode */
typedef enum _I2S_DEV_MODE_ {
I2S_MASTER_MODE = 0x0,
I2S_SLAVE_MODE = 0x1
}I2S_DEV_MODE, *PI2S_DEV_MODE;
/* I2S Word Length */
typedef enum _I2S_WORD_LEN_ {
I2S_WL_16 = 0x0,
I2S_WL_24 = 0x1,
}I2S_WORD_LEN, *PI2S_WORD_LEN;
/* I2S Bus Transmit/Receive */
typedef enum _I2S_DIRECTION_ {
I2S_ONLY_RX = 0x0,
I2S_ONLY_TX = 0x1,
I2S_TXRX = 0x2
}I2S_DIRECTION, *PI2S_DIRECTION;
/* I2S Channel number */
typedef enum _I2S_CH_NUM_ {
I2S_CH_STEREO = 0x0,
I2S_CH_RSVD = 0x1,
I2S_CH_MONO = 0x2
}I2S_CH_NUM, *PI2S_CH_NUM;
/* I2S Page number */
typedef enum _I2S_PAGE_NUM_ {
I2S_1PAGE = 0x0,
I2S_2PAGE = 0x1,
I2S_3PAGE = 0x2,
I2S_4PAGE = 0x3
}I2S_PAGE_NUM, *PI2S_PAGE_NUM;
/* I2S Sample rate*/
typedef enum _I2S_SAMPLE_RATE_ {
I2S_SR_8KHZ = 0x00, // /12
I2S_SR_16KHZ = 0x01, // /6
I2S_SR_24KHZ = 0x02, // /4
I2S_SR_32KHZ = 0x03, // /3
I2S_SR_48KHZ = 0x05, // /2
I2S_SR_96KHZ = 0x06, // x1, base 96kHz
I2S_SR_7p35KHZ = 0x10,
I2S_SR_11p02KHZ = 0x11,
I2S_SR_22p05KHZ = 0x12,
I2S_SR_29p4KHZ = 0x13,
I2S_SR_44p1KHZ = 0x15,
I2S_SR_88p2KHZ = 0x16 // x1, base 88200Hz
}I2S_SAMPLE_RATE, *PI2S_SAMPLE_RATE;
/* I2S TX interrupt mask/status */
typedef enum _I2S_TX_IMR_ {
I2S_TX_INT_PAGE0_OK = (1<<0),
I2S_TX_INT_PAGE1_OK = (1<<1),
I2S_TX_INT_PAGE2_OK = (1<<2),
I2S_TX_INT_PAGE3_OK = (1<<3),
I2S_TX_INT_FULL = (1<<4),
I2S_TX_INT_EMPTY = (1<<5)
} I2S_TX_IMR, *PI2S_TX_IMR;
/* I2S RX interrupt mask/status */
typedef enum _I2S_RX_IMR_ {
I2S_RX_INT_PAGE0_OK = (1<<0),
I2S_RX_INT_PAGE1_OK = (1<<1),
I2S_RX_INT_PAGE2_OK = (1<<2),
I2S_RX_INT_PAGE3_OK = (1<<3),
I2S_RX_INT_EMPTY = (1<<4),
I2S_RX_INT_FULL = (1<<5)
} I2S_RX_IMR, *PI2S_RX_IMR;
/* I2S User Callbacks */
typedef struct _SAL_I2S_USER_CB_{
VOID (*TXCB) (VOID *Data);
VOID (*TXCCB) (VOID *Data);
VOID (*RXCB) (VOID *Data);
VOID (*RXCCB) (VOID *Data);
VOID (*RDREQCB) (VOID *Data);
VOID (*ERRCB) (VOID *Data);
VOID (*GENCALLCB) (VOID *Data);
}SAL_I2S_USER_CB,*PSAL_I2S_USER_CB;
typedef struct _I2S_USER_CB_{
VOID (*TxCCB)(uint32_t id, char *pbuf);
u32 TxCBId;
VOID (*RxCCB)(uint32_t id, char *pbuf);
u32 RxCBId;
}I2S_USER_CB,*PI2S_USER_CB;
/* Software API Level I2S Handler */
typedef struct _HAL_I2S_ADAPTER_{
u8 DevNum; //I2S device number
u8 PinMux; //I2S pin mux seletion
u8 RSVD0; //Reserved
volatile u8 DevSts; //I2S device status
u32 RSVD2; //Reserved
u32 I2SExd; //I2S extended options:
//bit 0: I2C RESTART supported,
// 0 for NOT supported,
// 1 for supported
//bit 1: I2C General Call supported
// 0 for NOT supported,
// 1 for supported
//bit 2: I2C START Byte supported
// 0 for NOT supported,
// 1 for supported
//bit 3: I2C Slave-No-Ack
// supported
// 0 for NOT supported,
// 1 for supported
//bit 4: I2C bus loading,
// 0 for 100pf,
// 1 for 400pf
//bit 5: I2C slave ack to General
// Call
//bit 6: I2C User register address
//bit 7: I2C 2-Byte User register
// address
//bit 31~bit 8: Reserved
u32 ErrType; //
u32 TimeOut; //I2S IO Timeout count
PHAL_I2S_INIT_DAT pInitDat; //Pointer to I2S initial data struct
I2S_USER_CB UserCB; //Pointer to I2S User Callback
IRQ_HANDLE IrqHandle; // Irq Handler
u32* TxPageList[4]; // The Tx DAM buffer: pointer of each page
u32* RxPageList[4]; // The Tx DAM buffer: pointer of each page
}HAL_I2S_ADAPTER, *PHAL_I2S_ADAPTER;
typedef struct _HAL_I2S_DEF_SETTING_{
u8 I2SMaster; // Master or Slave mode
u8 DevSts; //I2S device status
u8 I2SChNum; //I2S Channel number mono or stereo
u8 I2SPageNum; //I2S Page number 2~4
u8 I2STRxAct; //I2S tx rx act, tx only or rx only or tx+rx
u8 I2SWordLen; //I2S Word length 16bit or 24bit
u16 I2SPageSize; //I2S Page size 1~4096 word
u16 I2SRate; //I2S sample rate 8k ~ 96khz
u32 I2STxIntrMSK; /*I2S Tx Interrupt Mask*/
u32 I2SRxIntrMSK; /*I2S Rx Interrupt Mask*/
}HAL_I2S_DEF_SETTING, *PHAL_I2S_DEF_SETTING;
/**********************************************************************/
HAL_Status
RtkI2SLoadDefault(IN VOID *Adapter, IN VOID *Setting);
HAL_Status
RtkI2SInit(IN VOID *Data);
HAL_Status
RtkI2SDeInit(IN VOID *Data);
HAL_Status
RtkI2SEnable(IN VOID *Data);
HAL_Status
RtkI2SDisable(IN VOID *Data);
extern HAL_Status
HalI2SInit( IN VOID *Data);
extern VOID
HalI2SDeInit( IN VOID *Data);
extern HAL_Status
HalI2SDisable( IN VOID *Data);
extern HAL_Status
HalI2SEnable( IN VOID *Data);
/**********************************************************************/
VOID I2S0ISRHandle(VOID *Data);
VOID I2S1ISRHandle(VOID *Data);
/**********************************************************************/
VOID HalI2SOpInit(
IN VOID *Data
);
#endif

View file

@ -0,0 +1,112 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_IRQN_H_
#define _HAL_IRQN_H_
#define PERIPHERAL_IRQ_BASE_NUM 64
typedef enum _IRQn_Type_ {
#if 0
/****** Cortex-M3 Processor Exceptions Numbers ********/
NON_MASKABLE_INT_IRQ = -14,
HARD_FAULT_IRQ = -13,
MEM_MANAGE_FAULT_IRQ = -12,
BUS_FAULT_IRQ = -11,
USAGE_FAULT_IRQ = -10,
SVCALL_IRQ = -5,
DEBUG_MONITOR_IRQ = -4,
PENDSVC_IRQ = -2,
SYSTICK_IRQ = -1,
#else
/****** Cortex-M3 Processor Exceptions Numbers ********/
NonMaskableInt_IRQn = -14, /*!< 2 Non Maskable Interrupt */
HardFault_IRQn = -13, /*!< 3 Hard Fault, all classes of Fault */
MemoryManagement_IRQn = -12, /*!< 4 Cortex-M3 Memory Management Interrupt */
BusFault_IRQn = -11, /*!< 5 Cortex-M3 Bus Fault Interrupt */
UsageFault_IRQn = -10, /*!< 6 Cortex-M3 Usage Fault Interrupt */
SVCall_IRQn = -5, /*!< 11 Cortex-M3 SV Call Interrupt */
DebugMonitor_IRQn = -4, /*!< 12 Cortex-M3 Debug Monitor Interrupt */
PendSV_IRQn = -2, /*!< 14 Cortex-M3 Pend SV Interrupt */
SysTick_IRQn = -1, /*!< 15 Cortex-M3 System Tick Interrupt */
#endif
/****** RTL8195A Specific Interrupt Numbers ************/
SYSTEM_ON_IRQ = 0,
WDG_IRQ = 1,
TIMER0_IRQ = 2,
TIMER1_IRQ = 3,
I2C3_IRQ = 4,
TIMER2_7_IRQ = 5,
SPI0_IRQ = 6,
GPIO_IRQ = 7,
UART0_IRQ = 8,
SPI_FLASH_IRQ = 9,
USB_OTG_IRQ = 10,
SDIO_HOST_IRQ = 11,
SDIO_DEVICE_IRQ = 12,
I2S0_PCM0_IRQ = 13,
I2S1_PCM1_IRQ = 14,
WL_DMA_IRQ = 15,
WL_PROTOCOL_IRQ = 16,
CRYPTO_IRQ = 17,
GMAC_IRQ = 18,
PERIPHERAL_IRQ = 19,
GDMA0_CHANNEL0_IRQ = 20,
GDMA0_CHANNEL1_IRQ = 21,
GDMA0_CHANNEL2_IRQ = 22,
GDMA0_CHANNEL3_IRQ = 23,
GDMA0_CHANNEL4_IRQ = 24,
GDMA0_CHANNEL5_IRQ = 25,
GDMA1_CHANNEL0_IRQ = 26,
GDMA1_CHANNEL1_IRQ = 27,
GDMA1_CHANNEL2_IRQ = 28,
GDMA1_CHANNEL3_IRQ = 29,
GDMA1_CHANNEL4_IRQ = 30,
GDMA1_CHANNEL5_IRQ = 31,
/****** RTL8195A Peripheral Interrupt Numbers ************/
I2C0_IRQ = 64,// 0 + 64,
I2C1_IRQ = 65,// 1 + 64,
I2C2_IRQ = 66,// 2 + 64,
SPI1_IRQ = 72,// 8 + 64,
SPI2_IRQ = 73,// 9 + 64,
UART1_IRQ = 80,// 16 + 64,
UART2_IRQ = 81,// 17 + 64,
UART_LOG_IRQ = 88,// 24 + 64,
ADC_IRQ = 89,// 25 + 64,
DAC0_IRQ = 91,// 27 + 64,
DAC1_IRQ = 92,// 28 + 64,
//RXI300_IRQ = 93// 29 + 64
LP_EXTENSION_IRQ = 93,// 29+64
PTA_TRX_IRQ = 95,// 31+64
RXI300_IRQ = 96,// 0+32 + 64
NFC_IRQ = 97// 1+32+64
} IRQn_Type, *PIRQn_Type;
typedef VOID (*HAL_VECTOR_FUN) (VOID);
typedef enum _VECTOR_TABLE_TYPE_{
DEDECATED_VECTRO_TABLE,
PERIPHERAL_VECTOR_TABLE
}VECTOR_TABLE_TYPE, *PVECTOR_TABLE_TYPE;
typedef u32 (*IRQ_FUN)(VOID *Data);
typedef struct _IRQ_HANDLE_ {
IRQ_FUN IrqFun;
IRQn_Type IrqNum;
u32 Data;
u32 Priority;
}IRQ_HANDLE, *PIRQ_HANDLE;
#endif //_HAL_IRQN_H_

View file

@ -0,0 +1,150 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_LOG_UART_H_
#define _HAL_LOG_UART_H_
#include "hal_diag.h"
#define LOG_UART_WAIT_FOREVER 0xffffffff
// Define Line Control Register Bits
typedef enum {
LCR_DLS_5B = 0, // Data Length: 5 bits
LCR_DLS_6B = BIT(0), // Data Length: 6 bits
LCR_DLS_7B = BIT(1), // Data Length: 7 bits
LCR_DLS_8B = (BIT(1)|BIT(0)), // Data Length: 7 bits
LCR_STOP_1B = 0, // Number of stop bits: 1
LCR_STOP_2B = BIT(2), // Number of stop bits: 1.5(data len=5) or 2
LCR_PARITY_NONE = 0, // Parity Enable: 0
LCR_PARITY_ODD = BIT(3), // Parity Enable: 1, Even Parity: 0
LCR_PARITY_EVEN = (BIT(4)|BIT(3)), // Parity Enable: 1, Even Parity: 1
LCR_BC = BIT(6), // Break Control Bit
LCR_DLAB = BIT(7) // Divisor Latch Access Bit
} LOG_UART_LINE_CTRL;
// define Log UART Interrupt Indication ID
/*
IIR[3:0]:
0000 = modem status
0001 = no interrupt pending
0010 = THR empty
0100 = received data available
0110 = receiver line status
0111 = busy detect
1100 = character timeout
*/
typedef enum {
IIR_MODEM_STATUS = 0, //Clear to send or data set ready or ring indicator or data carrier detect.
IIR_NO_PENDING = 1,
IIR_THR_EMPTY = 2, // TX FIFO level lower than threshold or FIFO empty
IIR_RX_RDY = 4, // RX data ready
IIR_RX_LINE_STATUS = 6, // Overrun/parity/framing errors or break interrupt
IIR_BUSY = 7,
IIR_CHAR_TIMEOUT = 12 // timeout: Rx dara ready but no read
} LOG_UART_INT_ID;
// Define Interrupt Enable Bit
typedef enum {
IER_ERBFI = BIT(0), // Enable Received Data Available Interrupt
IER_ETBEI = BIT(1), // Enable Transmit Holding Register Empty Interrupt
IER_ELSI = BIT(2), // Enable Receiver Line Status Interrupt
IER_EDSSI = BIT(3), // Enable Modem Status Interrupt
IER_PTIME = BIT(7) // Programmable THRE Interrupt Mode Enable
} LOG_UART_INT_EN;
// Define Line Status Bit
typedef enum {
LSR_DR = BIT(0), // Data Ready bit
LSR_OE = BIT(1), // Overrun error bit
LSR_PE = BIT(2), // Parity Error bit
LSR_FE = BIT(3), // Framing Error bit
LSR_BI = BIT(4), // Break Interrupt bit
LSR_THRE = BIT(5), // Transmit Holding Register Empty bit(IER_PTIME=0)
LSR_FIFOF = BIT(5), // Transmit FIFO Full bit(IER_PTIME=1)
LSR_TEMT = BIT(6), // Transmitter Empty bit
LSR_RFE = BIT(7) // Receiver FIFO Error bit
} LOG_UART_LINE_STATUS;
enum {
LOG_UART_RST_TX_FIFO = 0x01,
LOG_UART_RST_RX_FIFO = 0x02
};
#define LOG_UART_TX_FIFO_DEPTH 16
#define LOG_UART_RX_FIFO_DEPTH 16
// Define FIFO Control Register Bits
typedef enum {
FCR_FIFO_EN = BIT(0), // FIFO Enable.
FCR_RST_RX = BIT(1), // RCVR FIFO Reset, self clear
FCR_RST_TX = BIT(2), // XMIT FIFO Reset, self clear
FCR_TX_TRIG_EMP = 0, // TX Empty Trigger: FIFO empty
FCR_TX_TRIG_2CH = BIT(4), // TX Empty Trigger: 2 characters in the FIFO
FCR_TX_TRIG_QF = BIT(5), // TX Empty Trigger: FIFO 1/4 full
FCR_TX_TRIG_HF = (BIT(5)|BIT(4)), // TX Empty Trigger: FIFO 1/2 full
FCR_TX_TRIG_MASK = (BIT(5)|BIT(4)), // TX Empty Trigger Bit Mask
FCR_RX_TRIG_1CH = 0, // RCVR Trigger: 1 character in the FIFO
FCR_RX_TRIG_QF = BIT(6), // RCVR Trigger: FIFO 1/4 full
FCR_RX_TRIG_HF = BIT(7), // RCVR Trigger: FIFO 1/2 full
FCR_RX_TRIG_AF = (BIT(7)|BIT(6)), // RCVR Trigger: FIFO 2 less than full
FCR_RX_TRIG_MASK = (BIT(7)|BIT(6)) // RCVR Trigger bits Mask
} LOG_UART_FIFO_CTRL;
typedef struct _HAL_LOG_UART_ADAPTER_ {
u32 BaudRate;
u32 FIFOControl;
u32 IntEnReg;
u8 Parity;
u8 Stop;
u8 DataLength;
u8 LineStatus;
volatile u32 TxCount; // how many byte to TX
volatile u32 RxCount; // how many bytes to RX
volatile u8 *pTxBuf;
volatile u8 *pRxBuf;
u8 *pTxStartAddr;
u8 *pRxStartAddr;
IRQ_HANDLE IrqHandle;
VOID (*LineStatusCallback)(VOID *para, u8 status); // User Line Status interrupt callback
VOID (*TxCompCallback)(VOID *para); // User Tx complete callback
VOID (*RxCompCallback)(VOID *para); // User Rx complete callback
VOID *LineStatusCbPara; // the argument for LineStatusCallback
VOID *TxCompCbPara; // the argument for TxCompCallback
VOID *RxCompCbPara; // the argument for RxCompCallback
void (*api_irq_handler)(u32 id, LOG_UART_INT_ID event);
u32 api_irq_id;
}HAL_LOG_UART_ADAPTER, *PHAL_LOG_UART_ADAPTER;
VOID HalLogUartIrqHandle(VOID * Data);
VOID HalLogUartSetBaudRate(HAL_LOG_UART_ADAPTER *pUartAdapter);
VOID HalLogUartSetLineCtrl(HAL_LOG_UART_ADAPTER *pUartAdapter);
VOID HalLogUartSetIntEn(HAL_LOG_UART_ADAPTER *pUartAdapter);
u32 HalLogUartInitSetting(HAL_LOG_UART_ADAPTER *pUartAdapter);
u32 HalLogUartRecv(HAL_LOG_UART_ADAPTER *pUartAdapter,
u8 *pRxData, u32 Length, u32 TimeoutMS);
u32 HalLogUartSend(HAL_LOG_UART_ADAPTER *pUartAdapter,
u8 *pTxData, u32 Length, u32 TimeoutMS);
HAL_Status HalLogUartIntSend(HAL_LOG_UART_ADAPTER *pUartAdapter,
u8 *pTxData, u32 Length);
HAL_Status HalLogUartIntRecv(HAL_LOG_UART_ADAPTER *pUartAdapter,
u8 *pRxData, u32 Length);
VOID HalLogUartAbortIntSend(HAL_LOG_UART_ADAPTER *pUartAdapter);
VOID HalLogUartAbortIntRecv(HAL_LOG_UART_ADAPTER *pUartAdapter);
HAL_Status HalLogUartRstFIFO(HAL_LOG_UART_ADAPTER *pUartAdapter, u8 RstCtrl);
VOID HalLogUartEnable(HAL_LOG_UART_ADAPTER *pUartAdapter);
VOID HalLogUartDisable(HAL_LOG_UART_ADAPTER *pUartAdapter);
#endif

View file

@ -0,0 +1,30 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _MISC_H_
#define _MISC_H_
#include <basic_types.h>
#ifdef CONFIG_TIMER_MODULE
extern _LONG_CALL_ u32 HalDelayUs(u32 us);
#endif
extern _LONG_CALL_ u32 HalGetCpuClk(VOID);
extern _LONG_CALL_ u8 HalGetRomInfo(VOID);
extern _LONG_CALL_ void *_memset( void *s, int c, SIZE_T n );
extern _LONG_CALL_ void *_memcpy( void *s1, const void *s2, SIZE_T n );
extern _LONG_CALL_ int _memcmp( const void *av, const void *bv, SIZE_T len );
extern _LONG_CALL_ SIZE_T _strlen(const char *s);
extern _LONG_CALL_ int _strcmp(const char *cs, const char *ct);
#endif //_MISC_H_

View file

@ -0,0 +1,22 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_NFC_H_
#define _HAL_NFC_H_
#include "rtl8195a_nfc.h"
VOID HalNFCOpInit(
IN VOID *Data
);
#endif

View file

@ -0,0 +1,451 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_PERI_ON_H_
#define _HAL_PERI_ON_H_
#define MASK_ALLON 0xFFFFFFFF
#define HAL_PERI_ON_READ32(addr) HAL_READ32(PERI_ON_BASE, addr)
#define HAL_PERI_ON_WRITE32(addr, value) HAL_WRITE32(PERI_ON_BASE, addr, value)
#define HAL_PERI_ON_READ16(addr) HAL_READ16(PERI_ON_BASE, addr)
#define HAL_PERI_ON_WRITE16(addr, value) HAL_WRITE16(PERI_ON_BASE, addr, value)
#define HAL_PERI_ON_READ8(addr) HAL_READ8(PERI_ON_BASE, addr)
#define HAL_PERI_ON_WRITE8(addr, value) HAL_WRITE8(PERI_ON_BASE, addr, value)
#define HAL_PERL_ON_FUNC_CTRL(addr,value,ctrl) \
HAL_PERI_ON_WRITE32(addr, ((HAL_PERI_ON_READ32(addr) & (~value))|((MASK_ALLON - ctrl + 1) & value)))
#define HAL_PERL_ON_PIN_SEL(addr,mask,value) \
HAL_PERI_ON_WRITE32(addr, ((HAL_PERI_ON_READ32(addr) & (~mask)) | value))
//40 REG_SYS_REGU_CTRL0
#define LDO25M_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SYS_REGU_CTRL0, BIT_SYS_REGU_LDO25M_EN, ctrl)
//A0 SYS_DEBUG_CTRL
#define DEBUG_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SYS_DEBUG_CTRL, BIT_SYS_DBG_PIN_EN, ctrl)
//A4 SYS_PINMUX_CTRL
#define SIC_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SYS_PINMUX_CTRL, BIT_SIC_PIN_EN, ctrl)
#define EEPROM_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SYS_PINMUX_CTRL, BIT_EEPROM_PIN_EN, ctrl)
//210 SOV_FUNC_EN
#define LXBUS_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SOC_FUNC_EN, BIT_SOC_LXBUS_EN, ctrl)
#define FLASH_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(SPI_FLASH_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_FUNC_EN, BIT_SOC_FLASH_EN, ctrl);}
#define MEM_CTRL_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(SDR_SDRAM_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_FUNC_EN, BIT_SOC_MEM_CTRL_EN, ctrl);}
#define LOC_UART_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(LOG_UART_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_FUNC_EN, BIT_SOC_LOG_UART_EN, ctrl);}
#define GDMA0_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(GDMA0_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_FUNC_EN, BIT_SOC_GDMA0_EN, ctrl);}
#define GDMA1_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(GDMA1_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_FUNC_EN, BIT_SOC_GDMA1_EN, ctrl);}
#define GTIMER_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(TIMER_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_FUNC_EN, BIT_SOC_GTIMER_EN, ctrl);}
#define SECURITY_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(CRYPTO_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_FUNC_EN, BIT_SOC_SECURITY_ENGINE_EN, ctrl);}
//214 SOC_HCI_COM_FUNC_EN
#define SDIOD_ON_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(SDIO_DEVICE_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_HCI_COM_FUNC_EN, BIT_SOC_HCI_SDIOD_ON_EN, ctrl);}
#define SDIOD_OFF_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(SDIO_DEVICE_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_HCI_COM_FUNC_EN, BIT_SOC_HCI_SDIOD_OFF_EN, ctrl);}
#define SDIOH_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(SDIO_HOST_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_HCI_COM_FUNC_EN, BIT_SOC_HCI_SDIOH_EN, ctrl);}
#define SDIO_ON_RST_MASK(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SOC_HCI_COM_FUNC_EN, BIT_SOC_HCI_SDIOD_ON_RST_MUX, ctrl)
#define OTG_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(USB_OTG_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_HCI_COM_FUNC_EN, BIT_SOC_HCI_OTG_EN, ctrl);}
#define OTG_RST_MASK(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SOC_HCI_COM_FUNC_EN, BIT_SOC_HCI_OTG_RST_MUX, ctrl)
#define MII_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(MII_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_HCI_COM_FUNC_EN, BIT_SOC_HCI_MII_EN, ctrl);}
#define MII_MUX_SEL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SOC_HCI_COM_FUNC_EN, BIT_SOC_HCI_SM_SEL, ctrl)
#define WL_MACON_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(WIFI_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_HCI_COM_FUNC_EN, BIT_SOC_HCI_WL_MACON_EN, ctrl);}
//218 SOC_PERI_FUNC0_EN
#define UART0_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(UART0_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_UART0_EN, ctrl);}
#define UART1_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(UART1_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_UART1_EN, ctrl);}
#define UART2_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(UART2_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_UART2_EN, ctrl);}
#define SPI0_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(SPI0_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_SPI0_EN, ctrl);}
#define SPI1_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(SPI1_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_SPI1_EN, ctrl);}
#define SPI2_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(SPI2_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_SPI2_EN, ctrl);}
#define I2C0_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(I2C0_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_I2C0_EN, ctrl);}
#define I2C1_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(I2C1_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_I2C1_EN, ctrl);}
#define I2C2_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(I2C2_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_I2C2_EN, ctrl);}
#define I2C3_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(I2C3_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_I2C3_EN, ctrl);}
#define I2S0_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(I2S0_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_I2S0_EN, ctrl);}
#define I2S1_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(I2S1_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_I2S1_EN, ctrl);}
#define PCM0_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(PCM0_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_PCM0_EN, ctrl);}
#define PCM1_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(PCM1_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC0_EN, BIT_PERI_PCM1_EN, ctrl);}
//21C SOC_PERI_FUNC1_EN
#define ADC0_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(ADC_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC1_EN, BIT_PERI_ADC0_EN, ctrl);}
#define DAC0_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(DAC_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC1_EN, BIT_PERI_DAC0_EN, ctrl);}
#define DAC1_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(DAC_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC1_EN, BIT_PERI_DAC1_EN, ctrl);}
#define GPIO_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(GPIO_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_FUNC1_EN, BIT_PERI_GPIO_EN, ctrl);}
//220 SOC_PERI_BD_FUNC0_EN
#define UART0_BD_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(UART0_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_BD_FUNC0_EN, BIT_PERI_UART0_BD_EN, ctrl);}
#define UART1_BD_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(UART1_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_BD_FUNC0_EN, BIT_PERI_UART1_BD_EN, ctrl);}
#define UART2_BD_FCTRL(ctrl) { \
if (!ctrl) { \
HAL_READ32(UART2_REG_BASE,0);\
}\
HAL_PERL_ON_FUNC_CTRL(REG_SOC_PERI_BD_FUNC0_EN, BIT_PERI_UART2_BD_EN, ctrl);}
//230 PESOC_CLK_CTRL
#define ACTCK_CPU_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_CKE_PLFM, ctrl)
#define ACTCK_TRACE_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_TRACE_EN, ctrl)
#define SLPCK_TRACE_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_TRACE_EN, ctrl)
#define ACTCK_VENDOR_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_VENDOR_REG_EN, ctrl)
#define SLPCK_VENDOR_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_VENDOR_REG_EN, ctrl)
#define ACTCK_FLASH_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_FLASH_EN, ctrl)
#define SLPCK_FLASH_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_FLASH_EN, ctrl)
#define ACTCK_SDR_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_SDR_EN, ctrl)
#define SLPCK_SDR_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_SDR_EN, ctrl)
#define ACTCK_LOG_UART_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_LOG_UART_EN, ctrl)
#define SLPCK_LOG_UART_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_LOG_UART_EN, ctrl)
#define ACTCK_TIMER_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_TIMER_EN, ctrl)
#define SLPCK_TIMER_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_TIMER_EN, ctrl)
#define ACTCK_GDMA0_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_GDMA0_EN, ctrl)
#define SLPCK_GDMA0_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_GDMA0_EN, ctrl)
#define ACTCK_GDMA1_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_GDMA1_EN, ctrl)
#define SLPCK_GDMA1_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_GDMA1_EN, ctrl)
#define ACTCK_GPIO_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_GPIO_EN, ctrl)
#define SLPCK_GPIO_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_GPIO_EN, ctrl)
#define ACTCK_BTCMD_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_ACTCK_BTCMD_EN, ctrl)
#define SLPCK_BTCMD_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_CLK_CTRL, BIT_SOC_SLPCK_BTCMD_EN, ctrl)
//234 PESOC_PERI_CLK_CTRL0
#define ACTCK_UART0_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_ACTCK_UART0_EN, ctrl)
#define SLPCK_UART0_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_SLPCK_UART0_EN, ctrl)
#define ACTCK_UART1_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_ACTCK_UART1_EN, ctrl)
#define SLPCK_UART1_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_SLPCK_UART1_EN, ctrl)
#define ACTCK_UART2_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_ACTCK_UART2_EN, ctrl)
#define SLPCK_UART2_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_SLPCK_UART2_EN, ctrl)
#define ACTCK_SPI0_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_ACTCK_SPI0_EN, ctrl)
#define SLPCK_SPI0_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_SLPCK_SPI0_EN, ctrl)
#define ACTCK_SPI1_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_ACTCK_SPI1_EN, ctrl)
#define SLPCK_SPI1_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_SLPCK_SPI1_EN, ctrl)
#define ACTCK_SPI2_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_ACTCK_SPI2_EN, ctrl)
#define SLPCK_SPI2_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL0, BIT_SOC_SLPCK_SPI2_EN, ctrl)
//238 PESOC_PERI_CLK_CTRL1
#define ACTCK_I2C0_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_ACTCK_I2C0_EN, ctrl)
#define SLPCK_I2C0_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_SLPCK_I2C0_EN, ctrl)
#define ACTCK_I2C1_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_ACTCK_I2C1_EN, ctrl)
#define SLPCK_I2C1_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_SLPCK_I2C1_EN, ctrl)
#define ACTCK_I2C2_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_ACTCK_I2C2_EN, ctrl)
#define SLPCK_I2C2_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_SLPCK_I2C2_EN, ctrl)
#define ACTCK_I2C3_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_ACTCK_I2C3_EN, ctrl)
#define SLPCK_I2C3_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_SLPCK_I2C3_EN, ctrl)
#define ACTCK_I2S_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_ACTCK_I2S_EN, ctrl)
#define SLPCK_I2S_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_SLPCK_I2S_EN, ctrl)
#define ACTCK_PCM_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_ACTCK_PCM_EN, ctrl)
#define SLPCK_PCM_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_SLPCK_PCM_EN, ctrl)
#define ACTCK_ADC_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_ACTCK_ADC_EN, ctrl)
#define SLPCK_ADC_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_SLPCK_ADC_EN, ctrl)
#define ACTCK_DAC_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_ACTCK_DAC_EN, ctrl)
#define SLPCK_DAC_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CLK_CTRL1, BIT_SOC_SLPCK_DAC_EN, ctrl)
//240 PESOC_HCI_CLK_CTRL0
#define ACTCK_SDIOD_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_HCI_CLK_CTRL0, BIT_SOC_ACTCK_SDIO_DEV_EN, ctrl)
#define SLPCK_SDIOD_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_HCI_CLK_CTRL0, BIT_SOC_SLPCK_SDIO_DEV_EN, ctrl)
#define ACTCK_SDIOH_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_HCI_CLK_CTRL0, BIT_SOC_ACTCK_SDIO_HST_EN, ctrl)
#define SLPCK_SDIOH_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_HCI_CLK_CTRL0, BIT_SOC_SLPCK_SDIO_HST_EN, ctrl)
#define ACTCK_OTG_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_HCI_CLK_CTRL0, BIT_SOC_ACTCK_OTG_EN, ctrl)
#define SLPCK_OTG_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_HCI_CLK_CTRL0, BIT_SOC_SLPCK_OTG_EN, ctrl)
#define ACTCK_MII_MPHY_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_HCI_CLK_CTRL0, BIT_SOC_ACTCK_MII_MPHY_EN, ctrl)
#define SLPCK_MII_MPHY_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_HCI_CLK_CTRL0, BIT_SOC_SLPCK_MII_MPHY_EN, ctrl)
//244 PESOC_COM_CLK_CTRL1
#define ACTCK_WL_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_COM_CLK_CTRL1, BIT_SOC_ACTCK_WL_EN, ctrl)
#define SLPCK_WL_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_COM_CLK_CTRL1, BIT_SOC_SLPCK_WL_EN, ctrl)
#define ACTCK_SEC_ENG_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_COM_CLK_CTRL1, BIT_SOC_ACTCK_SECURITY_ENG_EN, ctrl)
#define SLPCK_SEC_ENG_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_COM_CLK_CTRL1, BIT_SOC_SLPCK_SECURITY_ENG_EN, ctrl)
#define ACTCK_NFC_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_COM_CLK_CTRL1, BIT_SOC_ACTCK_NFC_EN, ctrl)
#define SLPCK_NFC_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_COM_CLK_CTRL1, BIT_SOC_SLPCK_NFC_EN, ctrl)
#define NFC_CAL_CCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_COM_CLK_CTRL1, BIT_SOC_NFC_CAL_EN, ctrl)
//250 REG_PERI_CLK_SEL
#define TRACE_CLK_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PESOC_CLK_SEL, (BIT_MASK_PESOC_TRACE_CK_SEL << BIT_SHIFT_PESOC_TRACE_CK_SEL), BIT_PESOC_TRACE_CK_SEL(num))
#define FLASH_CLK_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PESOC_CLK_SEL, (BIT_MASK_PESOC_FLASH_CK_SEL << BIT_SHIFT_PESOC_FLASH_CK_SEL), BIT_PESOC_FLASH_CK_SEL(num))
#define SDR_CLK_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PESOC_CLK_SEL, (BIT_MASK_PESOC_SDR_CK_SEL << BIT_SHIFT_PESOC_SDR_CK_SEL), BIT_PESOC_SDR_CK_SEL(num))
#define I2C_SCLK_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PESOC_CLK_SEL, (BIT_MASK_PESOC_PERI_SCLK_SEL << BIT_SHIFT_PESOC_PERI_SCLK_SEL), BIT_PESOC_PERI_SCLK_SEL(num))
//270 REG_OSC32K_CTRL
#define OSC32K_CKGEN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_OSC32K_CTRL, BIT_32K_POW_CKGEN_EN, ctrl)
//280 REG_UART_MUX_CTRL
#define UART0_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_UART_MUX_CTRL, BIT_UART0_PIN_EN, ctrl)
#define UART0_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_UART_MUX_CTRL, (BIT_MASK_UART0_PIN_SEL << BIT_SHIFT_UART0_PIN_SEL), BIT_UART0_PIN_SEL(num))
#define UART1_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_UART_MUX_CTRL, BIT_UART1_PIN_EN, ctrl)
#define UART1_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_UART_MUX_CTRL, (BIT_MASK_UART1_PIN_SEL << BIT_SHIFT_UART1_PIN_SEL), BIT_UART1_PIN_SEL(num))
#define UART2_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_UART_MUX_CTRL, BIT_UART2_PIN_EN, ctrl)
#define UART2_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_UART_MUX_CTRL, (BIT_MASK_UART2_PIN_SEL << BIT_SHIFT_UART2_PIN_SEL), BIT_UART2_PIN_SEL(num))
//284 REG_SPI_MUX_CTRL
#define SPI0_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SPI_MUX_CTRL, BIT_SPI0_PIN_EN, ctrl)
#define SPI0_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_SPI_MUX_CTRL, (BIT_MASK_SPI0_PIN_SEL << BIT_SHIFT_SPI0_PIN_SEL), BIT_SPI0_PIN_SEL(num))
#define SPI1_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SPI_MUX_CTRL, BIT_SPI1_PIN_EN, ctrl)
#define SPI1_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_SPI_MUX_CTRL, (BIT_MASK_SPI1_PIN_SEL << BIT_SHIFT_SPI1_PIN_SEL), BIT_SPI1_PIN_SEL(num))
#define SPI2_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SPI_MUX_CTRL, BIT_SPI2_PIN_EN, ctrl)
#define SPI2_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_SPI_MUX_CTRL, (BIT_MASK_SPI2_PIN_SEL << BIT_SHIFT_SPI2_PIN_SEL), BIT_SPI2_PIN_SEL(num))
#define SPI0_MULTI_CS_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_SPI_MUX_CTRL, BIT_SPI0_MULTI_CS_EN, ctrl)
//288 REG_I2C_MUX_CTRL
#define I2C0_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2C_MUX_CTRL, BIT_I2C0_PIN_EN, ctrl)
#define I2C0_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_I2C_MUX_CTRL, (BIT_MASK_I2C0_PIN_SEL << BIT_SHIFT_I2C0_PIN_SEL), BIT_I2C0_PIN_SEL(num))
#define I2C1_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2C_MUX_CTRL, BIT_I2C1_PIN_EN, ctrl)
#define I2C1_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_I2C_MUX_CTRL, (BIT_MASK_I2C1_PIN_SEL << BIT_SHIFT_I2C1_PIN_SEL), BIT_I2C1_PIN_SEL(num))
#define I2C2_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2C_MUX_CTRL, BIT_I2C2_PIN_EN, ctrl)
#define I2C2_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_I2C_MUX_CTRL, (BIT_MASK_I2C2_PIN_SEL << BIT_SHIFT_I2C2_PIN_SEL), BIT_I2C2_PIN_SEL(num))
#define I2C3_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2C_MUX_CTRL, BIT_I2C3_PIN_EN, ctrl)
#define I2C3_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_I2C_MUX_CTRL, (BIT_MASK_I2C3_PIN_SEL << BIT_SHIFT_I2C3_PIN_SEL), BIT_I2C3_PIN_SEL(num))
//28C REG_I2S_MUX_CTRL
#define I2S0_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2S_MUX_CTRL, BIT_I2S0_PIN_EN, ctrl)
#define I2S0_MCK_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2S_MUX_CTRL, BIT_I2S0_MCK_EN, ctrl)
#define I2S0_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_I2S_MUX_CTRL, (BIT_MASK_I2S0_PIN_SEL << BIT_SHIFT_I2S0_PIN_SEL), BIT_I2S0_PIN_SEL(num))
#define I2S1_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2S_MUX_CTRL, BIT_I2S1_PIN_EN, ctrl)
#define I2S1_MCK_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2S_MUX_CTRL, BIT_I2S1_MCK_EN, ctrl)
#define I2S1_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_I2S_MUX_CTRL, (BIT_MASK_I2S1_PIN_SEL << BIT_SHIFT_I2S1_PIN_SEL), BIT_I2S1_PIN_SEL(num))
#define PCM0_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2S_MUX_CTRL, BIT_PCM0_PIN_EN, ctrl)
#define PCM0_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_I2S_MUX_CTRL, (BIT_MASK_PCM0_PIN_SEL << BIT_SHIFT_PCM0_PIN_SEL), BIT_PCM0_PIN_SEL(num))
#define PCM1_PIN_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_I2S_MUX_CTRL, BIT_PCM1_PIN_EN, ctrl)
#define PCM1_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_I2S_MUX_CTRL, (BIT_MASK_PCM1_PIN_SEL << BIT_SHIFT_PCM1_PIN_SEL), BIT_PCM1_PIN_SEL(num))
//2A0 HCI_PINMUX_CTRL
#define SDIOD_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_HCI_PINMUX_CTRL, BIT_HCI_SDIOD_PIN_EN, ctrl)
#define SDIOH_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_HCI_PINMUX_CTRL, BIT_HCI_SDIOH_PIN_EN, ctrl)
#define MII_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_HCI_PINMUX_CTRL, BIT_HCI_MII_PIN_EN, ctrl)
//2A4 WL_PINMUX_CTRL
#define LED_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_WL_PINMUX_CTRL, BIT_WL_LED_PIN_EN, ctrl)
#define LED_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_WL_PINMUX_CTRL, (BIT_MASK_WL_LED_PIN_SEL << BIT_SHIFT_WL_LED_PIN_SEL), BIT_WL_LED_PIN_SEL(num))
#define ANT0_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_WL_PINMUX_CTRL, BIT_WL_ANT0_PIN_EN, ctrl)
#define ANT1_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_WL_PINMUX_CTRL, BIT_WL_ANT1_PIN_EN, ctrl)
#define BTCOEX_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_WL_PINMUX_CTRL, BIT_WL_BTCOEX_PIN_EN, ctrl)
#define BTCMD_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_WL_PINMUX_CTRL, BIT_WL_BTCMD_PIN_EN, ctrl)
#define NFC_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_WL_PINMUX_CTRL, BIT_NFC_PIN_EN, ctrl)
//2AC PWM_PINMUX_CTRL
#define PWM0_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PWM_PINMUX_CTRL, BIT_PWM0_PIN_EN, ctrl)
#define PWM0_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PWM_PINMUX_CTRL, (BIT_MASK_PWM0_PIN_SEL << BIT_SHIFT_PWM0_PIN_SEL), BIT_PWM0_PIN_SEL(num))
#define PWM1_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PWM_PINMUX_CTRL, BIT_PWM1_PIN_EN, ctrl)
#define PWM1_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PWM_PINMUX_CTRL, (BIT_MASK_PWM1_PIN_SEL << BIT_SHIFT_PWM1_PIN_SEL), BIT_PWM1_PIN_SEL(num))
#define PWM2_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PWM_PINMUX_CTRL, BIT_PWM2_PIN_EN, ctrl)
#define PWM2_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PWM_PINMUX_CTRL, (BIT_MASK_PWM2_PIN_SEL << BIT_SHIFT_PWM2_PIN_SEL), BIT_PWM2_PIN_SEL(num))
#define PWM3_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PWM_PINMUX_CTRL, BIT_PWM3_PIN_EN, ctrl)
#define PWM3_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PWM_PINMUX_CTRL, (BIT_MASK_PWM3_PIN_SEL << BIT_SHIFT_PWM3_PIN_SEL), BIT_PWM3_PIN_SEL(num))
#define ETE0_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PWM_PINMUX_CTRL, BIT_ETE0_PIN_EN, ctrl)
#define ETE0_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PWM_PINMUX_CTRL, (BIT_MASK_ETE0_PIN_SEL << BIT_SHIFT_ETE0_PIN_SEL), BIT_ETE0_PIN_SEL(num))
#define ETE1_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PWM_PINMUX_CTRL, BIT_ETE1_PIN_EN, ctrl)
#define ETE1_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PWM_PINMUX_CTRL, (BIT_MASK_ETE1_PIN_SEL << BIT_SHIFT_ETE1_PIN_SEL), BIT_ETE1_PIN_SEL(num))
#define ETE2_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PWM_PINMUX_CTRL, BIT_ETE2_PIN_EN, ctrl)
#define ETE2_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PWM_PINMUX_CTRL, (BIT_MASK_ETE2_PIN_SEL << BIT_SHIFT_ETE2_PIN_SEL), BIT_ETE2_PIN_SEL(num))
#define ETE3_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PWM_PINMUX_CTRL, BIT_ETE3_PIN_EN, ctrl)
#define ETE3_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PWM_PINMUX_CTRL, (BIT_MASK_ETE3_PIN_SEL << BIT_SHIFT_ETE3_PIN_SEL), BIT_ETE3_PIN_SEL(num))
//2C0 CPU_PERIPHERAL_CTRL
#define SPI_FLASH_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_CPU_PERIPHERAL_CTRL, BIT_SPI_FLSH_PIN_EN, ctrl)
#define SPI_FLASH_PIN_SEL(num) HAL_PERL_ON_PIN_SEL(REG_CPU_PERIPHERAL_CTRL, (BIT_MASK_SPI_FLSH_PIN_SEL << BIT_SHIFT_SPI_FLSH_PIN_SEL), BIT_SPI_FLSH_PIN_SEL(num))
#define SDR_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_CPU_PERIPHERAL_CTRL, BIT_SDR_PIN_EN, ctrl)
#define TRACE_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_CPU_PERIPHERAL_CTRL, BIT_TRACE_PIN_EN, ctrl)
#define LOG_UART_PIN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_CPU_PERIPHERAL_CTRL, BIT_LOG_UART_PIN_EN, ctrl)
#define LOG_UART_IR_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_CPU_PERIPHERAL_CTRL, BIT_LOG_UART_IR_EN, ctrl)
//300 REG_PESOC_MEM_CTRL
#define SDR_DDL_FCTRL(ctrl) HAL_PERL_ON_PIN_SEL(REG_PESOC_MEM_CTRL, (BIT_MASK_PESOC_SDR_DDL_CTRL << BIT_SHIFT_PESOC_SDR_DDL_CTRL), BIT_PESOC_SDR_DDL_CTRL(ctrl))
#define FLASH_DDL_FCTRL(ctrl) HAL_PERL_ON_PIN_SEL(REG_PESOC_MEM_CTRL, (BIT_MASK_PESOC_FLASH_DDL_CTRL << BIT_SHIFT_PESOC_FLASH_DDL_CTRL), BIT_PESOC_FLASH_DDL_CTRL(ctrl))
//304 REG_PESOC_SOC_CTRL
#define SRAM_MUX_CFG(num) HAL_PERL_ON_PIN_SEL(REG_PESOC_SOC_CTRL, (BIT_MASK_PESOC_SRAM_MUX_CFG << BIT_SHIFT_PESOC_SRAM_MUX_CFG), BIT_PESOC_SRAM_MUX_CFG(num))
#define LX_WL_SWAP_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_SOC_CTRL, BIT_PESOC_LX_WL_SWAP_SEL, ctrl)
#define LX_MST_SWAP_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_SOC_CTRL, BIT_PESOC_LX_MST_SWAP_SEL, ctrl)
#define LX_SLV_SWAP_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_SOC_CTRL, BIT_PESOC_LX_SLV_SWAP_SEL, ctrl)
#define MII_LX_WRAPPER_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_SOC_CTRL, BIT_PESOC_MII_LX_WRAPPER_EN, ctrl)
#define MII_LX_MST_SWAP_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_SOC_CTRL, BIT_PESOC_MII_LX_MST_SWAP_SEL, ctrl)
#define MII_LX_SLV_SWAP_CTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_SOC_CTRL, BIT_PESOC_MII_LX_SLV_SWAP_SEL, ctrl)
#define GDMA_CFG(num) HAL_PERL_ON_PIN_SEL(REG_PESOC_SOC_CTRL, (BIT_MASK_PESOC_GDMA_CFG << BIT_SHIFT_PESOC_GDMA_CFG), BIT_PESOC_GDMA_CFG(num))
//308 PESOC_PERI_CTRL
#define SPI_RN_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PESOC_PERI_CTRL, BIT_SOC_FUNC_SPI_RN, ctrl)
//320 GPIO_SHTDN_CTRL
#define GPIO_GPA_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPA_SHTDN_N, ctrl)
#define GPIO_GPB_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPB_SHTDN_N, ctrl)
#define GPIO_GPC_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPC_SHTDN_N, ctrl)
#define GPIO_GPD_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPD_SHTDN_N, ctrl)
#define GPIO_GPE_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPE_SHTDN_N, ctrl)
#define GPIO_GPF_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPF_SHTDN_N, ctrl)
#define GPIO_GPG_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPG_SHTDN_N, ctrl)
#define GPIO_GPH_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPH_SHTDN_N, ctrl)
#define GPIO_GPI_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPI_SHTDN_N, ctrl)
#define GPIO_GPJ_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPJ_SHTDN_N, ctrl)
#define GPIO_GPK_SHTDN_N_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_GPIO_SHTDN_CTRL, BIT_GPIO_GPK_SHTDN_N, ctrl)
//374
#define EGTIM_FCTRL(ctrl) HAL_PERL_ON_FUNC_CTRL(REG_PERI_EGTIM_CTRL, BIT_PERI_EGTIM_EN, ctrl)
#define EGTIM_RSIG_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PERI_EGTIM_CTRL, (BIT_MASK_PERI_EGTIM_REF_SIG_SEL << BIT_SHIFT_PERI_EGTIM_REF_SIG_SEL), BIT_PERI_EGTIM_REF_SIG_SEL(num))
#define EGTIME_PIN_G0_OPT_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PERI_EGTIM_CTRL, (BIT_MASK_PERI_EGTIM_PIN_GROUP0_OPT_SEL << BIT_SHIFT_PERI_EGTIM_PIN_GROUP0_OPT_SEL), BIT_PERI_EGTIM_PIN_GROUP0_OPT_SEL(num))
#define EGTIME_PIN_G1_OPT_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PERI_EGTIM_CTRL, (BIT_MASK_PERI_EGTIM_PIN_GROUP1_OPT_SEL << BIT_SHIFT_PERI_EGTIM_PIN_GROUP1_OPT_SEL), BIT_PERI_EGTIM_PIN_GROUP1_OPT_SEL(num))
#define EGTIME_PIN_G2_OPT_SEL(num) HAL_PERL_ON_PIN_SEL(REG_PERI_EGTIM_CTRL, (BIT_MASK_PERI_EGTIM_PIN_GROUP2_OPT_SEL << BIT_SHIFT_PERI_EGTIM_PIN_GROUP2_OPT_SEL), BIT_PERI_EGTIM_PIN_GROUP2_OPT_SEL(num))
#endif //_HAL_PERI_ON_H_

View file

@ -0,0 +1,64 @@
#ifndef _HAL_PINMUX_
#define _HAL_PINMUX_
//Function Index
#define UART0 0
#define UART1 1
#define UART2 2
#define SPI0 8
#define SPI1 9
#define SPI2 10
#define SPI0_MCS 15
#define I2C0 16
#define I2C1 17
#define I2C2 18
#define I2C3 19
#define I2S0 24
#define I2S1 25
#define PCM0 28
#define PCM1 29
#define ADC0 32
#define DAC0 36
#define DAC1 37
#define SDIOD 64
#define SDIOH 65
#define USBOTG 66
#define MII 88
#define WL_LED 96
#define WL_ANT0 104
#define WL_ANT1 105
#define WL_BTCOEX 108
#define WL_BTCMD 109
#define NFC 112
#define PWM0 160
#define PWM1 161
#define PWM2 162
#define PWM3 163
#define ETE0 164
#define ETE1 165
#define ETE2 166
#define ETE3 167
#define EGTIM 168
#define SPI_FLASH 196
#define SDR 200
#define JTAG 216
#define TRACE 217
#define LOG_UART 220
#define LOG_UART_IR 221
#define SIC 224
#define EEPROM 225
#define DEBUG 226
//Location Index(Pin Mux Selection)
#define S0 0
#define S1 1
#define S2 2
#define S3 3
_LONG_CALL_ u8
HalPinCtrlRtl8195A(
IN u32 Function,
IN u32 PinLocation,
IN BOOL Operation);
#endif //_HAL_PINMUX_

View file

@ -0,0 +1,102 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_PLATFORM_
#define _HAL_PLATFORM_
#define ROMVERSION 0x03
#define ROMINFORMATION (ROMVERSION)
#define SYSTEM_CLK PLATFORM_CLOCK
#define SDR_SDRAM_BASE 0x30000000
#define SYSTEM_CTRL_BASE 0x40000000
#define PERI_ON_BASE 0x40000000
#define VENDOR_REG_BASE 0x40002800
#define SPI_FLASH_BASE 0x98000000
#define SDR_CTRL_BASE 0x40005000
#define PERIPHERAL_IRQ_STATUS 0x04
#define PERIPHERAL_IRQ_MODE 0x08
#define PERIPHERAL_IRQ_EN 0x0C
#define LP_PERI_EXT_IRQ_STATUS 0x24
#define LP_PERI_EXT_IRQ_MODE 0x28
#define LP_PERI_EXT_IRQ_EN 0x2C
#define PERIPHERAL_IRQ_ALL_LEVEL 0
#define TIMER_CLK 32*1000
//3 Peripheral IP Base Address
#define GPIO_REG_BASE 0x40001000
#define TIMER_REG_BASE 0x40002000
#define NFC_INTERFACE_BASE 0x40002400
#define LOG_UART_REG_BASE 0x40003000
#define I2C2_REG_BASE 0x40003400
#define I2C3_REG_BASE 0x40003800
#define SPI_FLASH_CTRL_BASE 0x40006000
#define ADC_REG_BASE 0x40010000
#define DAC_REG_BASE 0x40011000
#define UART0_REG_BASE 0x40040000
#define UART1_REG_BASE 0x40040400
#define UART2_REG_BASE 0x40040800
#define SPI0_REG_BASE 0x40042000
#define SPI1_REG_BASE 0x40042400
#define SPI2_REG_BASE 0x40042800
#define I2C0_REG_BASE 0x40044000
#define I2C1_REG_BASE 0x40044400
#define SDIO_DEVICE_REG_BASE 0x40050000
#define MII_REG_BASE 0x40050000
#define SDIO_HOST_REG_BASE 0x40058000
#define GDMA0_REG_BASE 0x40060000
#define GDMA1_REG_BASE 0x40061000
#define I2S0_REG_BASE 0x40062000
#define I2S1_REG_BASE 0x40063000
#define PCM0_REG_BASE 0x40064000
#define PCM1_REG_BASE 0x40065000
#define CRYPTO_REG_BASE 0x40070000
#define WIFI_REG_BASE 0x40080000
#define USB_OTG_REG_BASE 0x400C0000
#define GDMA1_REG_OFF 0x1000
#define I2S1_REG_OFF 0x1000
#define PCM1_REG_OFF 0x1000
#define SSI_REG_OFF 0x400
#define RUART_REG_OFF 0x400
#define CPU_CLK_TYPE_NO 6
enum _BOOT_TYPE_ {
BOOT_FROM_FLASH = 0,
BOOT_FROM_SDIO = 1,
BOOT_FROM_USB = 2,
BOOT_FROM_RSVD = 3,
};
enum _EFUSE_CPU_CLK_ {
#if 1
CLK_200M = 0,
CLK_100M = 1,
CLK_50M = 2,
CLK_25M = 3,
CLK_12_5M = 4,
CLK_4M = 5,
#else
CLK_25M = 0,
CLK_200M = 1,
CLK_100M = 2,
CLK_50M = 3,
CLK_12_5M = 4,
CLK_4M = 5,
#endif
};
#endif //_HAL_PLATFORM_

View file

@ -0,0 +1,57 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_PWM_H_
#define _HAL_PWM_H_
#define MAX_PWM_CTRL_PIN 4
// the minimum tick time for G-timer is 61 us (clock source = 32768Hz, reload value=1 and reload takes extra 1T)
//#define GTIMER_TICK_US 31 // micro-second, 1000000/32768 ~= 30.5
#define MIN_GTIMER_TIMEOUT 61 // in micro-sec, use this value to set the g-timer to generate tick for PWM. 61=(1000000/32768)*2
#define PWM_GTIMER_TICK_TIME 61 // in micro-sec, use this value to set the g-timer to generate tick for PWM. 61=(1000000/32768)*2
typedef struct _HAL_PWM_ADAPTER_ {
u8 pwm_id; // the PWM ID, 0~3
u8 sel; // PWM Pin selection, 0~3
u8 gtimer_id; // using G-Timer ID, there are 7 G-timer, but we prefer to use timer 3~6
u8 enable; // is enabled
// u32 timer_value; // the G-Timer auto-reload value, source clock is 32768Hz, reload will takes extra 1 tick. To set the time of a tick of PWM
u32 tick_time; // the tick time for the G-timer
u32 period; // the period of a PWM control cycle, in PWM tick
u32 pulsewidth; // the pulse width in a period of a PWM control cycle, in PWM tick. To control the ratio
// float duty_ratio; // the dyty ratio = pulswidth/period
}HAL_PWM_ADAPTER, *PHAL_PWM_ADAPTER;
extern HAL_Status
HAL_Pwm_Init(
u32 pwm_id,
u32 sel
);
extern void
HAL_Pwm_Enable(
u32 pwm_id
);
extern void
HAL_Pwm_Disable(
u32 pwm_id
);
extern void
HAL_Pwm_SetDuty(
u32 pwm_id,
u32 period,
u32 pulse_width
);
#endif

View file

@ -0,0 +1,278 @@
#ifndef _HAL_SOCPWR_
#define _HAL_SOCPWR_
#define MAX_BACKUP_SIZE 129
#define MAXFUNC 10
#define FSTREG 0xFF
#define REG_VDR_ANACK_CAL_CTRL 0xA0
#define PS_MASK 0xFFFFFFFF
//pwr state
#define HWACT 0
#define HWCG 1
#define HWINACT 2
#define UNDEF 3
#define ALLMET 0xff
//SLP
#define SLP_STIMER BIT0
#define SLP_GTIMER BIT1
#define SLP_GPIO BIT2
#define SLP_WL BIT3
#define SLP_NFC BIT4
#define SLP_SDIO BIT5
#define SLP_USB BIT6
#define SLP_TIMER33 BIT7
//DSTBY
#define DSTBY_STIMER BIT0
#define DSTBY_NFC BIT1
#define DSTBY_TIMER33 BIT2
#define DSTBY_GPIO BIT3
//DS wake event
#define DS_TIMER33 BIT0
#define DS_GPIO BIT1
enum power_state_idx{
ACT = 0,
WFE = 1,
WFI = 2,
SNOOZE = 3,
SLPCG = 4,
SLPPG = 5,
DSTBY = 6,
DSLP = 7,
INACT = 8,
MAXSTATE = 9
};
enum clk_idx{
ANACK = 0,
A33CK = 1,
};
typedef struct _power_state_{
u8 FuncIdx;
u8 PowerState;
}POWER_STATE, *pPOWER_STATE;
typedef struct _reg_power_state_{
u8 FuncIdx;
u8 PwrState;
}REG_POWER_STATE, *pPREG_POWER_STATE;
#if 0
typedef struct _power_state_{
u8 FuncIdx;
u8 PowerState;
u32 ReqDuration;
u32 RegCount;
u32 RemainDuration;
}POWER_STATE, *pPOWER_STATE;
typedef struct _reg_power_state_{
u8 FuncIdx;
u8 PwrState;
u32 ReqDuration;
//u8 StateIdx;
}REG_POWER_STATE, *pPREG_POWER_STATE;
#endif
typedef struct _power_mgn_{
u8 ActFuncCount;
POWER_STATE PwrState[MAXFUNC];
u8 CurrentState;
u8 SDREn;
u32 MSPbackup[MAX_BACKUP_SIZE];
u32 CPURegbackup[25];
u32 CPUPSP;
u32 WakeEventFlag;
BOOL SleepFlag;
//u32 CPUReg[13];
//u32 MSBackUp[128];
}Power_Mgn, *pPower_Mgn;
typedef struct _SYS_ADAPTER_ {
u8 function;
}SYS_ADAPTER, *PSYS_ADAPTER;
extern Power_Mgn PwrAdapter;
u8 ChangeSoCPwrState(
IN u8 RequestState,
IN u32 ReqCount
);
VOID PrintCPU(VOID);
void WakeFromSLPPG(void);
VOID SOCPSTestApp(VOID *Data);
__inline static VOID
CPURegBackUp(
VOID
)
{
#if defined (__ICCARM__)
// TODO: IAR has different way using assembly
#elif defined (__GNUC__)
//backup cpu reg
#if 0
asm volatile
(
"PUSH {PSR, PC, LR, R12,R3,R2,R1,R0}\n"
);
#endif
#if 0
asm volatile
(
"PUSH {r0,r1,r2,r3,r4}\n"
);
#endif
asm volatile
(
"MOV %0, r0\n"
:"=r"(PwrAdapter.CPURegbackup[0])
::"memory"
);
asm volatile
(
"MOV %0, r1\n"
:"=r"(PwrAdapter.CPURegbackup[1])
::"memory"
);
asm volatile
(
"MOV %0, r2\n"
:"=r"(PwrAdapter.CPURegbackup[2])
::"memory"
);
asm volatile
(
"MOV %0, r3\n"
:"=r"(PwrAdapter.CPURegbackup[3])
::"memory"
);
asm volatile
(
"MOV %0, r4\n"
:"=r"(PwrAdapter.CPURegbackup[4])
::"memory"
);
asm volatile
(
"MOV %0, r5\n"
:"=r"(PwrAdapter.CPURegbackup[5])
::"memory"
);
asm volatile
(
"MOV %0, r6\n"
:"=r"(PwrAdapter.CPURegbackup[6])
::"memory"
);
asm volatile
(
"MOV %0, r7\n"
:"=r"(PwrAdapter.CPURegbackup[7])
::"memory"
);
asm volatile
(
"MOV %0, r8\n"
:"=r"(PwrAdapter.CPURegbackup[8])
::"memory"
);
asm volatile
(
"MOV %0, r9\n"
:"=r"(PwrAdapter.CPURegbackup[9])
::"memory"
);
asm volatile
(
"MOV %0, r10\n"
:"=r"(PwrAdapter.CPURegbackup[10])
::"memory"
);
asm volatile
(
"MOV %0, r11\n"
:"=r"(PwrAdapter.CPURegbackup[11])
::"memory"
);
asm volatile
(
"MOV %0, r12\n"
:"=r"(PwrAdapter.CPURegbackup[12])
::"memory"
);
asm volatile
(
"MOV %0, r13\n"
:"=r"(PwrAdapter.CPURegbackup[13])
::"memory"
);
asm volatile
(
//"MOV %0, r14\n"
"LDR %0, =SLPPG_WAKEUP_POINT\n"
"ADD %0, #1\n"
:"=r"(PwrAdapter.CPURegbackup[14])
::"memory"
);
asm volatile
(
"LDR %0, =SLPPG_WAKEUP_POINT\n"
"ADD %0, #1\n"
:"=r"(PwrAdapter.CPURegbackup[15])
::"memory"
);
asm volatile
(
"MRS %0, PSR\n"
:"=r"(PwrAdapter.CPURegbackup[16])
::"memory"
);
#if 1
asm volatile
(
"mov %0, r13\n"
"MOV %1, PC\n"
"MRS %2, CONTROL\n"
"MRS %3, PSP\n"
"MRS %4, MSP\n"
:"=r"(PwrAdapter.CPURegbackup[24]),"=r"(PwrAdapter.CPURegbackup[23]),"=r"(PwrAdapter.CPURegbackup[22]),"=r"(PwrAdapter.CPURegbackup[21]),"=r"(PwrAdapter.CPURegbackup[20])
::"memory"
);
#endif
#ifdef CONFIG_SOC_PS_VERIFY
PrintCPU();
#endif //#ifdef CONFIG_SOC_PS_VERIFY
#endif //#elif defined (__GNUC__)
}
VOID RegPowerState(REG_POWER_STATE RegPwrState);
#endif //_HAL_SOCPWR_

View file

@ -0,0 +1,254 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_SPIFLASH__
#define _HAL_SPIFLASH__
//======================================================
// Header files
#define SPIC_CALIBRATION_IN_NVM 1 // if store the SPIC calibration data in the NVM
#ifndef CONFIG_IMAGE_SEPARATE // Store SPIC Calibration only for seprated image
#undef SPIC_CALIBRATION_IN_NVM
#define SPIC_CALIBRATION_IN_NVM 0
#endif
//======================================================
// Definition
#define HAL_SPI_WRITE32(addr, value32) HAL_WRITE32(SPI_FLASH_CTRL_BASE, addr, value32)
#define HAL_SPI_WRITE16(addr, value16) HAL_WRITE16(SPI_FLASH_CTRL_BASE, addr, value16)
#define HAL_SPI_WRITE8(addr, value8) HAL_WRITE8(SPI_FLASH_CTRL_BASE, addr, value8)
#define HAL_SPI_READ32(addr) HAL_READ32(SPI_FLASH_CTRL_BASE, addr)
#define HAL_SPI_READ16(addr) HAL_READ16(SPI_FLASH_CTRL_BASE, addr)
#define HAL_SPI_READ8(addr) HAL_READ8(SPI_FLASH_CTRL_BASE, addr)
typedef struct _SPIC_PARA_MODE_ {
u8 Valid:1; // valid
u8 CpuClk:3; // CPU clock
u8 BitMode:2; // Bit mode
u8 Reserved:2; // reserved
} SPIC_PARA_MODE, *PSPIC_PARA_MODE;
typedef struct _SPIC_INIT_PARA_ {
u8 BaudRate;
u8 RdDummyCyle;
u8 DelayLine;
union {
u8 Rsvd;
u8 Valid;
SPIC_PARA_MODE Mode;
};
#if defined(E_CUT_ROM_DOMAIN) || (!defined(CONFIG_RELEASE_BUILD_LIBRARIES))
u8 id[3];
u8 flashtype;
#endif
}SPIC_INIT_PARA, *PSPIC_INIT_PARA;
enum _SPIC_BIT_MODE_ {
SpicOneBitMode = 0,
SpicDualBitMode = 1,
SpicQuadBitMode = 2,
};
//======================================================
// Flash type used
#define FLASH_OTHERS 0
#define FLASH_MXIC 1
#define FLASH_WINBOND 2
#define FLASH_MICRON 3
#define FLASH_MXIC_MX25L4006E 1
#define FLASH_MXIC_MX25L8073E 0
// The below parts are based on the flash characteristics
//====== Flash Command Definition ======
#if FLASH_MXIC_MX25L4006E
#define FLASH_CMD_WREN 0x06 //write enable
#define FLASH_CMD_WRDI 0x04 //write disable
#define FLASH_CMD_WRSR 0x01 //write status register
#define FLASH_CMD_RDID 0x9F //read idenfication
#define FLASH_CMD_RDSR 0x05 //read status register
#define FLASH_CMD_READ 0x03 //read data
#define FLASH_CMD_FREAD 0x0B //fast read data
#define FLASH_CMD_RDSFDP 0x5A //Read SFDP
#define FLASH_CMD_RES 0xAB //Read Electronic ID
#define FLASH_CMD_REMS 0x90 //Read Electronic Manufacturer & Device ID
#define FLASH_CMD_DREAD 0x3B //Double Output Mode command
#define FLASH_CMD_SE 0x20 //Sector Erase
#define FLASH_CMD_BE 0xD8 //Block Erase(or 0x52)
#define FLASH_CMD_CE 0x60 //Chip Erase(or 0xC7)
#define FLASH_CMD_PP 0x02 //Page Program
#define FLASH_CMD_DP 0xB9 //Deep Power Down
#define FLASH_CMD_RDP 0xAB //Release from Deep Power-Down
#elif FLASH_MXIC_MX25L8073E
#define FLASH_CMD_WREN 0x06 //write enable
#define FLASH_CMD_WRDI 0x04 //write disable
#define FLASH_CMD_WRSR 0x01 //write status register
#define FLASH_CMD_RDID 0x9F //read idenfication
#define FLASH_CMD_RDSR 0x05 //read status register
#define FLASH_CMD_READ 0x03 //read data
#define FLASH_CMD_FREAD 0x0B //fast read data
#define FLASH_CMD_RDSFDP 0x5A //Read SFDP
#define FLASH_CMD_RES 0xAB //Read Electronic ID
#define FLASH_CMD_REMS 0x90 //Read Electronic Manufacturer & Device ID
#define FLASH_CMD_DREAD 0x3B //Double Output Mode command
#define FLASH_CMD_SE 0x20 //Sector Erase
#define FLASH_CMD_BE 0x52 //Block Erase
#define FLASH_CMD_CE 0x60 //Chip Erase(or 0xC7)
#define FLASH_CMD_PP 0x02 //Page Program
#define FLASH_CMD_DP 0xB9 //Deep Power Down
#define FLASH_CMD_RDP 0xAB //Release from Deep Power-Down
#define FLASH_CMD_2READ 0xBB // 2 x I/O read command
#define FLASH_CMD_4READ 0xEB // 4 x I/O read command
#define FLASH_CMD_QREAD 0x6B // 1I / 4O read command
#define FLASH_CMD_4PP 0x38 //quad page program
#define FLASH_CMD_FF 0xFF //Release Read Enhanced
#define FLASH_CMD_REMS2 0xEF // read ID for 2x I/O mode
#define FLASH_CMD_REMS4 0xDF // read ID for 4x I/O mode
#define FLASH_CMD_ENSO 0xB1 // enter secured OTP
#define FLASH_CMD_EXSO 0xC1 // exit secured OTP
#define FLASH_CMD_RDSCUR 0x2B // read security register
#define FLASH_CMD_WRSCUR 0x2F // write security register
#else
#define FLASH_CMD_WREN 0x06 //write enable
#define FLASH_CMD_WRDI 0x04 //write disable
#define FLASH_CMD_WRSR 0x01 //write status register
#define FLASH_CMD_RDID 0x9F //read idenfication
#define FLASH_CMD_RDSR 0x05 //read status register
#define FLASH_CMD_READ 0x03 //read data
#define FLASH_CMD_FREAD 0x0B //fast read data
#define FLASH_CMD_RDSFDP 0x5A //Read SFDP
#define FLASH_CMD_RES 0xAB //Read Electronic ID
#define FLASH_CMD_REMS 0x90 //Read Electronic Manufacturer & Device ID
#define FLASH_CMD_DREAD 0x3B //Double Output Mode command
#define FLASH_CMD_SE 0x20 //Sector Erase
#define FLASH_CMD_BE 0x52 //Block Erase
#define FLASH_CMD_CE 0x60 //Chip Erase(or 0xC7)
#define FLASH_CMD_PP 0x02 //Page Program
#define FLASH_CMD_DP 0xB9 //Deep Power Down
#define FLASH_CMD_RDP 0xAB //Release from Deep Power-Down
#define FLASH_CMD_2READ 0xBB // 2 x I/O read command
#define FLASH_CMD_4READ 0xEB // 4 x I/O read command
#define FLASH_CMD_QREAD 0x6B // 1I / 4O read command
#define FLASH_CMD_4PP 0x38 //quad page program
#define FLASH_CMD_FF 0xFF //Release Read Enhanced
#define FLASH_CMD_REMS2 0xEF // read ID for 2x I/O mode
#define FLASH_CMD_REMS4 0xDF // read ID for 4x I/O mode
#define FLASH_CMD_ENSO 0xB1 // enter secured OTP
#define FLASH_CMD_EXSO 0xC1 // exit secured OTP
#define FLASH_CMD_RDSCUR 0x2B // read security register
#define FLASH_CMD_WRSCUR 0x2F // write security register
#endif //#if FLASH_MXIC_MX25L4006E
// ============================
// ===== Flash Parameter Definition =====
#if FLASH_MXIC_MX25L4006E
#define FLASH_RD_2IO_EN 0
#define FLASH_RD_2O_EN 1
#define FLASH_RD_4IO_EN 0
#define FLASH_RD_4O_EN 0
#define FLASH_WR_2IO_EN 0
#define FLASH_WR_2O_EN 0
#define FLASH_WR_4IO_EN 0
#define FLASH_WR_4O_EN 0
#define FLASH_DM_CYCLE_2O 0x08
#define FLASH_VLD_DUAL_CMDS (BIT_WR_BLOCKING | BIT_RD_DUAL_I)
#define FLASH_VLD_QUAD_CMDS (0)
#elif FLASH_MXIC_MX25L8073E //This flash model is just for prototype, if you want to use it,
//the code MUST be rechecked according to the flash spec.
#define FLASH_RD_2IO_EN 1
#define FLASH_RD_2O_EN 0
#define FLASH_RD_4IO_EN 1
#define FLASH_RD_4O_EN 0
#define FLASH_WR_2IO_EN 1
#define FLASH_WR_2O_EN 0
#define FLASH_WR_4IO_EN 1
#define FLASH_WR_4O_EN 0
#define FLASH_DM_CYCLE_2O 0x08
#define FLASH_DM_CYCLE_2IO 0x04
#define FLASH_DM_CYCLE_4O 0x08
#define FLASH_DM_CYCLE_4IO 0x04
#define FLASH_VLD_DUAL_CMDS (BIT_WR_BLOCKING | BIT_RD_DUAL_IO)
#define FLASH_VLD_QUAD_CMDS (BIT_WR_BLOCKING | BIT_WR_QUAD_II | BIT_RD_QUAD_IO)
#else
#define FLASH_RD_2IO_EN 1
#define FLASH_RD_2O_EN 0
#define FLASH_RD_4IO_EN 1
#define FLASH_RD_4O_EN 0
#define FLASH_WR_2IO_EN 1
#define FLASH_WR_2O_EN 0
#define FLASH_WR_4IO_EN 1
#define FLASH_WR_4O_EN 0
#define FLASH_DM_CYCLE_2O 0x08
#define FLASH_DM_CYCLE_2IO 0x04
#define FLASH_DM_CYCLE_4O 0x08
#define FLASH_DM_CYCLE_4IO 0x04
#define FLASH_VLD_DUAL_CMDS (BIT_WR_BLOCKING | BIT_RD_DUAL_IO)
#define FLASH_VLD_QUAD_CMDS (BIT_WR_BLOCKING | BIT_WR_QUAD_II | BIT_RD_QUAD_IO)
#endif
#if 0
//======================================================
// Function prototype
BOOLEAN SpicFlashInitRtl8195A(u8 SpicBitMode);
_LONG_CALL_
extern VOID SpicLoadInitParaFromClockRtl8195A(u8 CpuClkMode, u8 BaudRate, PSPIC_INIT_PARA pSpicInitPara);
// spi-flash controller initialization
_LONG_CALL_
extern VOID SpicInitRtl8195A(u8 InitBaudRate, u8 SpicBitMode);
// wait sr[0] = 0, wait transmission done
_LONG_CALL_
extern VOID SpicWaitBusyDoneRtl8195A(VOID);
// wait spi-flash status register[0] = 0
//_LONG_CALL_
//extern VOID SpicWaitWipDoneRtl8195A(SPIC_INIT_PARA SpicInitPara);
#endif
//======================================================
// ROM Function prototype
_LONG_CALL_ VOID SpiFlashAppV02(IN VOID *Data);
_LONG_CALL_ROM_ VOID SpicInitRtl8195AV02(IN u8 InitBaudRate,IN u8 SpicBitMode);
_LONG_CALL_ROM_ VOID SpicEraseFlashRtl8195AV02(VOID);
_LONG_CALL_ROM_ VOID SpicLoadInitParaFromClockRtl8195AV02(IN u8 CpuClkMode,IN u8 BaudRate,IN PSPIC_INIT_PARA pSpicInitPara);
VOID SpicBlockEraseFlashRtl8195A(IN u32 Address);
VOID SpicSectorEraseFlashRtl8195A(IN u32 Address);
VOID SpicDieEraseFlashRtl8195A(IN u32 Address);
VOID SpicWriteProtectFlashRtl8195A(IN u32 Protect);
VOID SpicWaitWipDoneRefinedRtl8195A(IN SPIC_INIT_PARA SpicInitPara);
VOID SpicWaitOperationDoneRtl8195A(IN SPIC_INIT_PARA SpicInitPara);
VOID SpicRxCmdRefinedRtl8195A(IN u8 cmd,IN SPIC_INIT_PARA SpicInitPara);
u8 SpicGetFlashStatusRefinedRtl8195A(IN SPIC_INIT_PARA SpicInitPara);
VOID SpicInitRefinedRtl8195A(IN u8 InitBaudRate,IN u8 SpicBitMode);
u32 SpicWaitWipRtl8195A(VOID);
u32 SpicOneBitCalibrationRtl8195A(IN u8 SysCpuClk);
VOID SpicDisableRtl8195A(VOID);
VOID SpicDeepPowerDownFlashRtl8195A(VOID);
VOID SpicUserProgramRtl8195A(IN u8 * data, IN SPIC_INIT_PARA SpicInitPara, IN u32 addr, IN u32 * LengthInfo);
#if SPIC_CALIBRATION_IN_NVM
VOID SpicNVMCalLoad(u8 BitMode, u8 CpuClk);
VOID SpicNVMCalLoadAll(void);
VOID SpicNVMCalStore(u8 BitMode, u8 CpuClk);
#endif // #if SPIC_CALIBRATION_IN_NVM
#endif //_HAL_SPIFLASH__

View file

@ -0,0 +1,309 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_SSI_H_
#define _HAL_SSI_H_
#include "rtl8195a_ssi.h"
/**
* LOG Configurations
*/
extern u32 SSI_DBG_CONFIG;
extern uint8_t SPI0_IS_AS_SLAVE;
#define SSI_DBG_ENTRANCE(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_ENTRANCE)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE ANSI_COLOR_GREEN __VA_ARGS__ ANSI_COLOR_RESET); \
}while(0)
#define SSI_DBG_INIT(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_INIT)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_INIT_V(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_INIT_V)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_INIT_VV(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_INIT_VV)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_PINMUX(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_PINMUX)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_ENDIS(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_ENDIS)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_INT(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_INT)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_INT_V(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_INT_V)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_INT_HNDLR(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_INT_HNDLR)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_INT_READ(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_INT_READ)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_INT_WRITE(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_INT_WRITE)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_STATUS(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_STATUS)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_FIFO(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_FIFO)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_READ(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_READ)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_WRITE(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_WRITE)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
#define SSI_DBG_SLV_CTRL(...) do {\
if (unlikely(SSI_DBG_CONFIG & DBG_TYPE_SLV_CTRL)) \
DBG_SSI_INFO(IDENT_FOUR_SPACE __VA_ARGS__); \
}while(0)
typedef enum _SSI_DBG_TYPE_LIST_ {
DBG_TYPE_ENTRANCE = 1 << 0,
DBG_TYPE_INIT = 1 << 1,
DBG_TYPE_INIT_V = 1 << 2,
DBG_TYPE_INIT_VV = 1 << 3,
DBG_TYPE_PINMUX = 1 << 4,
DBG_TYPE_ENDIS = 1 << 5,
DBG_TYPE_INT = 1 << 6,
DBG_TYPE_INT_V = 1 << 7,
DBG_TYPE_INT_HNDLR = 1 << 8,
DBG_TYPE_INT_READ = 1 << 9,
DBG_TYPE_INT_WRITE = 1 << 10,
DBG_TYPE_STATUS = 1 << 11,
DBG_TYPE_FIFO = 1 << 12,
DBG_TYPE_READ = 1 << 13,
DBG_TYPE_WRITE = 1 << 14,
DBG_TYPE_SLV_CTRL = 1 << 15
} SSI_DBG_TYPE_LIST, *PSSI_DBG_TYPE_LIST;
typedef struct _SSI_DMA_CONFIG_ {
VOID *pHalGdmaOp;
VOID *pTxHalGdmaAdapter;
VOID *pRxHalGdmaAdapter;
u8 RxDmaBurstSize;
u8 TxDmaBurstSize;
u8 RxDmaEnable;
u8 TxDmaEnable;
IRQ_HANDLE RxGdmaIrqHandle;
IRQ_HANDLE TxGdmaIrqHandle;
}SSI_DMA_CONFIG, *PSSI_DMA_CONFIG;
/**
* DesignWare SSI Configurations
*/
typedef struct _HAL_SSI_ADAPTOR_ {
SSI_DMA_CONFIG DmaConfig;
IRQ_HANDLE IrqHandle;
//
VOID (*RxCompCallback)(VOID *Para);
VOID *RxCompCbPara;
VOID *RxData;
VOID (*TxCompCallback)(VOID *Para);
VOID *TxCompCbPara;
VOID *TxData;
u32 DmaRxDataLevel;
u32 DmaTxDataLevel;
u32 InterruptPriority;
u32 RxLength;
u32 RxLengthRemainder;
u32 RxThresholdLevel;
u32 TxLength;
u32 TxThresholdLevel;
u32 SlaveSelectEnable;
//
u16 ClockDivider;
u16 DataFrameNumber;
//
u8 ControlFrameSize;
u8 DataFrameFormat;
u8 DataFrameSize;
u8 DmaControl;
u8 Index;
u8 InterruptMask;
u8 MicrowireDirection;
u8 MicrowireHandshaking;
u8 MicrowireTransferMode;
u8 PinmuxSelect;
u8 Role;
u8 SclkPhase;
u8 SclkPolarity;
u8 SlaveOutputEnable;
u8 TransferMode;
u8 TransferMechanism;
// Extend
u32 Reserved1;
u8 DefaultRxThresholdLevel;
}HAL_SSI_ADAPTOR, *PHAL_SSI_ADAPTOR;
typedef struct _HAL_SSI_OP_{
HAL_Status (*HalSsiPinmuxEnable)(VOID *Adaptor);
HAL_Status (*HalSsiPinmuxDisable)(VOID *Adaptor);
HAL_Status (*HalSsiEnable)(VOID *Adaptor);
HAL_Status (*HalSsiDisable)(VOID *Adaptor);
HAL_Status (*HalSsiInit)(VOID *Adaptor);
HAL_Status (*HalSsiSetSclkPolarity)(VOID *Adaptor);
HAL_Status (*HalSsiSetSclkPhase)(VOID *Adaptor);
HAL_Status (*HalSsiWrite)(VOID *Adaptor, u32 value);
HAL_Status (*HalSsiLoadSetting)(VOID *Adaptor, VOID *Setting);
HAL_Status (*HalSsiSetInterruptMask)(VOID *Adaptor);
HAL_Status (*HalSsiSetDeviceRole)(VOID *Adaptor, u32 Role);
HAL_Status (*HalSsiInterruptEnable)(VOID *Adaptor);
HAL_Status (*HalSsiInterruptDisable)(VOID *Adaptor);
HAL_Status (*HalSsiReadInterrupt)(VOID *Adaptor, VOID *RxData, u32 Length);
HAL_Status (*HalSsiSetRxFifoThresholdLevel)(VOID *Adaptor);
HAL_Status (*HalSsiSetTxFifoThresholdLevel)(VOID *Adaptor);
HAL_Status (*HalSsiWriteInterrupt)(VOID *Adaptor, u8 *TxData, u32 Length);
HAL_Status (*HalSsiSetSlaveEnableRegister)(VOID *Adaptor, u32 SlaveIndex);
u32 (*HalSsiBusy)(VOID *Adaptor);
u32 (*HalSsiReadable)(VOID *Adaptor);
u32 (*HalSsiWriteable)(VOID *Adaptor);
u32 (*HalSsiGetInterruptMask)(VOID *Adaptor);
u32 (*HalSsiGetRxFifoLevel)(VOID *Adaptor);
u32 (*HalSsiGetTxFifoLevel)(VOID *Adaptor);
u32 (*HalSsiGetStatus)(VOID *Adaptor);
u32 (*HalSsiGetInterruptStatus)(VOID *Adaptor);
u32 (*HalSsiRead)(VOID *Adaptor);
u32 (*HalSsiGetRawInterruptStatus)(VOID *Adaptor);
u32 (*HalSsiGetSlaveEnableRegister)(VOID *Adaptor);
}HAL_SSI_OP, *PHAL_SSI_OP;
typedef struct _DW_SSI_DEFAULT_SETTING_ {
VOID (*RxCompCallback)(VOID *Para);
VOID *RxCompCbPara;
VOID *RxData;
VOID (*TxCompCallback)(VOID *Para);
VOID *TxCompCbPara;
VOID *TxData;
u32 DmaRxDataLevel;
u32 DmaTxDataLevel;
u32 InterruptPriority;
u32 RxLength;
u32 RxLengthRemainder;
u32 RxThresholdLevel;
u32 TxLength;
u32 TxThresholdLevel;
u32 SlaveSelectEnable;
//
u16 ClockDivider;
u16 DataFrameNumber;
//
u8 ControlFrameSize;
u8 DataFrameFormat;
u8 DataFrameSize;
u8 DmaControl;
//u8 Index;
u8 InterruptMask;
u8 MicrowireDirection;
u8 MicrowireHandshaking;
u8 MicrowireTransferMode;
//u8 PinmuxSelect;
//u8 Role;
u8 SclkPhase;
u8 SclkPolarity;
u8 SlaveOutputEnable;
u8 TransferMode;
u8 TransferMechanism;
} DW_SSI_DEFAULT_SETTING, *PDW_SSI_DEFAULT_SETTING;
struct spi_s {
HAL_SSI_ADAPTOR spi_adp;
HAL_SSI_OP spi_op;
u32 irq_handler;
u32 irq_id;
u32 dma_en;
u32 state;
u8 sclk;
#ifdef CONFIG_GDMA_EN
HAL_GDMA_ADAPTER spi_gdma_adp_tx;
HAL_GDMA_ADAPTER spi_gdma_adp_rx;
#endif
};
VOID HalSsiOpInit(VOID *Adaptor);
static __inline__ VOID HalSsiSetSclk(
IN PHAL_SSI_ADAPTOR pHalSsiAdapter,
IN u32 ClkRate)
{
HalSsiSetSclkRtl8195a((VOID*)pHalSsiAdapter, ClkRate);
}
HAL_Status HalSsiInit(VOID * Data);
HAL_Status HalSsiDeInit(VOID * Data);
HAL_Status HalSsiEnable(VOID * Data);
HAL_Status HalSsiDisable(VOID * Data);
#ifdef CONFIG_GDMA_EN
HAL_Status HalSsiTxGdmaInit(PHAL_SSI_OP pHalSsiOp, PHAL_SSI_ADAPTOR pHalSsiAdapter);
VOID HalSsiTxGdmaDeInit(PHAL_SSI_ADAPTOR pHalSsiAdapter);
HAL_Status HalSsiRxGdmaInit(PHAL_SSI_OP pHalSsiOp, PHAL_SSI_ADAPTOR pHalSsiAdapter);
VOID HalSsiRxGdmaDeInit(PHAL_SSI_ADAPTOR pHalSsiAdapter);
static __inline__ VOID
HalSsiDmaInit(
IN PHAL_SSI_ADAPTOR pHalSsiAdapter
)
{
HalSsiDmaInitRtl8195a((void *)pHalSsiAdapter);
}
static __inline__ HAL_Status HalSsiDmaSend(VOID *Adapter, u8 *pTxData, u32 Length)
{
return (HalSsiDmaSendRtl8195a(Adapter, pTxData, Length));
}
static __inline__ HAL_Status HalSsiDmaRecv(VOID *Adapter, u8 *pRxData, u32 Length)
{
return (HalSsiDmaRecvRtl8195a(Adapter, pRxData, Length));
}
#endif // end of "#ifdef CONFIG_GDMA_EN"
#endif

View file

@ -0,0 +1,58 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_TIMER_H_
#define _HAL_TIMER_H_
#include "basic_types.h"
#include "hal_platform.h"
#include "rtl8195a_timer.h"
#define GTIMER_CLK_HZ (32768)
#define GTIMER_TICK_US (1000000/GTIMER_CLK_HZ)
typedef enum _TIMER_MODE_ {
FREE_RUN_MODE = 0,
USER_DEFINED = 1
}TIMER_MODE, *PTIMER_MODE;
typedef struct _TIMER_ADAPTER_ {
u32 TimerLoadValueUs;
u32 TimerIrqPriority;
TIMER_MODE TimerMode;
IRQ_HANDLE IrqHandle;
u8 TimerId;
u8 IrqDis;
}TIMER_ADAPTER, *PTIMER_ADAPTER;
typedef struct _HAL_TIMER_OP_ {
u32 (*HalGetTimerId)(u32 *TimerId);
BOOL (*HalTimerInit)(VOID *Data);
u32 (*HalTimerReadCount)(u32 TimerId);
VOID (*HalTimerIrqClear)(u32 TimerId);
VOID (*HalTimerDis)(u32 TimerId);
VOID (*HalTimerEn)(u32 TimerId);
VOID (*HalTimerDumpReg)(u32 TimerId);
}HAL_TIMER_OP, *PHAL_TIMER_OP;
VOID HalTimerOpInit_Patch(
IN VOID *Data
);
//======================================================
// ROM Function prototype
_LONG_CALL_ VOID HalTimerOpInitV02(IN VOID *Data);
#define HalTimerOpInit HalTimerOpInit_Patch
#endif

View file

@ -0,0 +1,204 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_UART_H_
#define _HAL_UART_H_
#include "rtl8195a_uart.h"
/**
* RUART Configurations
*/
#define UART_WAIT_FOREVER 0xffffffff
typedef struct _UART_DMA_CONFIG_ {
u8 TxDmaEnable;
u8 RxDmaEnable;
u8 TxDmaBurstSize;
u8 RxDmaBurstSize;
VOID *pHalGdmaOp;
VOID *pTxHalGdmaAdapter;
VOID *pRxHalGdmaAdapter;
IRQ_HANDLE TxGdmaIrqHandle;
IRQ_HANDLE RxGdmaIrqHandle;
}UART_DMA_CONFIG, *PUART_DMA_CONFIG;
typedef struct _HAL_RUART_ADAPTER_ {
u32 BaudRate;
u32 FlowControl;
u32 FifoControl;
u32 Interrupts;
u32 TxCount; // how many byte to TX
u32 RxCount; // how many bytes to RX
u8 *pTxBuf;
u8 *pRxBuf;
HAL_UART_State State; // UART state
u8 Status; // Transfer Status
u8 Locked; // is UART locked for operation
u8 UartIndex;
u8 WordLen; // word length select: 0 -> 7 bits, 1 -> 8 bits
u8 StopBit; // word length select: 0 -> 1 stop bit, 1 -> 2 stop bit
u8 Parity; // parity check enable
u8 ParityType; // parity check type
u8 StickParity;
u8 ModemStatus; // the modem status
u8 DmaEnable;
u8 TestCaseNumber;
u8 PinmuxSelect;
BOOL PullMode;
IRQ_HANDLE IrqHandle;
PUART_DMA_CONFIG DmaConfig;
VOID (*ModemStatusInd)(VOID *pAdapter); // modem status indication interrupt handler
VOID (*TxTDCallback)(VOID *pAdapter); // User Tx Done callback function
VOID (*RxDRCallback)(VOID *pAdapter); // User Rx Data ready callback function
VOID (*TxCompCallback)(VOID *para); // User Tx complete callback function
VOID (*RxCompCallback)(VOID *para); // User Rx complete callback function
VOID *TxTDCbPara; // the pointer agrument for TxTDCallback
VOID *RxDRCbPara; // the pointer agrument for RxDRCallback
VOID *TxCompCbPara; // the pointer argument for TxCompCbPara
VOID *RxCompCbPara; // the pointer argument for RxCompCallback
VOID (*EnterCritical)(void);
VOID (*ExitCritical)(void);
//1 New member only can be added below: members above must be fixed for ROM code
u32 *pDefaultBaudRateTbl; // point to the table of pre-defined baud rate
u8 *pDefaultOvsrRTbl; // point to the table of OVSR for pre-defined baud rate
u16 *pDefaultDivTbl; // point to the table of DIV for pre-defined baud rate
u8 *pDefOvsrAdjBitTbl_10; // point to the table of OVSR-Adj bits for 10 bits
u8 *pDefOvsrAdjBitTbl_9; // point to the table of OVSR-Adj bits for 9 bits
u8 *pDefOvsrAdjBitTbl_8; // point to the table of OVSR-Adj bits for 8 bits
u16 *pDefOvsrAdjTbl_10; // point to the table of OVSR-Adj for pre-defined baud rate
u16 *pDefOvsrAdjTbl_9; // point to the table of OVSR-Adj for pre-defined baud rate
u16 *pDefOvsrAdjTbl_8; // point to the table of OVSR-Adj for pre-defined baud rate
u32 BaudRateUsing; // Current using Baud-Rate
#if CONFIG_CHIP_E_CUT
u8 TxState;
u8 RxState;
u32 TxInitSize; // how many byte to TX at atart
u32 RxInitSize; // how many bytes to RX at start
VOID (*RuartEnterCritical)(VOID *para); // enter critical: disable UART interrupt
VOID (*RuartExitCritical)(VOID *para); // exit critical: re-enable UART interrupt
VOID (*TaskYield)(VOID *para); // User Task Yield: do a context switch while waitting
VOID *TaskYieldPara; // the agrument (pointer) for TaskYield
#endif // #if CONFIG_CHIP_E_CUT
}HAL_RUART_ADAPTER, *PHAL_RUART_ADAPTER;
typedef struct _HAL_RUART_OP_ {
VOID (*HalRuartAdapterLoadDef)(VOID *pAdp, u8 UartIdx); // Load UART adapter default setting
VOID (*HalRuartTxGdmaLoadDef)(VOID *pAdp, VOID *pCfg); // Load TX GDMA default setting
VOID (*HalRuartRxGdmaLoadDef)(VOID *pAdp, VOID *pCfg); // Load RX GDMA default setting
HAL_Status (*HalRuartResetRxFifo)(VOID *Data);
HAL_Status (*HalRuartInit)(VOID *Data);
VOID (*HalRuartDeInit)(VOID *Data);
HAL_Status (*HalRuartPutC)(VOID *Data, u8 TxData);
u32 (*HalRuartSend)(VOID *Data, u8 *pTxData, u32 Length, u32 Timeout);
HAL_Status (*HalRuartIntSend)(VOID *Data, u8 *pTxData, u32 Length);
HAL_Status (*HalRuartDmaSend)(VOID *Data, u8 *pTxData, u32 Length);
HAL_Status (*HalRuartStopSend)(VOID *Data);
HAL_Status (*HalRuartGetC)(VOID *Data, u8 *pRxByte);
u32 (*HalRuartRecv)(VOID *Data, u8 *pRxData, u32 Length, u32 Timeout);
HAL_Status (*HalRuartIntRecv)(VOID *Data, u8 *pRxData, u32 Length);
HAL_Status (*HalRuartDmaRecv)(VOID *Data, u8 *pRxData, u32 Length);
HAL_Status (*HalRuartStopRecv)(VOID *Data);
u8 (*HalRuartGetIMR)(VOID *Data);
VOID (*HalRuartSetIMR)(VOID *Data);
u32 (*HalRuartGetDebugValue)(VOID *Data, u32 DbgSel);
VOID (*HalRuartDmaInit)(VOID *Data);
VOID (*HalRuartRTSCtrl)(VOID *Data, BOOLEAN RtsCtrl);
VOID (*HalRuartRegIrq)(VOID *Data);
VOID (*HalRuartIntEnable)(VOID *Data);
VOID (*HalRuartIntDisable)(VOID *Data);
}HAL_RUART_OP, *PHAL_RUART_OP;
typedef struct _RUART_DATA_ {
PHAL_RUART_ADAPTER pHalRuartAdapter;
BOOL PullMode;
u8 BinaryData;
u8 SendBuffer;
u8 RecvBuffer;
}RUART_DATA, *PRUART_DATA;
typedef struct _RUART_ADAPTER_ {
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter;
PUART_DMA_CONFIG pHalRuartDmaCfg;
}RUART_ADAPTER, *PRUART_ADAPTER;
extern VOID
HalRuartOpInit(
IN VOID *Data
);
extern HAL_Status
HalRuartTxGdmaInit(
PHAL_RUART_OP pHalRuartOp,
PHAL_RUART_ADAPTER pHalRuartAdapter,
PUART_DMA_CONFIG pUartGdmaConfig
);
extern VOID
HalRuartTxGdmaDeInit(
PUART_DMA_CONFIG pUartGdmaConfig
);
extern HAL_Status
HalRuartRxGdmaInit(
PHAL_RUART_OP pHalRuartOp,
PHAL_RUART_ADAPTER pHalRuartAdapter,
PUART_DMA_CONFIG pUartGdmaConfig
);
extern VOID
HalRuartRxGdmaDeInit(
PUART_DMA_CONFIG pUartGdmaConfig
);
extern HAL_Status
HalRuartResetTxFifo(
VOID *Data
);
extern HAL_Status
HalRuartSetBaudRate(
IN VOID *Data
);
extern HAL_Status
HalRuartInit(
IN VOID *Data
);
extern VOID
HalRuartDeInit(
IN VOID *Data
);
extern HAL_Status
HalRuartDisable(
IN VOID *Data
);
extern HAL_Status
HalRuartEnable(
IN VOID *Data
);
HAL_Status
HalRuartFlowCtrl(
IN VOID *Data
);
extern const HAL_RUART_OP _HalRuartOp;
extern HAL_Status RuartLock (PHAL_RUART_ADAPTER pHalRuartAdapter);
extern VOID RuartUnLock (PHAL_RUART_ADAPTER pHalRuartAdapter);
#endif

View file

@ -0,0 +1,15 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_USB_H_
#define _HAL_USB_H_
#include "rtl8195a_usb.h"
#endif //_HAL_USB_H_

View file

@ -0,0 +1,252 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_UTIL_H_
#define _HAL_UTIL_H_
#ifdef __cplusplus
extern "C" {
#endif
/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
struct LIST_HEADER {
struct LIST_HEADER *Next, *Prev;
};
typedef struct LIST_HEADER _LIST;
//#define RTL_LIST_HEAD_INIT(name) { &(name), &(name) }
#define RTL_INIT_LIST_HEAD(ptr) do { \
(ptr)->Next = (ptr); (ptr)->Prev = (ptr); \
} while (0)
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static __inline__ VOID
__List_Add(
IN struct LIST_HEADER * New,
IN struct LIST_HEADER * Prev,
IN struct LIST_HEADER * Next
)
{
Next->Prev = New;
New->Next = Next;
New->Prev = Prev;
Prev->Next = New;
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static __inline__ VOID
__List_Del(
IN struct LIST_HEADER * Prev,
IN struct LIST_HEADER * Next
)
{
Next->Prev = Prev;
Prev->Next = Next;
}
/**
* ListDel - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty on entry does not return true after this, the entry is in an undefined state.
*/
static __inline__ VOID
ListDel(
IN struct LIST_HEADER *Entry
)
{
__List_Del(Entry->Prev, Entry->Next);
}
/**
* ListDelInit - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static __inline__ VOID
ListDelInit(
IN struct LIST_HEADER *Entry
)
{
__List_Del(Entry->Prev, Entry->Next);
RTL_INIT_LIST_HEAD(Entry);
}
/**
* ListEmpty - tests whether a list is empty
* @head: the list to test.
*/
static __inline__ u32
ListEmpty(
IN struct LIST_HEADER *Head
)
{
return Head->Next == Head;
}
/**
* ListSplice - join two lists
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static __inline__ VOID
ListSplice(
IN struct LIST_HEADER *List,
IN struct LIST_HEADER *Head
)
{
struct LIST_HEADER *First = List->Next;
if (First != List) {
struct LIST_HEADER *Last = List->Prev;
struct LIST_HEADER *At = Head->Next;
First->Prev = Head;
Head->Next = First;
Last->Next = At;
At->Prev = Last;
}
}
static __inline__ VOID
ListAdd(
IN struct LIST_HEADER *New,
IN struct LIST_HEADER *head
)
{
__List_Add(New, head, head->Next);
}
static __inline__ VOID
ListAddTail(
IN struct LIST_HEADER *New,
IN struct LIST_HEADER *head
)
{
__List_Add(New, head->Prev, head);
}
static __inline VOID
RtlInitListhead(
IN _LIST *list
)
{
RTL_INIT_LIST_HEAD(list);
}
/*
For the following list_xxx operations,
caller must guarantee the atomic context.
Otherwise, there will be racing condition.
*/
static __inline u32
RtlIsListEmpty(
IN _LIST *phead
)
{
if (ListEmpty(phead))
return _TRUE;
else
return _FALSE;
}
static __inline VOID
RtlListInsertHead(
IN _LIST *plist,
IN _LIST *phead
)
{
ListAdd(plist, phead);
}
static __inline VOID
RtlListInsertTail(
IN _LIST *plist,
IN _LIST *phead
)
{
ListAddTail(plist, phead);
}
static __inline _LIST
*RtlListGetNext(
IN _LIST *plist
)
{
return plist->Next;
}
static __inline VOID
RtlListDelete(
IN _LIST *plist
)
{
ListDelInit(plist);
}
#define RTL_LIST_CONTAINOR(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
#ifndef CONTAINER_OF
#define CONTAINER_OF(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
#endif
/*
#define list_entry(ptr, type, member) \
CONTAINER_OF(ptr, type, member)
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->Next, type, member)
#define list_next_entry(pos, member, type) \
list_entry((pos)->member.Next, type, member)
#define list_for_each_entry(pos, head, member, type) \
for (pos = list_first_entry(head, type, member); \
&pos->member != (head); \
pos = list_next_entry(pos, member, type))
#define list_for_each(pos, head) \
for (pos = (head)->Next; pos != (head); pos = pos->Next)
*/
#ifndef BIT
#define BIT(x) ( 1 << (x))
#endif
#ifdef __cplusplus
}
#endif
#endif //_HAL_UTIL_H_

View file

@ -0,0 +1,53 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_VECTOR_TABLE_H_
#define _HAL_VECTOR_TABLE_H_
extern _LONG_CALL_ROM_ VOID
VectorTableInitRtl8195A(
IN u32 StackP
);
extern _LONG_CALL_ROM_ VOID
VectorTableInitForOSRtl8195A(
IN VOID *PortSVC,
IN VOID *PortPendSVH,
IN VOID *PortSysTick
);
extern _LONG_CALL_ROM_ BOOL
VectorIrqRegisterRtl8195A(
IN PIRQ_HANDLE pIrqHandle
);
extern _LONG_CALL_ROM_ BOOL
VectorIrqUnRegisterRtl8195A(
IN PIRQ_HANDLE pIrqHandle
);
extern _LONG_CALL_ROM_ VOID
VectorIrqEnRtl8195A(
IN PIRQ_HANDLE pIrqHandle
);
extern _LONG_CALL_ROM_ VOID
VectorIrqDisRtl8195A(
IN PIRQ_HANDLE pIrqHandle
);
extern _LONG_CALL_ROM_ VOID
HalPeripheralIntrHandle(VOID);
#endif //_HAL_VECTOR_TABLE_H_

View file

@ -0,0 +1,158 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _HAL_8195A_H_
#define _HAL_8195A_H_
#include "platform_autoconf.h"
#include "basic_types.h"
#include "section_config.h"
#include "rtl8195a_sys_on.h"
#include "rtl8195a_peri_on.h"
#include "hal_platform.h"
#include "hal_pinmux.h"
#include "hal_api.h"
#include "hal_peri_on.h"
#include "hal_misc.h"
#include "hal_irqn.h"
#include "hal_vector_table.h"
#include "hal_diag.h"
#include "hal_spi_flash.h"
#include "hal_timer.h"
#include "hal_util.h"
#include "hal_efuse.h"
#include "hal_soc_ps_monitor.h"
#include "diag.h"
#include "hal_common.h"
#include "hal_soc_ps_monitor.h"
/* ----------------------------------------------------------------------------
-- Cortex M3 Core Configuration
---------------------------------------------------------------------------- */
/*!
* @addtogroup Cortex_Core_Configuration Cortex M0 Core Configuration
* @{
*/
#define __CM3_REV 0x0200 /**< Core revision r0p0 */
#define __MPU_PRESENT 1 /**< Defines if an MPU is present or not */
#define __NVIC_PRIO_BITS 4 /**< Number of priority bits implemented in the NVIC */
#define __Vendor_SysTickConfig 1 /**< Vendor specific implementation of SysTickConfig is defined */
#include "core_cm3.h"
#ifdef CONFIG_TIMER_EN
#include "hal_timer.h"
#endif
#ifdef CONFIG_GDMA_EN
#include "hal_gdma.h"
#include "rtl8195a_gdma.h"
#endif
#ifdef CONFIG_GPIO_EN
#include "hal_gpio.h"
#include "rtl8195a_gpio.h"
#endif
#ifdef CONFIG_SPI_COM_EN
#include "hal_ssi.h"
#include "rtl8195a_ssi.h"
#endif
#ifdef CONFIG_UART_EN
#include "hal_uart.h"
#include "rtl8195a_uart.h"
#endif
#ifdef CONFIG_I2C_EN
#include "hal_i2c.h"
#include "rtl8195a_i2c.h"
#endif
#ifdef CONFIG_PCM_EN
#include "hal_pcm.h"
#include "rtl8195a_pcm.h"
#endif
#ifdef CONFIG_PWM_EN
#include "hal_pwm.h"
#include "rtl8195a_pwm.h"
#endif
#ifdef CONFIG_I2S_EN
#include "hal_i2s.h"
#include "rtl8195a_i2s.h"
#endif
#ifdef CONFIG_DAC_EN
#include "hal_dac.h"
#include "rtl8195a_dac.h"
#endif
#ifdef CONFIG_ADC_EN
#include "hal_adc.h"
#include "rtl8195a_adc.h"
#endif
#ifdef CONFIG_SDR_EN
#endif
#ifdef CONFIG_SPIC_EN
#endif
#ifdef CONFIG_SDIO_DEVICE_EN
#include "hal_sdio.h"
#endif
#ifdef CONFIG_NFC_EN
#include "hal_nfc.h"
#include "rtl8195a_nfc.h"
#endif
#ifdef CONFIG_WDG
#include "rtl8195a_wdt.h"
#endif
#ifdef CONFIG_USB_EN
#include "hal_usb.h"
#include "rtl8195a_usb.h"
#endif
#include "hal_log_uart.h"
// firmware information, located at the header of Image2
#define FW_VERSION (0x0100)
#define FW_SUBVERSION (0x0001)
#define FW_CHIP_ID (0x8195)
#define FW_CHIP_VER (0x01)
#define FW_BUS_TYPE (0x01) // the iNIC firmware type: USB/SDIO
#define FW_INFO_RSV1 (0x00) // the firmware information reserved
#define FW_INFO_RSV2 (0x00) // the firmware information reserved
#define FW_INFO_RSV3 (0x00) // the firmware information reserved
#define FW_INFO_RSV4 (0x00) // the firmware information reserved
#define FLASH_RESERVED_DATA_BASE 0x8000 // reserve 32K for Image1
#define FLASH_SYSTEM_DATA_ADDR 0x9000 // reserve 32K+4K for Image1 + Reserved data
// Flash Map for Calibration data
#define FLASH_CAL_DATA_BASE 0xA000
#define FLASH_CAL_DATA_ADDR(_offset) (FLASH_CAL_DATA_BASE + _offset)
#define FLASH_CAL_DATA_SIZE 0x1000
#define FLASH_SECTOR_SIZE 0x1000
// SPIC Calibration Data
#define FLASH_SPIC_PARA_OFFSET 0x80
#define FLASH_SPIC_PARA_BASE (FLASH_SYSTEM_DATA_ADDR+FLASH_SPIC_PARA_OFFSET)
// SDRC Calibration Data
#define FLASH_SDRC_PARA_OFFSET 0x180
#define FLASH_SDRC_PARA_BASE (FLASH_SYSTEM_DATA_ADDR+FLASH_SDRC_PARA_OFFSET)
// ADC Calibration Data
#define FLASH_ADC_PARA_OFFSET 0x200
#define FLASH_ADC_PARA_BASE (FLASH_SYSTEM_DATA_ADDR+FLASH_ADC_PARA_OFFSET)
#endif //_HAL_8195A_H_

View file

@ -0,0 +1,350 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_ADC_H_
#define _RTL8195A_ADC_H_
//================ Register Bit Field ==========================
//2 REG_ADC_FIFO_READ
#define BIT_SHIFT_ADC_FIFO_RO 0
#define BIT_MASK_ADC_FIFO_RO 0xffffffffL
#define BIT_ADC_FIFO_RO(x) (((x) & BIT_MASK_ADC_FIFO_RO) << BIT_SHIFT_ADC_FIFO_RO)
#define BIT_CTRL_ADC_FIFO_RO(x) (((x) & BIT_MASK_ADC_FIFO_RO) << BIT_SHIFT_ADC_FIFO_RO)
#define BIT_GET_ADC_FIFO_RO(x) (((x) >> BIT_SHIFT_ADC_FIFO_RO) & BIT_MASK_ADC_FIFO_RO)
//2 REG_ADC_CONTROL
#define BIT_SHIFT_ADC_DBG_SEL 24
#define BIT_MASK_ADC_DBG_SEL 0x7
#define BIT_ADC_DBG_SEL(x) (((x) & BIT_MASK_ADC_DBG_SEL) << BIT_SHIFT_ADC_DBG_SEL)
#define BIT_CTRL_ADC_DBG_SEL(x) (((x) & BIT_MASK_ADC_DBG_SEL) << BIT_SHIFT_ADC_DBG_SEL)
#define BIT_GET_ADC_DBG_SEL(x) (((x) >> BIT_SHIFT_ADC_DBG_SEL) & BIT_MASK_ADC_DBG_SEL)
#define BIT_SHIFT_ADC_THRESHOLD 16
#define BIT_MASK_ADC_THRESHOLD 0x3f
#define BIT_ADC_THRESHOLD(x) (((x) & BIT_MASK_ADC_THRESHOLD) << BIT_SHIFT_ADC_THRESHOLD)
#define BIT_CTRL_ADC_THRESHOLD(x) (((x) & BIT_MASK_ADC_THRESHOLD) << BIT_SHIFT_ADC_THRESHOLD)
#define BIT_GET_ADC_THRESHOLD(x) (((x) >> BIT_SHIFT_ADC_THRESHOLD) & BIT_MASK_ADC_THRESHOLD)
#define BIT_SHIFT_ADC_BURST_SIZE 8
#define BIT_MASK_ADC_BURST_SIZE 0x1f
#define BIT_ADC_BURST_SIZE(x) (((x) & BIT_MASK_ADC_BURST_SIZE) << BIT_SHIFT_ADC_BURST_SIZE)
#define BIT_CTRL_ADC_BURST_SIZE(x) (((x) & BIT_MASK_ADC_BURST_SIZE) << BIT_SHIFT_ADC_BURST_SIZE)
#define BIT_GET_ADC_BURST_SIZE(x) (((x) >> BIT_SHIFT_ADC_BURST_SIZE) & BIT_MASK_ADC_BURST_SIZE)
#define BIT_ADC_ENDIAN BIT(3)
#define BIT_SHIFT_ADC_ENDIAN 3
#define BIT_MASK_ADC_ENDIAN 0x1
#define BIT_CTRL_ADC_ENDIAN(x) (((x) & BIT_MASK_ADC_ENDIAN) << BIT_SHIFT_ADC_ENDIAN)
#define BIT_ADC_OVERWRITE BIT(2)
#define BIT_SHIFT_ADC_OVERWRITE 2
#define BIT_MASK_ADC_OVERWRITE 0x1
#define BIT_CTRL_ADC_OVERWRITE(x) (((x) & BIT_MASK_ADC_OVERWRITE) << BIT_SHIFT_ADC_OVERWRITE)
#define BIT_ADC_ONESHOT BIT(1)
#define BIT_SHIFT_ADC_ONESHOT 1
#define BIT_MASK_ADC_ONESHOT 0x1
#define BIT_CTRL_ADC_ONESHOT(x) (((x) & BIT_MASK_ADC_ONESHOT) << BIT_SHIFT_ADC_ONESHOT)
#define BIT_ADC_COMP_ONLY BIT(0)
#define BIT_SHIFT_ADC_COMP_ONLY 0
#define BIT_MASK_ADC_COMP_ONLY 0x1
#define BIT_CTRL_ADC_COMP_ONLY(x) (((x) & BIT_MASK_ADC_COMP_ONLY) << BIT_SHIFT_ADC_COMP_ONLY)
//2 REG_ADC_INTR_EN
#define BIT_ADC_AWAKE_CPU_EN BIT(7)
#define BIT_SHIFT_ADC_AWAKE_CPU_EN 7
#define BIT_MASK_ADC_AWAKE_CPU_EN 0x1
#define BIT_CTRL_ADC_AWAKE_CPU_EN(x) (((x) & BIT_MASK_ADC_AWAKE_CPU_EN) << BIT_SHIFT_ADC_AWAKE_CPU_EN)
#define BIT_ADC_FIFO_RD_ERROR_EN BIT(6)
#define BIT_SHIFT_ADC_FIFO_RD_ERROR_EN 6
#define BIT_MASK_ADC_FIFO_RD_ERROR_EN 0x1
#define BIT_CTRL_ADC_FIFO_RD_ERROR_EN(x) (((x) & BIT_MASK_ADC_FIFO_RD_ERROR_EN) << BIT_SHIFT_ADC_FIFO_RD_ERROR_EN)
#define BIT_ADC_FIFO_RD_REQ_EN BIT(5)
#define BIT_SHIFT_ADC_FIFO_RD_REQ_EN 5
#define BIT_MASK_ADC_FIFO_RD_REQ_EN 0x1
#define BIT_CTRL_ADC_FIFO_RD_REQ_EN(x) (((x) & BIT_MASK_ADC_FIFO_RD_REQ_EN) << BIT_SHIFT_ADC_FIFO_RD_REQ_EN)
#define BIT_ADC_FIFO_FULL_EN BIT(4)
#define BIT_SHIFT_ADC_FIFO_FULL_EN 4
#define BIT_MASK_ADC_FIFO_FULL_EN 0x1
#define BIT_CTRL_ADC_FIFO_FULL_EN(x) (((x) & BIT_MASK_ADC_FIFO_FULL_EN) << BIT_SHIFT_ADC_FIFO_FULL_EN)
#define BIT_ADC_COMP_3_EN BIT(3)
#define BIT_SHIFT_ADC_COMP_3_EN 3
#define BIT_MASK_ADC_COMP_3_EN 0x1
#define BIT_CTRL_ADC_COMP_3_EN(x) (((x) & BIT_MASK_ADC_COMP_3_EN) << BIT_SHIFT_ADC_COMP_3_EN)
#define BIT_ADC_COMP_2_EN BIT(2)
#define BIT_SHIFT_ADC_COMP_2_EN 2
#define BIT_MASK_ADC_COMP_2_EN 0x1
#define BIT_CTRL_ADC_COMP_2_EN(x) (((x) & BIT_MASK_ADC_COMP_2_EN) << BIT_SHIFT_ADC_COMP_2_EN)
#define BIT_ADC_COMP_1_EN BIT(1)
#define BIT_SHIFT_ADC_COMP_1_EN 1
#define BIT_MASK_ADC_COMP_1_EN 0x1
#define BIT_CTRL_ADC_COMP_1_EN(x) (((x) & BIT_MASK_ADC_COMP_1_EN) << BIT_SHIFT_ADC_COMP_1_EN)
#define BIT_ADC_COMP_0_EN BIT(0)
#define BIT_SHIFT_ADC_COMP_0_EN 0
#define BIT_MASK_ADC_COMP_0_EN 0x1
#define BIT_CTRL_ADC_COMP_0_EN(x) (((x) & BIT_MASK_ADC_COMP_0_EN) << BIT_SHIFT_ADC_COMP_0_EN)
//2 REG_ADC_INTR_STS
#define BIT_ADC_FIFO_THRESHOLD BIT(7)
#define BIT_SHIFT_ADC_FIFO_THRESHOLD 7
#define BIT_MASK_ADC_FIFO_THRESHOLD 0x1
#define BIT_CTRL_ADC_FIFO_THRESHOLD(x) (((x) & BIT_MASK_ADC_FIFO_THRESHOLD) << BIT_SHIFT_ADC_FIFO_THRESHOLD)
#define BIT_ADC_FIFO_RD_ERROR_ST BIT(6)
#define BIT_SHIFT_ADC_FIFO_RD_ERROR_ST 6
#define BIT_MASK_ADC_FIFO_RD_ERROR_ST 0x1
#define BIT_CTRL_ADC_FIFO_RD_ERROR_ST(x) (((x) & BIT_MASK_ADC_FIFO_RD_ERROR_ST) << BIT_SHIFT_ADC_FIFO_RD_ERROR_ST)
#define BIT_ADC_FIFO_RD_REQ_ST BIT(5)
#define BIT_SHIFT_ADC_FIFO_RD_REQ_ST 5
#define BIT_MASK_ADC_FIFO_RD_REQ_ST 0x1
#define BIT_CTRL_ADC_FIFO_RD_REQ_ST(x) (((x) & BIT_MASK_ADC_FIFO_RD_REQ_ST) << BIT_SHIFT_ADC_FIFO_RD_REQ_ST)
#define BIT_ADC_FIFO_FULL_ST BIT(4)
#define BIT_SHIFT_ADC_FIFO_FULL_ST 4
#define BIT_MASK_ADC_FIFO_FULL_ST 0x1
#define BIT_CTRL_ADC_FIFO_FULL_ST(x) (((x) & BIT_MASK_ADC_FIFO_FULL_ST) << BIT_SHIFT_ADC_FIFO_FULL_ST)
#define BIT_ADC_COMP_3_ST BIT(3)
#define BIT_SHIFT_ADC_COMP_3_ST 3
#define BIT_MASK_ADC_COMP_3_ST 0x1
#define BIT_CTRL_ADC_COMP_3_ST(x) (((x) & BIT_MASK_ADC_COMP_3_ST) << BIT_SHIFT_ADC_COMP_3_ST)
#define BIT_ADC_COMP_2_ST BIT(2)
#define BIT_SHIFT_ADC_COMP_2_ST 2
#define BIT_MASK_ADC_COMP_2_ST 0x1
#define BIT_CTRL_ADC_COMP_2_ST(x) (((x) & BIT_MASK_ADC_COMP_2_ST) << BIT_SHIFT_ADC_COMP_2_ST)
#define BIT_ADC_COMP_1_ST BIT(1)
#define BIT_SHIFT_ADC_COMP_1_ST 1
#define BIT_MASK_ADC_COMP_1_ST 0x1
#define BIT_CTRL_ADC_COMP_1_ST(x) (((x) & BIT_MASK_ADC_COMP_1_ST) << BIT_SHIFT_ADC_COMP_1_ST)
#define BIT_ADC_COMP_0_ST BIT(0)
#define BIT_SHIFT_ADC_COMP_0_ST 0
#define BIT_MASK_ADC_COMP_0_ST 0x1
#define BIT_CTRL_ADC_COMP_0_ST(x) (((x) & BIT_MASK_ADC_COMP_0_ST) << BIT_SHIFT_ADC_COMP_0_ST)
//2 REG_ADC_COMP_VALUE_L
#define BIT_SHIFT_ADC_COMP_TH_1 16
#define BIT_MASK_ADC_COMP_TH_1 0xffff
#define BIT_ADC_COMP_TH_1(x) (((x) & BIT_MASK_ADC_COMP_TH_1) << BIT_SHIFT_ADC_COMP_TH_1)
#define BIT_CTRL_ADC_COMP_TH_1(x) (((x) & BIT_MASK_ADC_COMP_TH_1) << BIT_SHIFT_ADC_COMP_TH_1)
#define BIT_GET_ADC_COMP_TH_1(x) (((x) >> BIT_SHIFT_ADC_COMP_TH_1) & BIT_MASK_ADC_COMP_TH_1)
#define BIT_SHIFT_ADC_COMP_TH_0 0
#define BIT_MASK_ADC_COMP_TH_0 0xffff
#define BIT_ADC_COMP_TH_0(x) (((x) & BIT_MASK_ADC_COMP_TH_0) << BIT_SHIFT_ADC_COMP_TH_0)
#define BIT_CTRL_ADC_COMP_TH_0(x) (((x) & BIT_MASK_ADC_COMP_TH_0) << BIT_SHIFT_ADC_COMP_TH_0)
#define BIT_GET_ADC_COMP_TH_0(x) (((x) >> BIT_SHIFT_ADC_COMP_TH_0) & BIT_MASK_ADC_COMP_TH_0)
//2 REG_ADC_COMP_VALUE_H
#define BIT_SHIFT_ADC_COMP_TH_3 16
#define BIT_MASK_ADC_COMP_TH_3 0xffff
#define BIT_ADC_COMP_TH_3(x) (((x) & BIT_MASK_ADC_COMP_TH_3) << BIT_SHIFT_ADC_COMP_TH_3)
#define BIT_CTRL_ADC_COMP_TH_3(x) (((x) & BIT_MASK_ADC_COMP_TH_3) << BIT_SHIFT_ADC_COMP_TH_3)
#define BIT_GET_ADC_COMP_TH_3(x) (((x) >> BIT_SHIFT_ADC_COMP_TH_3) & BIT_MASK_ADC_COMP_TH_3)
#define BIT_SHIFT_ADC_COMP_TH_2 0
#define BIT_MASK_ADC_COMP_TH_2 0xffff
#define BIT_ADC_COMP_TH_2(x) (((x) & BIT_MASK_ADC_COMP_TH_2) << BIT_SHIFT_ADC_COMP_TH_2)
#define BIT_CTRL_ADC_COMP_TH_2(x) (((x) & BIT_MASK_ADC_COMP_TH_2) << BIT_SHIFT_ADC_COMP_TH_2)
#define BIT_GET_ADC_COMP_TH_2(x) (((x) >> BIT_SHIFT_ADC_COMP_TH_2) & BIT_MASK_ADC_COMP_TH_2)
//2 REG_ADC_COMP_SET
#define BIT_SHIFT_ADC_GREATER_THAN 0
#define BIT_MASK_ADC_GREATER_THAN 0xf
#define BIT_ADC_GREATER_THAN(x) (((x) & BIT_MASK_ADC_GREATER_THAN) << BIT_SHIFT_ADC_GREATER_THAN)
#define BIT_CTRL_ADC_GREATER_THAN(x) (((x) & BIT_MASK_ADC_GREATER_THAN) << BIT_SHIFT_ADC_GREATER_THAN)
#define BIT_GET_ADC_GREATER_THAN(x) (((x) >> BIT_SHIFT_ADC_GREATER_THAN) & BIT_MASK_ADC_GREATER_THAN)
//2 REG_ADC_POWER
#define BIT_SHIFT_ADC_PWR_CUT_CNTR 16
#define BIT_MASK_ADC_PWR_CUT_CNTR 0xff
#define BIT_ADC_PWR_CUT_CNTR(x) (((x) & BIT_MASK_ADC_PWR_CUT_CNTR) << BIT_SHIFT_ADC_PWR_CUT_CNTR)
#define BIT_CTRL_ADC_PWR_CUT_CNTR(x) (((x) & BIT_MASK_ADC_PWR_CUT_CNTR) << BIT_SHIFT_ADC_PWR_CUT_CNTR)
#define BIT_GET_ADC_PWR_CUT_CNTR(x) (((x) >> BIT_SHIFT_ADC_PWR_CUT_CNTR) & BIT_MASK_ADC_PWR_CUT_CNTR)
#define BIT_ADC_FIFO_ON_ST BIT(11)
#define BIT_SHIFT_ADC_FIFO_ON_ST 11
#define BIT_MASK_ADC_FIFO_ON_ST 0x1
#define BIT_CTRL_ADC_FIFO_ON_ST(x) (((x) & BIT_MASK_ADC_FIFO_ON_ST) << BIT_SHIFT_ADC_FIFO_ON_ST)
#define BIT_ADC_ISO_ON_ST BIT(10)
#define BIT_SHIFT_ADC_ISO_ON_ST 10
#define BIT_MASK_ADC_ISO_ON_ST 0x1
#define BIT_CTRL_ADC_ISO_ON_ST(x) (((x) & BIT_MASK_ADC_ISO_ON_ST) << BIT_SHIFT_ADC_ISO_ON_ST)
#define BIT_ADC_PWR33_ON_ST BIT(9)
#define BIT_SHIFT_ADC_PWR33_ON_ST 9
#define BIT_MASK_ADC_PWR33_ON_ST 0x1
#define BIT_CTRL_ADC_PWR33_ON_ST(x) (((x) & BIT_MASK_ADC_PWR33_ON_ST) << BIT_SHIFT_ADC_PWR33_ON_ST)
#define BIT_ADC_PWR12_ON_ST BIT(8)
#define BIT_SHIFT_ADC_PWR12_ON_ST 8
#define BIT_MASK_ADC_PWR12_ON_ST 0x1
#define BIT_CTRL_ADC_PWR12_ON_ST(x) (((x) & BIT_MASK_ADC_PWR12_ON_ST) << BIT_SHIFT_ADC_PWR12_ON_ST)
#define BIT_ADC_ISO_MANUAL BIT(3)
#define BIT_SHIFT_ADC_ISO_MANUAL 3
#define BIT_MASK_ADC_ISO_MANUAL 0x1
#define BIT_CTRL_ADC_ISO_MANUAL(x) (((x) & BIT_MASK_ADC_ISO_MANUAL) << BIT_SHIFT_ADC_ISO_MANUAL)
#define BIT_ADC_PWR33_MANUAL BIT(2)
#define BIT_SHIFT_ADC_PWR33_MANUAL 2
#define BIT_MASK_ADC_PWR33_MANUAL 0x1
#define BIT_CTRL_ADC_PWR33_MANUAL(x) (((x) & BIT_MASK_ADC_PWR33_MANUAL) << BIT_SHIFT_ADC_PWR33_MANUAL)
#define BIT_ADC_PWR12_MANUAL BIT(1)
#define BIT_SHIFT_ADC_PWR12_MANUAL 1
#define BIT_MASK_ADC_PWR12_MANUAL 0x1
#define BIT_CTRL_ADC_PWR12_MANUAL(x) (((x) & BIT_MASK_ADC_PWR12_MANUAL) << BIT_SHIFT_ADC_PWR12_MANUAL)
#define BIT_ADC_PWR_AUTO BIT(0)
#define BIT_SHIFT_ADC_PWR_AUTO 0
#define BIT_MASK_ADC_PWR_AUTO 0x1
#define BIT_CTRL_ADC_PWR_AUTO(x) (((x) & BIT_MASK_ADC_PWR_AUTO) << BIT_SHIFT_ADC_PWR_AUTO)
//2 REG_ADC_ANAPAR_AD0
#define BIT_SHIFT_ADC_ANAPAR_AD0 2
#define BIT_MASK_ADC_ANAPAR_AD0 0x3fffffff
#define BIT_ADC_ANAPAR_AD0(x) (((x) & BIT_MASK_ADC_ANAPAR_AD0) << BIT_SHIFT_ADC_ANAPAR_AD0)
#define BIT_CTRL_ADC_ANAPAR_AD0(x) (((x) & BIT_MASK_ADC_ANAPAR_AD0) << BIT_SHIFT_ADC_ANAPAR_AD0)
#define BIT_GET_ADC_ANAPAR_AD0(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD0) & BIT_MASK_ADC_ANAPAR_AD0)
#define BIT_ADC_AUDIO_EN BIT(1)
#define BIT_SHIFT_ADC_AUDIO_EN 1
#define BIT_MASK_ADC_AUDIO_EN 0x1
#define BIT_CTRL_ADC_AUDIO_EN(x) (((x) & BIT_MASK_ADC_AUDIO_EN) << BIT_SHIFT_ADC_AUDIO_EN)
#define BIT_ADC_EN_MANUAL BIT(0)
#define BIT_SHIFT_ADC_EN_MANUAL 0
#define BIT_MASK_ADC_EN_MANUAL 0x1
#define BIT_CTRL_ADC_EN_MANUAL(x) (((x) & BIT_MASK_ADC_EN_MANUAL) << BIT_SHIFT_ADC_EN_MANUAL)
//2 REG_ADC_ANAPAR_AD1
#define BIT_SHIFT_ADC_ANAPAR_AD1 0
#define BIT_MASK_ADC_ANAPAR_AD1 0xffffffffL
#define BIT_ADC_ANAPAR_AD1(x) (((x) & BIT_MASK_ADC_ANAPAR_AD1) << BIT_SHIFT_ADC_ANAPAR_AD1)
#define BIT_CTRL_ADC_ANAPAR_AD1(x) (((x) & BIT_MASK_ADC_ANAPAR_AD1) << BIT_SHIFT_ADC_ANAPAR_AD1)
#define BIT_GET_ADC_ANAPAR_AD1(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD1) & BIT_MASK_ADC_ANAPAR_AD1)
//2 REG_ADC_ANAPAR_AD2
#define BIT_SHIFT_ADC_ANAPAR_AD2 0
#define BIT_MASK_ADC_ANAPAR_AD2 0xffffffffL
#define BIT_ADC_ANAPAR_AD2(x) (((x) & BIT_MASK_ADC_ANAPAR_AD2) << BIT_SHIFT_ADC_ANAPAR_AD2)
#define BIT_CTRL_ADC_ANAPAR_AD2(x) (((x) & BIT_MASK_ADC_ANAPAR_AD2) << BIT_SHIFT_ADC_ANAPAR_AD2)
#define BIT_GET_ADC_ANAPAR_AD2(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD2) & BIT_MASK_ADC_ANAPAR_AD2)
//2 REG_ADC_ANAPAR_AD3
#define BIT_SHIFT_ADC_ANAPAR_AD3 0
#define BIT_MASK_ADC_ANAPAR_AD3 0xffffffffL
#define BIT_ADC_ANAPAR_AD3(x) (((x) & BIT_MASK_ADC_ANAPAR_AD3) << BIT_SHIFT_ADC_ANAPAR_AD3)
#define BIT_CTRL_ADC_ANAPAR_AD3(x) (((x) & BIT_MASK_ADC_ANAPAR_AD3) << BIT_SHIFT_ADC_ANAPAR_AD3)
#define BIT_GET_ADC_ANAPAR_AD3(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD3) & BIT_MASK_ADC_ANAPAR_AD3)
//2 REG_ADC_ANAPAR_AD4
#define BIT_SHIFT_ADC_ANAPAR_AD4 0
#define BIT_MASK_ADC_ANAPAR_AD4 0xffffffffL
#define BIT_ADC_ANAPAR_AD4(x) (((x) & BIT_MASK_ADC_ANAPAR_AD4) << BIT_SHIFT_ADC_ANAPAR_AD4)
#define BIT_CTRL_ADC_ANAPAR_AD4(x) (((x) & BIT_MASK_ADC_ANAPAR_AD4) << BIT_SHIFT_ADC_ANAPAR_AD4)
#define BIT_GET_ADC_ANAPAR_AD4(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD4) & BIT_MASK_ADC_ANAPAR_AD4)
//2 REG_ADC_ANAPAR_AD5
#define BIT_SHIFT_ADC_ANAPAR_AD5 0
#define BIT_MASK_ADC_ANAPAR_AD5 0xffffffffL
#define BIT_ADC_ANAPAR_AD5(x) (((x) & BIT_MASK_ADC_ANAPAR_AD5) << BIT_SHIFT_ADC_ANAPAR_AD5)
#define BIT_CTRL_ADC_ANAPAR_AD5(x) (((x) & BIT_MASK_ADC_ANAPAR_AD5) << BIT_SHIFT_ADC_ANAPAR_AD5)
#define BIT_GET_ADC_ANAPAR_AD5(x) (((x) >> BIT_SHIFT_ADC_ANAPAR_AD5) & BIT_MASK_ADC_ANAPAR_AD5)
//2 REG_ADC_CALI_DATA
#define BIT_SHIFT_ADC_CALI_DATA_6 16
#define BIT_MASK_ADC_CALI_DATA_6 0xffff
#define BIT_ADC_CALI_DATA_6(x) (((x) & BIT_MASK_ADC_CALI_DATA_6) << BIT_SHIFT_ADC_CALI_DATA_6)
#define BIT_CTRL_ADC_CALI_DATA_6(x) (((x) & BIT_MASK_ADC_CALI_DATA_6) << BIT_SHIFT_ADC_CALI_DATA_6)
#define BIT_GET_ADC_CALI_DATA_6(x) (((x) >> BIT_SHIFT_ADC_CALI_DATA_6) & BIT_MASK_ADC_CALI_DATA_6)
#define BIT_SHIFT_ADC_CALI_DATA_0 0
#define BIT_MASK_ADC_CALI_DATA_0 0xffff
#define BIT_ADC_CALI_DATA_0(x) (((x) & BIT_MASK_ADC_CALI_DATA_0) << BIT_SHIFT_ADC_CALI_DATA_0)
#define BIT_CTRL_ADC_CALI_DATA_0(x) (((x) & BIT_MASK_ADC_CALI_DATA_0) << BIT_SHIFT_ADC_CALI_DATA_0)
#define BIT_GET_ADC_CALI_DATA_0(x) (((x) >> BIT_SHIFT_ADC_CALI_DATA_0) & BIT_MASK_ADC_CALI_DATA_0)
//================ Register Reg Field =========================
#define REG_ADC_FIFO_READ 0x0000
#define REG_ADC_CONTROL 0x0004
#define REG_ADC_INTR_EN 0x0008
#define REG_ADC_INTR_STS 0x000C
#define REG_ADC_COMP_VALUE_L 0x0010
#define REG_ADC_COMP_VALUE_H 0x0014
#define REG_ADC_COMP_SET 0x0018
#define REG_ADC_POWER 0x001C
#define REG_ADC_ANAPAR_AD0 0x0020
#define REG_ADC_ANAPAR_AD1 0x0024
#define REG_ADC_ANAPAR_AD2 0x0028
#define REG_ADC_ANAPAR_AD3 0x002C
#define REG_ADC_ANAPAR_AD4 0x0030
#define REG_ADC_ANAPAR_AD5 0x0034
#define REG_ADC_CALI_DATA 0x0038
//================ ADC HAL related enumeration ==================
//================ ADC Function Prototypes =====================
#define HAL_ADC_WRITE32(addr, value) HAL_WRITE32(ADC_REG_BASE,addr,value)
#define HAL_ADC_READ32(addr) HAL_READ32(ADC_REG_BASE,addr)
RTK_STATUS HalADCInit8195a(IN VOID *Data);
RTK_STATUS HalADCDeInit8195a(IN VOID *Data);
RTK_STATUS HalADCEnableRtl8195a(IN VOID *Data);
RTK_STATUS HalADCIntrCtrl8195a(IN VOID *Data);
u32 HalADCReceiveRtl8195a(IN VOID *Data);
u32 HalADCReadRegRtl8195a(IN VOID *Data,IN u8 I2CReg);
#endif

View file

@ -0,0 +1,294 @@
#ifndef _RTL8195A_DAC_H_
#define _RTL8195A_DAC_H_
//================ Register Bit Field ==========================
//2 REG_DAC0_FIFO_WR
#define BIT_SHIFT_DAC0_FIFO_WO 0
#define BIT_MASK_DAC0_FIFO_WO 0xffffffffL
#define BIT_DAC0_FIFO_WO(x) (((x) & BIT_MASK_DAC0_FIFO_WO) << BIT_SHIFT_DAC0_FIFO_WO)
#define BIT_CTRL_DAC0_FIFO_WO(x) (((x) & BIT_MASK_DAC0_FIFO_WO) << BIT_SHIFT_DAC0_FIFO_WO)
#define BIT_GET_DAC0_FIFO_WO(x) (((x) >> BIT_SHIFT_DAC0_FIFO_WO) & BIT_MASK_DAC0_FIFO_WO)
//2 REG_DAC_CTRL
#define BIT_SHIFT_DAC_DELTA_SIGMA 25
#define BIT_MASK_DAC_DELTA_SIGMA 0x7
#define BIT_DAC_DELTA_SIGMA(x) (((x) & BIT_MASK_DAC_DELTA_SIGMA) << BIT_SHIFT_DAC_DELTA_SIGMA)
#define BIT_CTRL_DAC_DELTA_SIGMA(x) (((x) & BIT_MASK_DAC_DELTA_SIGMA) << BIT_SHIFT_DAC_DELTA_SIGMA)
#define BIT_GET_DAC_DELTA_SIGMA(x) (((x) >> BIT_SHIFT_DAC_DELTA_SIGMA) & BIT_MASK_DAC_DELTA_SIGMA)
#define BIT_DAC_BYPASS_DSC BIT(24)
#define BIT_SHIFT_DAC_BYPASS_DSC 24
#define BIT_MASK_DAC_BYPASS_DSC 0x1
#define BIT_CTRL_DAC_BYPASS_DSC(x) (((x) & BIT_MASK_DAC_BYPASS_DSC) << BIT_SHIFT_DAC_BYPASS_DSC)
#define BIT_SHIFT_DAC_DSC_DBG_SEL 19
#define BIT_MASK_DAC_DSC_DBG_SEL 0x3
#define BIT_DAC_DSC_DBG_SEL(x) (((x) & BIT_MASK_DAC_DSC_DBG_SEL) << BIT_SHIFT_DAC_DSC_DBG_SEL)
#define BIT_CTRL_DAC_DSC_DBG_SEL(x) (((x) & BIT_MASK_DAC_DSC_DBG_SEL) << BIT_SHIFT_DAC_DSC_DBG_SEL)
#define BIT_GET_DAC_DSC_DBG_SEL(x) (((x) >> BIT_SHIFT_DAC_DSC_DBG_SEL) & BIT_MASK_DAC_DSC_DBG_SEL)
#define BIT_SHIFT_DAC_DBG_SEL 16
#define BIT_MASK_DAC_DBG_SEL 0x7
#define BIT_DAC_DBG_SEL(x) (((x) & BIT_MASK_DAC_DBG_SEL) << BIT_SHIFT_DAC_DBG_SEL)
#define BIT_CTRL_DAC_DBG_SEL(x) (((x) & BIT_MASK_DAC_DBG_SEL) << BIT_SHIFT_DAC_DBG_SEL)
#define BIT_GET_DAC_DBG_SEL(x) (((x) >> BIT_SHIFT_DAC_DBG_SEL) & BIT_MASK_DAC_DBG_SEL)
#define BIT_SHIFT_DAC_BURST_SIZE 8
#define BIT_MASK_DAC_BURST_SIZE 0xf
#define BIT_DAC_BURST_SIZE(x) (((x) & BIT_MASK_DAC_BURST_SIZE) << BIT_SHIFT_DAC_BURST_SIZE)
#define BIT_CTRL_DAC_BURST_SIZE(x) (((x) & BIT_MASK_DAC_BURST_SIZE) << BIT_SHIFT_DAC_BURST_SIZE)
#define BIT_GET_DAC_BURST_SIZE(x) (((x) >> BIT_SHIFT_DAC_BURST_SIZE) & BIT_MASK_DAC_BURST_SIZE)
#define BIT_DAC_FILTER_SETTLE BIT(4)
#define BIT_SHIFT_DAC_FILTER_SETTLE 4
#define BIT_MASK_DAC_FILTER_SETTLE 0x1
#define BIT_CTRL_DAC_FILTER_SETTLE(x) (((x) & BIT_MASK_DAC_FILTER_SETTLE) << BIT_SHIFT_DAC_FILTER_SETTLE)
#define BIT_DAC_OV_OPTION BIT(3)
#define BIT_SHIFT_DAC_OV_OPTION 3
#define BIT_MASK_DAC_OV_OPTION 0x1
#define BIT_CTRL_DAC_OV_OPTION(x) (((x) & BIT_MASK_DAC_OV_OPTION) << BIT_SHIFT_DAC_OV_OPTION)
#define BIT_DAC_ENDIAN BIT(2)
#define BIT_SHIFT_DAC_ENDIAN 2
#define BIT_MASK_DAC_ENDIAN 0x1
#define BIT_CTRL_DAC_ENDIAN(x) (((x) & BIT_MASK_DAC_ENDIAN) << BIT_SHIFT_DAC_ENDIAN)
#define BIT_DAC_SPEED BIT(1)
#define BIT_SHIFT_DAC_SPEED 1
#define BIT_MASK_DAC_SPEED 0x1
#define BIT_CTRL_DAC_SPEED(x) (((x) & BIT_MASK_DAC_SPEED) << BIT_SHIFT_DAC_SPEED)
#define BIT_DAC_FIFO_EN BIT(0)
#define BIT_SHIFT_DAC_FIFO_EN 0
#define BIT_MASK_DAC_FIFO_EN 0x1
#define BIT_CTRL_DAC_FIFO_EN(x) (((x) & BIT_MASK_DAC_FIFO_EN) << BIT_SHIFT_DAC_FIFO_EN)
//2 REG_DAC_INTR_CTRL
#define BIT_DAC_DSC_OVERFLOW1_EN BIT(6)
#define BIT_SHIFT_DAC_DSC_OVERFLOW1_EN 6
#define BIT_MASK_DAC_DSC_OVERFLOW1_EN 0x1
#define BIT_CTRL_DAC_DSC_OVERFLOW1_EN(x) (((x) & BIT_MASK_DAC_DSC_OVERFLOW1_EN) << BIT_SHIFT_DAC_DSC_OVERFLOW1_EN)
#define BIT_DAC_DSC_OVERFLOW0_EN BIT(5)
#define BIT_SHIFT_DAC_DSC_OVERFLOW0_EN 5
#define BIT_MASK_DAC_DSC_OVERFLOW0_EN 0x1
#define BIT_CTRL_DAC_DSC_OVERFLOW0_EN(x) (((x) & BIT_MASK_DAC_DSC_OVERFLOW0_EN) << BIT_SHIFT_DAC_DSC_OVERFLOW0_EN)
#define BIT_DAC__WRITE_ERROR_EN BIT(4)
#define BIT_SHIFT_DAC__WRITE_ERROR_EN 4
#define BIT_MASK_DAC__WRITE_ERROR_EN 0x1
#define BIT_CTRL_DAC__WRITE_ERROR_EN(x) (((x) & BIT_MASK_DAC__WRITE_ERROR_EN) << BIT_SHIFT_DAC__WRITE_ERROR_EN)
#define BIT_DAC_FIFO_STOP_EN BIT(3)
#define BIT_SHIFT_DAC_FIFO_STOP_EN 3
#define BIT_MASK_DAC_FIFO_STOP_EN 0x1
#define BIT_CTRL_DAC_FIFO_STOP_EN(x) (((x) & BIT_MASK_DAC_FIFO_STOP_EN) << BIT_SHIFT_DAC_FIFO_STOP_EN)
#define BIT_DAC_FIFO_OVERFLOW_EN BIT(2)
#define BIT_SHIFT_DAC_FIFO_OVERFLOW_EN 2
#define BIT_MASK_DAC_FIFO_OVERFLOW_EN 0x1
#define BIT_CTRL_DAC_FIFO_OVERFLOW_EN(x) (((x) & BIT_MASK_DAC_FIFO_OVERFLOW_EN) << BIT_SHIFT_DAC_FIFO_OVERFLOW_EN)
#define BIT_DAC_FIFO_WR_REQ_EN BIT(1)
#define BIT_SHIFT_DAC_FIFO_WR_REQ_EN 1
#define BIT_MASK_DAC_FIFO_WR_REQ_EN 0x1
#define BIT_CTRL_DAC_FIFO_WR_REQ_EN(x) (((x) & BIT_MASK_DAC_FIFO_WR_REQ_EN) << BIT_SHIFT_DAC_FIFO_WR_REQ_EN)
#define BIT_DAC_FIFO_FULL_EN BIT(0)
#define BIT_SHIFT_DAC_FIFO_FULL_EN 0
#define BIT_MASK_DAC_FIFO_FULL_EN 0x1
#define BIT_CTRL_DAC_FIFO_FULL_EN(x) (((x) & BIT_MASK_DAC_FIFO_FULL_EN) << BIT_SHIFT_DAC_FIFO_FULL_EN)
//2 REG_DAC_INTR_STS
#define BIT_DAC_DSC_OVERFLOW1_ST BIT(6)
#define BIT_SHIFT_DAC_DSC_OVERFLOW1_ST 6
#define BIT_MASK_DAC_DSC_OVERFLOW1_ST 0x1
#define BIT_CTRL_DAC_DSC_OVERFLOW1_ST(x) (((x) & BIT_MASK_DAC_DSC_OVERFLOW1_ST) << BIT_SHIFT_DAC_DSC_OVERFLOW1_ST)
#define BIT_DAC_DSC_OVERFLOW0_ST BIT(5)
#define BIT_SHIFT_DAC_DSC_OVERFLOW0_ST 5
#define BIT_MASK_DAC_DSC_OVERFLOW0_ST 0x1
#define BIT_CTRL_DAC_DSC_OVERFLOW0_ST(x) (((x) & BIT_MASK_DAC_DSC_OVERFLOW0_ST) << BIT_SHIFT_DAC_DSC_OVERFLOW0_ST)
#define BIT_DAC__WRITE_ERROR_ST BIT(4)
#define BIT_SHIFT_DAC__WRITE_ERROR_ST 4
#define BIT_MASK_DAC__WRITE_ERROR_ST 0x1
#define BIT_CTRL_DAC__WRITE_ERROR_ST(x) (((x) & BIT_MASK_DAC__WRITE_ERROR_ST) << BIT_SHIFT_DAC__WRITE_ERROR_ST)
#define BIT_DAC_FIFO_STOP_ST BIT(3)
#define BIT_SHIFT_DAC_FIFO_STOP_ST 3
#define BIT_MASK_DAC_FIFO_STOP_ST 0x1
#define BIT_CTRL_DAC_FIFO_STOP_ST(x) (((x) & BIT_MASK_DAC_FIFO_STOP_ST) << BIT_SHIFT_DAC_FIFO_STOP_ST)
#define BIT_DAC_FIFO_OVERFLOW_ST BIT(2)
#define BIT_SHIFT_DAC_FIFO_OVERFLOW_ST 2
#define BIT_MASK_DAC_FIFO_OVERFLOW_ST 0x1
#define BIT_CTRL_DAC_FIFO_OVERFLOW_ST(x) (((x) & BIT_MASK_DAC_FIFO_OVERFLOW_ST) << BIT_SHIFT_DAC_FIFO_OVERFLOW_ST)
#define BIT_DAC_FIFO_WR_REQ_ST BIT(1)
#define BIT_SHIFT_DAC_FIFO_WR_REQ_ST 1
#define BIT_MASK_DAC_FIFO_WR_REQ_ST 0x1
#define BIT_CTRL_DAC_FIFO_WR_REQ_ST(x) (((x) & BIT_MASK_DAC_FIFO_WR_REQ_ST) << BIT_SHIFT_DAC_FIFO_WR_REQ_ST)
#define BIT_DAC_FIFO_FULL_ST BIT(0)
#define BIT_SHIFT_DAC_FIFO_FULL_ST 0
#define BIT_MASK_DAC_FIFO_FULL_ST 0x1
#define BIT_CTRL_DAC_FIFO_FULL_ST(x) (((x) & BIT_MASK_DAC_FIFO_FULL_ST) << BIT_SHIFT_DAC_FIFO_FULL_ST)
//2 REG_DAC_PWR_CTRL
#define BIT_SHIFT_DAC_PWR_CUT_CNTR 16
#define BIT_MASK_DAC_PWR_CUT_CNTR 0xff
#define BIT_DAC_PWR_CUT_CNTR(x) (((x) & BIT_MASK_DAC_PWR_CUT_CNTR) << BIT_SHIFT_DAC_PWR_CUT_CNTR)
#define BIT_CTRL_DAC_PWR_CUT_CNTR(x) (((x) & BIT_MASK_DAC_PWR_CUT_CNTR) << BIT_SHIFT_DAC_PWR_CUT_CNTR)
#define BIT_GET_DAC_PWR_CUT_CNTR(x) (((x) >> BIT_SHIFT_DAC_PWR_CUT_CNTR) & BIT_MASK_DAC_PWR_CUT_CNTR)
#define BIT_ST_DAC_FIFO_ON BIT(11)
#define BIT_SHIFT_ST_DAC_FIFO_ON 11
#define BIT_MASK_ST_DAC_FIFO_ON 0x1
#define BIT_CTRL_ST_DAC_FIFO_ON(x) (((x) & BIT_MASK_ST_DAC_FIFO_ON) << BIT_SHIFT_ST_DAC_FIFO_ON)
#define BIT_ST_DAC_ISO_ON BIT(10)
#define BIT_SHIFT_ST_DAC_ISO_ON 10
#define BIT_MASK_ST_DAC_ISO_ON 0x1
#define BIT_CTRL_ST_DAC_ISO_ON(x) (((x) & BIT_MASK_ST_DAC_ISO_ON) << BIT_SHIFT_ST_DAC_ISO_ON)
#define BIT_ST_DAC_PWR33_ON BIT(9)
#define BIT_SHIFT_ST_DAC_PWR33_ON 9
#define BIT_MASK_ST_DAC_PWR33_ON 0x1
#define BIT_CTRL_ST_DAC_PWR33_ON(x) (((x) & BIT_MASK_ST_DAC_PWR33_ON) << BIT_SHIFT_ST_DAC_PWR33_ON)
#define BIT_ST_DAC_PWR12_ON BIT(8)
#define BIT_SHIFT_ST_DAC_PWR12_ON 8
#define BIT_MASK_ST_DAC_PWR12_ON 0x1
#define BIT_CTRL_ST_DAC_PWR12_ON(x) (((x) & BIT_MASK_ST_DAC_PWR12_ON) << BIT_SHIFT_ST_DAC_PWR12_ON)
#define BIT_DAC_ISO_MANU BIT(3)
#define BIT_SHIFT_DAC_ISO_MANU 3
#define BIT_MASK_DAC_ISO_MANU 0x1
#define BIT_CTRL_DAC_ISO_MANU(x) (((x) & BIT_MASK_DAC_ISO_MANU) << BIT_SHIFT_DAC_ISO_MANU)
#define BIT_DAC_PWR33_MANU BIT(2)
#define BIT_SHIFT_DAC_PWR33_MANU 2
#define BIT_MASK_DAC_PWR33_MANU 0x1
#define BIT_CTRL_DAC_PWR33_MANU(x) (((x) & BIT_MASK_DAC_PWR33_MANU) << BIT_SHIFT_DAC_PWR33_MANU)
#define BIT_DAC_PWR12_MANU BIT(1)
#define BIT_SHIFT_DAC_PWR12_MANU 1
#define BIT_MASK_DAC_PWR12_MANU 0x1
#define BIT_CTRL_DAC_PWR12_MANU(x) (((x) & BIT_MASK_DAC_PWR12_MANU) << BIT_SHIFT_DAC_PWR12_MANU)
#define BIT_DAC_PWR_AUTO BIT(0)
#define BIT_SHIFT_DAC_PWR_AUTO 0
#define BIT_MASK_DAC_PWR_AUTO 0x1
#define BIT_CTRL_DAC_PWR_AUTO(x) (((x) & BIT_MASK_DAC_PWR_AUTO) << BIT_SHIFT_DAC_PWR_AUTO)
//2 REG_DAC_ANAPAR_DA0
#define BIT_SHIFT_PWR_ALL_CNTR 12
#define BIT_MASK_PWR_ALL_CNTR 0xfffff
#define BIT_PWR_ALL_CNTR(x) (((x) & BIT_MASK_PWR_ALL_CNTR) << BIT_SHIFT_PWR_ALL_CNTR)
#define BIT_CTRL_PWR_ALL_CNTR(x) (((x) & BIT_MASK_PWR_ALL_CNTR) << BIT_SHIFT_PWR_ALL_CNTR)
#define BIT_GET_PWR_ALL_CNTR(x) (((x) >> BIT_SHIFT_PWR_ALL_CNTR) & BIT_MASK_PWR_ALL_CNTR)
#define BIT_SHIFT_PWR_FUP_CNTR 0
#define BIT_MASK_PWR_FUP_CNTR 0xfff
#define BIT_PWR_FUP_CNTR(x) (((x) & BIT_MASK_PWR_FUP_CNTR) << BIT_SHIFT_PWR_FUP_CNTR)
#define BIT_CTRL_PWR_FUP_CNTR(x) (((x) & BIT_MASK_PWR_FUP_CNTR) << BIT_SHIFT_PWR_FUP_CNTR)
#define BIT_GET_PWR_FUP_CNTR(x) (((x) >> BIT_SHIFT_PWR_FUP_CNTR) & BIT_MASK_PWR_FUP_CNTR)
//2 REG_DAC_ANAPAR_DA1
#define BIT_FUP_EN BIT(31)
#define BIT_SHIFT_FUP_EN 31
#define BIT_MASK_FUP_EN 0x1
#define BIT_CTRL_FUP_EN(x) (((x) & BIT_MASK_FUP_EN) << BIT_SHIFT_FUP_EN)
#define BIT_SHIFT_ANAPAR_DA 8
#define BIT_MASK_ANAPAR_DA 0x7fffff
#define BIT_ANAPAR_DA(x) (((x) & BIT_MASK_ANAPAR_DA) << BIT_SHIFT_ANAPAR_DA)
#define BIT_CTRL_ANAPAR_DA(x) (((x) & BIT_MASK_ANAPAR_DA) << BIT_SHIFT_ANAPAR_DA)
#define BIT_GET_ANAPAR_DA(x) (((x) >> BIT_SHIFT_ANAPAR_DA) & BIT_MASK_ANAPAR_DA)
#define BIT_D_POW_DACVREF BIT(7)
#define BIT_SHIFT_D_POW_DACVREF 7
#define BIT_MASK_D_POW_DACVREF 0x1
#define BIT_CTRL_D_POW_DACVREF(x) (((x) & BIT_MASK_D_POW_DACVREF) << BIT_SHIFT_D_POW_DACVREF)
#define BIT_D_POW_VREF2 BIT(6)
#define BIT_SHIFT_D_POW_VREF2 6
#define BIT_MASK_D_POW_VREF2 0x1
#define BIT_CTRL_D_POW_VREF2(x) (((x) & BIT_MASK_D_POW_VREF2) << BIT_SHIFT_D_POW_VREF2)
#define BIT_D_POW_MBIAS BIT(5)
#define BIT_SHIFT_D_POW_MBIAS 5
#define BIT_MASK_D_POW_MBIAS 0x1
#define BIT_CTRL_D_POW_MBIAS(x) (((x) & BIT_MASK_D_POW_MBIAS) << BIT_SHIFT_D_POW_MBIAS)
#define BIT_D_POW_DIV4 BIT(4)
#define BIT_SHIFT_D_POW_DIV4 4
#define BIT_MASK_D_POW_DIV4 0x1
#define BIT_CTRL_D_POW_DIV4(x) (((x) & BIT_MASK_D_POW_DIV4) << BIT_SHIFT_D_POW_DIV4)
#define BIT_D_POW_DF1SE_R BIT(3)
#define BIT_SHIFT_D_POW_DF1SE_R 3
#define BIT_MASK_D_POW_DF1SE_R 0x1
#define BIT_CTRL_D_POW_DF1SE_R(x) (((x) & BIT_MASK_D_POW_DF1SE_R) << BIT_SHIFT_D_POW_DF1SE_R)
#define BIT_D_POW_DF2SE_L BIT(2)
#define BIT_SHIFT_D_POW_DF2SE_L 2
#define BIT_MASK_D_POW_DF2SE_L 0x1
#define BIT_CTRL_D_POW_DF2SE_L(x) (((x) & BIT_MASK_D_POW_DF2SE_L) << BIT_SHIFT_D_POW_DF2SE_L)
#define BIT_D_POW_DAC_R BIT(1)
#define BIT_SHIFT_D_POW_DAC_R 1
#define BIT_MASK_D_POW_DAC_R 0x1
#define BIT_CTRL_D_POW_DAC_R(x) (((x) & BIT_MASK_D_POW_DAC_R) << BIT_SHIFT_D_POW_DAC_R)
#define BIT_D_POW_DAC_L BIT(0)
#define BIT_SHIFT_D_POW_DAC_L 0
#define BIT_MASK_D_POW_DAC_L 0x1
#define BIT_CTRL_D_POW_DAC_L(x) (((x) & BIT_MASK_D_POW_DAC_L) << BIT_SHIFT_D_POW_DAC_L)
//================ Register Reg Field =========================
#define REG_DAC0_FIFO_WR 0x0000
#define REG_DAC_CTRL 0x0004
#define REG_DAC_INTR_CTRL 0x0008
#define REG_DAC_INTR_STS 0x000C
#define REG_DAC_PWR_CTRL 0x0010
#define REG_DAC_ANAPAR_DA0 0x0014
#define REG_DAC_ANAPAR_DA1 0x0018
//================ DAC HAL related enumeration ==================
//================ DAC HAL Macro ===========================
#define HAL_DAC_WRITE32(dacidx, addr, value) HAL_WRITE32(DAC_REG_BASE+dacidx*0x800 \
,addr,value)
#define HAL_DAC_READ32(dacidx, addr) HAL_READ32(DAC_REG_BASE+dacidx*0x800,addr)
//================ DAC Function Prototypes =====================
RTK_STATUS HalDACInit8195a(IN VOID *Data);
RTK_STATUS HalDACDeInit8195a(IN VOID *Data);
RTK_STATUS HalDACEnableRtl8195a(IN VOID *Data);
RTK_STATUS HalDACIntrCtrl8195a(IN VOID *Data);
u8 HalDACSendRtl8195a(IN VOID *Data);
u32 HalDACReadRegRtl8195a(IN VOID *Data,IN u8 I2CReg);
#endif

View file

@ -0,0 +1,522 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_GDMA_H_
#define _RTL8195A_GDMA_H_
// Define GDMA Handshake interface with peripheral, 0 -> GDMA0, 1-> GDMA1
// Set this Hnadshake interface map to register REG_PESOC_SOC_CTRL
#define GDMA_HANDSHAKE_UART0_TX 0
#define GDMA_HANDSHAKE_UART0_RX 1
#define GDMA_HANDSHAKE_UART1_TX 2
#define GDMA_HANDSHAKE_UART1_RX 3
#define GDMA_HANDSHAKE_UART2_TX 14 // Only on GDMA 0, hardware fixed
#define GDMA_HANDSHAKE_UART2_RX 14 // Only on GDMA 1, hardware fixed
#define GDMA_HANDSHAKE_SSI0_TX 4
#define GDMA_HANDSHAKE_SSI0_RX 5
#define GDMA_HANDSHAKE_SSI1_TX 6
#define GDMA_HANDSHAKE_SSI1_RX 7
#define GDMA_HANDSHAKE_SSI2_TX 15 // Only on GDMA 0, hardware fixed
#define GDMA_HANDSHAKE_SSI2_RX 15 // Only on GDMA 1, hardware fixed
#define GDMA_HANDSHAKE_I2C0_TX 8
#define GDMA_HANDSHAKE_I2C0_RX 9
#define GDMA_HANDSHAKE_I2C1_TX 10
#define GDMA_HANDSHAKE_I2C1_RX 11
#define GDMA_HANDSHAKE_ADC 12
#define GDMA_HANDSHAKE_DAC0 13 // Only on GDMA 0, hardware fixed
#define GDMA_HANDSHAKE_DAC1 13 // Only on GDMA 1, hardware fixed
#define HAL_GDMAX_READ32(GdmaIndex, addr) \
HAL_READ32(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr)
#define HAL_GDMAX_WRITE32(GdmaIndex, addr, value) \
HAL_WRITE32((GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF)), addr, value)
#define HAL_GDMAX_READ16(GdmaIndex, addr) \
HAL_READ16(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr)
#define HAL_GDMAX_WRITE16(GdmaIndex, addr, value) \
HAL_WRITE16(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr, value)
#define HAL_GDMAX_READ8(GdmaIndex, addr) \
HAL_READ8(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr)
#define HAL_GDMAX_WRITE8(GdmaIndex, addr, value) \
HAL_WRITE8(GDMA0_REG_BASE+ (GdmaIndex*GDMA1_REG_OFF), addr, value)
#define GDMA_CH_MAX 0x06
#define REG_GDMA_CH_OFF 0x058
#define REG_GDMA_CH_SAR 0x000
#define REG_GDMA_CH_DAR 0x008
#define REG_GDMA_CH_LLP 0x010
#define REG_GDMA_CH_CTL 0x018
#define REG_GDMA_CH_SSTAT 0x020
#define REG_GDMA_CH_DSTAT 0x028
#define REG_GDMA_CH_SSTATAR 0x030
#define REG_GDMA_CH_DSTATAR 0x038
#define REG_GDMA_CH_CFG 0x040
#define REG_GDMA_CH_SGR 0x048
#define REG_GDMA_CH_DSR 0x050
//3 Interrupt Registers
#define REG_GDMA_RAW_INT_BASE 0x2C0
#define REG_GDMA_RAW_INT_TFR 0x2C0
#define REG_GDMA_RAW_INT_BLOCK 0x2c8
#define REG_GDMA_RAW_INT_SRC_TRAN 0x2D0
#define REG_GDMA_RAW_INT_DST_TRAN 0x2D8
#define REG_GDMA_RAW_INT_ERR 0x2E0
#define REG_GDMA_STATUS_INT_BASE 0x2E8
#define REG_GDMA_STATUS_INT_TFR 0x2E8
#define REG_GDMA_STATUS_INT_BLOCK 0x2F0
#define REG_GDMA_STATUS_INT_SRC_TRAN 0x2F8
#define REG_GDMA_STATUS_INT_DST_TRAN 0x300
#define REG_GDMA_STATUS_INT_ERR 0x308
#define REG_GDMA_MASK_INT_BASE 0x310
#define REG_GDMA_MASK_INT_TFR 0x310
#define REG_GDMA_MASK_INT_BLOCK 0x318
#define REG_GDMA_MASK_INT_SRC_TRAN 0x320
#define REG_GDMA_MASK_INT_DST_TRAN 0x328
#define REG_GDMA_MASK_INT_INT_ERR 0x330
#define REG_GDMA_CLEAR_INT_BASE 0x338
#define REG_GDMA_CLEAR_INT_TFR 0x338
#define REG_GDMA_CLEAR_INT_BLOCK 0x340
#define REG_GDMA_CLEAR_INT_SRC_TRAN 0x348
#define REG_GDMA_CLEAR_INT_DST_TRAN 0x350
#define REG_GDMA_CLEAR_INT_ERR 0x358
#define REG_GDMA_STATUS_INT 0x360
//3 Software handshaking Registers
#define REG_GDMA_REQ_SRC 0x368
#define REG_GDMA_REQ_DST 0x370
#define REG_GDMA_REQ_SGL_REQ 0x378
#define REG_GDMA_REQ_DST_REQ 0x380
#define REG_GDMA_REQ_LST_SRC 0x388
#define REG_GDMA_REQ_LST_DST 0x390
//3 Miscellaneous Registers
#define REG_GDMA_DMAC_CFG 0x398
#define REG_GDMA_CH_EN 0x3A0
#define REG_GDMA_DMA_ID 0x3A8
#define REG_GDMA_DMA_TEST 0x3B0
#define REG_GDMA_DMA_COM_PARAMS6 0x3C8
#define REG_GDMA_DMA_COM_PARAMS5 0x3D0
#define REG_GDMA_DMA_COM_PARAMS4 0x3D8
#define REG_GDMA_DMA_COM_PARAMS3 0x3E0
#define REG_GDMA_DMA_COM_PARAMS2 0x3E8
#define REG_GDMA_DMA_COM_PARAMS1 0x3F0
#define REG_GDMA_DMA_COM_PARAMS0 0x3F8
//3 CTL Register Bit Control
#define BIT_SHIFT_CTLX_LO_INT_EN 0
#define BIT_MASK_CTLX_LO_INT_EN 0x1
#define BIT_CTLX_LO_INT_EN(x)(((x) & BIT_MASK_CTLX_LO_INT_EN) << BIT_SHIFT_CTLX_LO_INT_EN)
#define BIT_INVC_CTLX_LO_INT_EN (~(BIT_MASK_CTLX_LO_INT_EN << BIT_SHIFT_CTLX_LO_INT_EN))
#define BIT_SHIFT_CTLX_LO_DST_TR_WIDTH 1
#define BIT_MASK_CTLX_LO_DST_TR_WIDTH 0x7
#define BIT_CTLX_LO_DST_TR_WIDTH(x) (((x) & BIT_MASK_CTLX_LO_DST_TR_WIDTH) << BIT_SHIFT_CTLX_LO_DST_TR_WIDTH)
#define BIT_INVC_CTLX_LO_DST_TR_WIDTH (~(BIT_MASK_CTLX_LO_DST_TR_WIDTH << BIT_SHIFT_CTLX_LO_DST_TR_WIDTH))
#define BIT_SHIFT_CTLX_LO_SRC_TR_WIDTH 4
#define BIT_MASK_CTLX_LO_SRC_TR_WIDTH 0x7
#define BIT_CTLX_LO_SRC_TR_WIDTH(x) (((x) & BIT_MASK_CTLX_LO_SRC_TR_WIDTH) << BIT_SHIFT_CTLX_LO_SRC_TR_WIDTH)
#define BIT_INVC_CTLX_LO_SRC_TR_WIDTH (~(BIT_MASK_CTLX_LO_SRC_TR_WIDTH << BIT_SHIFT_CTLX_LO_SRC_TR_WIDTH))
#define BIT_SHIFT_CTLX_LO_DINC 7
#define BIT_MASK_CTLX_LO_DINC 0x3
#define BIT_CTLX_LO_DINC(x)(((x) & BIT_MASK_CTLX_LO_DINC) << BIT_SHIFT_CTLX_LO_DINC)
#define BIT_INVC_CTLX_LO_DINC (~(BIT_MASK_CTLX_LO_DINC << BIT_SHIFT_CTLX_LO_DINC))
#define BIT_SHIFT_CTLX_LO_SINC 9
#define BIT_MASK_CTLX_LO_SINC 0x3
#define BIT_CTLX_LO_SINC(x)(((x) & BIT_MASK_CTLX_LO_SINC) << BIT_SHIFT_CTLX_LO_SINC)
#define BIT_INVC_CTLX_LO_SINC (~(BIT_MASK_CTLX_LO_SINC << BIT_SHIFT_CTLX_LO_SINC))
#define BIT_SHIFT_CTLX_LO_DEST_MSIZE 11
#define BIT_MASK_CTLX_LO_DEST_MSIZE 0x7
#define BIT_CTLX_LO_DEST_MSIZE(x)(((x) & BIT_MASK_CTLX_LO_DEST_MSIZE) << BIT_SHIFT_CTLX_LO_DEST_MSIZE)
#define BIT_INVC_CTLX_LO_DEST_MSIZE (~(BIT_MASK_CTLX_LO_DEST_MSIZE << BIT_SHIFT_CTLX_LO_DEST_MSIZE))
#define BIT_SHIFT_CTLX_LO_SRC_MSIZE 14
#define BIT_MASK_CTLX_LO_SRC_MSIZE 0x7
#define BIT_CTLX_LO_SRC_MSIZE(x)(((x) & BIT_MASK_CTLX_LO_SRC_MSIZE) << BIT_SHIFT_CTLX_LO_SRC_MSIZE)
#define BIT_INVC_CTLX_LO_SRC_MSIZE (~(BIT_MASK_CTLX_LO_SRC_MSIZE << BIT_SHIFT_CTLX_LO_SRC_MSIZE))
#define BIT_SHIFT_CTLX_LO_SRC_GATHER_EN 17
#define BIT_MASK_CTLX_LO_SRC_GATHER_EN 0x1
#define BIT_CTLX_LO_SRC_GATHER_EN(x)(((x) & BIT_MASK_CTLX_LO_SRC_GATHER_EN) << BIT_SHIFT_CTLX_LO_SRC_GATHER_EN)
#define BIT_INVC_CTLX_LO_SRC_GATHER_EN (~(BIT_MASK_CTLX_LO_SRC_GATHER_EN << BIT_SHIFT_CTLX_LO_SRC_GATHER_EN))
#define BIT_SHIFT_CTLX_LO_DST_SCATTER_EN 18
#define BIT_MASK_CTLX_LO_DST_SCATTER_EN 0x1
#define BIT_CTLX_LO_DST_SCATTER_EN(x)(((x) & BIT_MASK_CTLX_LO_DST_SCATTER_EN) << BIT_SHIFT_CTLX_LO_DST_SCATTER_EN)
#define BIT_INVC_CTLX_LO_DST_SCATTER_EN (~(BIT_MASK_CTLX_LO_DST_SCATTER_EN << BIT_SHIFT_CTLX_LO_DST_SCATTER_EN))
#define BIT_SHIFT_CTLX_LO_TT_FC 20
#define BIT_MASK_CTLX_LO_TT_FC 0x7
#define BIT_CTLX_LO_TT_FC(x)(((x) & BIT_MASK_CTLX_LO_TT_FC) << BIT_SHIFT_CTLX_LO_TT_FC)
#define BIT_INVC_CTLX_LO_TT_FC (~(BIT_MASK_CTLX_LO_TT_FC << BIT_SHIFT_CTLX_LO_TT_FC))
#define BIT_SHIFT_CTLX_LO_DMS 23
#define BIT_MASK_CTLX_LO_DMS 0x3
#define BIT_CTLX_LO_DMS(x)(((x) & BIT_MASK_CTLX_LO_DMS) << BIT_MASK_CTLX_LO_DMS)
#define BIT_INVC_CTLX_LO_DMS (~(BIT_MASK_CTLX_LO_DMS << BIT_SHIFT_CTLX_LO_DMS))
#define BIT_SHIFT_CTLX_LO_SMS 25
#define BIT_MASK_CTLX_LO_SMS 0x3
#define BIT_CTLX_LO_SMS(x)(((x) & BIT_MASK_CTLX_LO_SMS) << BIT_SHIFT_CTLX_LO_SMS)
#define BIT_INVC_CTLX_LO_SMS (~(BIT_MASK_CTLX_LO_SMS << BIT_SHIFT_CTLX_LO_SMS))
#define BIT_SHIFT_CTLX_LO_LLP_DST_EN 27
#define BIT_MASK_CTLX_LO_LLP_DST_EN 0x1
#define BIT_CTLX_LO_LLP_DST_EN(x)(((x) & BIT_MASK_CTLX_LO_LLP_DST_EN) << BIT_SHIFT_CTLX_LO_LLP_DST_EN)
#define BIT_INVC_CTLX_LO_LLP_DST_EN (~(BIT_MASK_CTLX_LO_LLP_DST_EN << BIT_SHIFT_CTLX_LO_LLP_DST_EN))
#define BIT_SHIFT_CTLX_LO_LLP_SRC_EN 28
#define BIT_MASK_CTLX_LO_LLP_SRC_EN 0x1
#define BIT_CTLX_LO_LLP_SRC_EN(x)(((x) & BIT_MASK_CTLX_LO_LLP_SRC_EN) << BIT_SHIFT_CTLX_LO_LLP_SRC_EN)
#define BIT_INVC_CTLX_LO_LLP_SRC_EN (~(BIT_MASK_CTLX_LO_LLP_SRC_EN << BIT_SHIFT_CTLX_LO_LLP_SRC_EN))
#define BIT_SHIFT_CTLX_UP_BLOCK_BS 0
#define BIT_MASK_CTLX_UP_BLOCK_BS 0xFFF
#define BIT_CTLX_UP_BLOCK_BS(x)(((x) & BIT_MASK_CTLX_UP_BLOCK_BS) << BIT_SHIFT_CTLX_UP_BLOCK_BS)
#define BIT_INVC_CTLX_UP_BLOCK_BS (~(BIT_MASK_CTLX_UP_BLOCK_BS << BIT_SHIFT_CTLX_UP_BLOCK_BS))
#define BIT_SHIFT_CTLX_UP_DONE 12
#define BIT_MASK_CTLX_UP_DONE 0x1
#define BIT_CTLX_UP_DONE(x)(((x) & BIT_MASK_CTLX_UP_DONE) << BIT_SHIFT_CTLX_UP_DONE)
#define BIT_INVC_CTLX_UP_DONE (~(BIT_MASK_CTLX_UP_DONE << BIT_SHIFT_CTLX_UP_DONE))
//3 CFG Register Bit Control
#define BIT_SHIFT_CFGX_LO_CH_PRIOR 5
#define BIT_MASK_CFGX_LO_CH_PRIOR 0x7
#define BIT_CFGX_LO_CH_PRIOR(x)(((x) & BIT_MASK_CFGX_LO_CH_PRIOR) << BIT_SHIFT_CFGX_LO_CH_PRIOR)
#define BIT_INVC_CFGX_LO_CH_PRIOR (~(BIT_MASK_CFGX_LO_CH_PRIOR << BIT_SHIFT_CFGX_LO_CH_PRIOR))
#define BIT_SHIFT_CFGX_LO_CH_SUSP 8
#define BIT_MASK_CFGX_LO_CH_SUSP 0x1
#define BIT_CFGX_LO_CH_SUSP(x)(((x) & BIT_MASK_CFGX_LO_CH_SUSP) << BIT_SHIFT_CFGX_LO_CH_SUSP)
#define BIT_INVC_CFGX_LO_CH_SUSP (~(BIT_MASK_CFGX_LO_CH_SUSP << BIT_SHIFT_CFGX_LO_CH_SUSP))
#define BIT_SHIFT_CFGX_LO_FIFO_EMPTY 9
#define BIT_MASK_CFGX_LO_FIFO_EMPTY 0x1
#define BIT_CFGX_LO_FIFO_EMPTY(x)(((x) & BIT_MASK_CFGX_LO_FIFO_EMPTY) << BIT_SHIFT_CFGX_LO_FIFO_EMPTY)
#define BIT_INVC_CFGX_LO_FIFO_EMPTY (~(BIT_MASK_CFGX_LO_FIFO_EMPTY << BIT_SHIFT_CFGX_LO_FIFO_EMPTY))
#define BIT_SHIFT_CFGX_LO_HS_SEL_DST 10
#define BIT_MASK_CFGX_LO_HS_SEL_DST 0x1
#define BIT_CFGX_LO_HS_SEL_DST(x)(((x) & BIT_MASK_CFGX_LO_HS_SEL_DST) << BIT_SHIFT_CFGX_LO_HS_SEL_DST)
#define BIT_INVC_CFGX_LO_HS_SEL_DST (~(BIT_MASK_CFGX_LO_HS_SEL_DST << BIT_SHIFT_CFGX_LO_HS_SEL_DST))
#define BIT_SHIFT_CFGX_LO_HS_SEL_SRC 11
#define BIT_MASK_CFGX_LO_HS_SEL_SRC 0x1
#define BIT_CFGX_LO_HS_SEL_SRC(x)(((x) & BIT_MASK_CFGX_LO_HS_SEL_SRC) << BIT_SHIFT_CFGX_LO_HS_SEL_SRC)
#define BIT_INVC_CFGX_LO_HS_SEL_SRC (~(BIT_MASK_CFGX_LO_HS_SEL_SRC << BIT_SHIFT_CFGX_LO_HS_SEL_SRC))
#define BIT_SHIFT_CFGX_LO_LOCK_CH_L 12
#define BIT_MASK_CFGX_LO_LOCK_CH_L 0x3
#define BIT_CFGX_LO_LOCK_CH_L(x)(((x) & BIT_MASK_CFGX_LO_LOCK_CH_L) << BIT_SHIFT_CFGX_LO_LOCK_CH_L)
#define BIT_INVC_CFGX_LO_LOCK_CH_L (~(BIT_MASK_CFGX_LO_LOCK_CH_L << BIT_SHIFT_CFGX_LO_LOCK_CH_L))
#define BIT_SHIFT_CFGX_LO_LOCK_B_L 14
#define BIT_MASK_CFGX_LO_LOCK_B_L 0x3
#define BIT_CFGX_LO_LOCK_B_L(x)(((x) & BIT_MASK_CFGX_LO_LOCK_B_L) << BIT_SHIFT_CFGX_LO_LOCK_B_L)
#define BIT_INVC_CFGX_LO_LOCK_B_L (~(BIT_MASK_CFGX_LO_LOCK_B_L << BIT_SHIFT_CFGX_LO_LOCK_B_L))
#define BIT_SHIFT_CFGX_LO_LOCK_CH 16
#define BIT_MASK_CFGX_LO_LOCK_CH 0x1
#define BIT_CFGX_LO_LOCK_CH(x)(((x) & BIT_MASK_CFGX_LO_LOCK_CH) << BIT_SHIFT_CFGX_LO_LOCK_CH)
#define BIT_INVC_CFGX_LO_LOCK_CH (~(BIT_MASK_CFGX_LO_LOCK_CH << BIT_SHIFT_CFGX_LO_LOCK_CH))
#define BIT_SHIFT_CFGX_LO_LOCK_B 17
#define BIT_MASK_CFGX_LO_LOCK_B 0x1
#define BIT_CFGX_LO_LOCK_B(x)(((x) & BIT_MASK_CFGX_LO_LOCK_B) << BIT_SHIFT_CFGX_LO_LOCK_B)
#define BIT_INVC_CFGX_LO_LOCK_B (~(BIT_MASK_CFGX_LO_LOCK_B << BIT_SHIFT_CFGX_LO_LOCK_B))
#define BIT_SHIFT_CFGX_LO_DST_HS_POL 18
#define BIT_MASK_CFGX_LO_DST_HS_POL 0x1
#define BIT_CFGX_LO_DST_HS_POL(x)(((x) & BIT_MASK_CFGX_LO_DST_HS_POL) << BIT_SHIFT_CFGX_LO_DST_HS_POL)
#define BIT_INVC_CFGX_LO_DST_HS_POL (~(BIT_MASK_CFGX_LO_DST_HS_POL << BIT_SHIFT_CFGX_LO_DST_HS_POL))
#define BIT_SHIFT_CFGX_LO_SRC_HS_POL 19
#define BIT_MASK_CFGX_LO_SRC_HS_POL 0x1
#define BIT_CFGX_LO_SRC_HS_POL(x)(((x) & BIT_MASK_CFGX_LO_SRC_HS_POL) << BIT_SHIFT_CFGX_LO_SRC_HS_POL)
#define BIT_INVC_CFGX_LO_SRC_HS_POL (~(BIT_MASK_CFGX_LO_SRC_HS_POL << BIT_SHIFT_CFGX_LO_SRC_HS_POL))
#define BIT_SHIFT_CFGX_LO_MAX_ABRST 20
#define BIT_MASK_CFGX_LO_MAX_ABRST 0x3FF
#define BIT_CFGX_LO_MAX_ABRST(x)(((x) & BIT_MASK_CFGX_LO_MAX_ABRST) << BIT_SHIFT_CFGX_LO_MAX_ABRST)
#define BIT_INVC_CFGX_LO_MAX_ABRST (~(BIT_MASK_CFGX_LO_MAX_ABRST << BIT_SHIFT_CFGX_LO_MAX_ABRST))
#define BIT_SHIFT_CFGX_LO_RELOAD_SRC 30
#define BIT_MASK_CFGX_LO_RELOAD_SRC 0x1
#define BIT_CFGX_LO_RELOAD_SRC(x)(((x) & BIT_MASK_CFGX_LO_RELOAD_SRC) << BIT_SHIFT_CFGX_LO_RELOAD_SRC)
#define BIT_INVC_CFGX_LO_RELOAD_SRC (~(BIT_MASK_CFGX_LO_RELOAD_SRC << BIT_SHIFT_CFGX_LO_RELOAD_SRC))
#define BIT_SHIFT_CFGX_LO_RELOAD_DST 31
#define BIT_MASK_CFGX_LO_RELOAD_DST 0x1
#define BIT_CFGX_LO_RELOAD_DST(x)(((x) & BIT_MASK_CFGX_LO_RELOAD_DST) << BIT_SHIFT_CFGX_LO_RELOAD_DST)
#define BIT_INVC_CFGX_LO_RELOAD_DST (~(BIT_MASK_CFGX_LO_RELOAD_DST << BIT_SHIFT_CFGX_LO_RELOAD_DST))
#define BIT_SHIFT_CFGX_UP_FCMODE 0
#define BIT_MASK_CFGX_UP_FCMODE 0x1
#define BIT_CFGX_UP_FCMODE(x)(((x) & BIT_MASK_CFGX_UP_FCMODE) << BIT_SHIFT_CFGX_UP_FCMODE)
#define BIT_INVC_CFGX_UP_FCMODE (~(BIT_MASK_CFGX_UP_FCMODE << BIT_SHIFT_CFGX_UP_FCMODE))
#define BIT_SHIFT_CFGX_UP_FIFO_MODE 1
#define BIT_MASK_CFGX_UP_FIFO_MODE 0x1
#define BIT_CFGX_UP_FIFO_MODE(x)(((x) & BIT_MASK_CFGX_UP_FIFO_MODE) << BIT_SHIFT_CFGX_UP_FIFO_MODE)
#define BIT_INVC_CFGX_UP_FIFO_MODE (~(BIT_MASK_CFGX_UP_FIFO_MODE << BIT_SHIFT_CFGX_UP_FIFO_MODE))
#define BIT_SHIFT_CFGX_UP_PROTCTL 2
#define BIT_MASK_CFGX_UP_PROTCTL 0x7
#define BIT_CFGX_UP_PROTCTL(x)(((x) & BIT_MASK_CFGX_UP_PROTCTL) << BIT_SHIFT_CFGX_UP_PROTCTL)
#define BIT_INVC_CFGX_UP_PROTCTL (~(BIT_MASK_CFGX_UP_PROTCTL << BIT_SHIFT_CFGX_UP_PROTCTL))
#define BIT_SHIFT_CFGX_UP_DS_UPD_EN 5
#define BIT_MASK_CFGX_UP_DS_UPD_EN 0x1
#define BIT_CFGX_UP_DS_UPD_EN(x)(((x) & BIT_MASK_CFGX_UP_DS_UPD_EN) << BIT_SHIFT_CFGX_UP_DS_UPD_EN)
#define BIT_INVC_CFGX_UP_DS_UPD_EN (~(BIT_MASK_CFGX_UP_DS_UPD_EN << BIT_SHIFT_CFGX_UP_DS_UPD_EN))
#define BIT_SHIFT_CFGX_UP_SS_UPD_EN 6
#define BIT_MASK_CFGX_UP_SS_UPD_EN 0x1
#define BIT_CFGX_UP_SS_UPD_EN(x)(((x) & BIT_MASK_CFGX_UP_SS_UPD_EN) << BIT_SHIFT_CFGX_UP_SS_UPD_EN)
#define BIT_INVC_CFGX_UP_SS_UPD_EN (~(BIT_MASK_CFGX_UP_SS_UPD_EN << BIT_SHIFT_CFGX_UP_SS_UPD_EN))
#define BIT_SHIFT_CFGX_UP_SRC_PER 7
#define BIT_MASK_CFGX_UP_SRC_PER 0xF
#define BIT_CFGX_UP_SRC_PER(x)(((x) & BIT_MASK_CFGX_UP_SRC_PER) << BIT_SHIFT_CFGX_UP_SRC_PER)
#define BIT_INVC_CFGX_UP_SRC_PER (~(BIT_MASK_CFGX_UP_SRC_PER << BIT_SHIFT_CFGX_UP_SRC_PER))
#define BIT_SHIFT_CFGX_UP_DEST_PER 11
#define BIT_MASK_CFGX_UP_DEST_PER 0xF
#define BIT_CFGX_UP_DEST_PER(x)(((x) & BIT_MASK_CFGX_UP_DEST_PER) << BIT_SHIFT_CFGX_UP_DEST_PER)
#define BIT_INVC_CFGX_UP_DEST_PER (~(BIT_MASK_CFGX_UP_DEST_PER << BIT_SHIFT_CFGX_UP_DEST_PER))
typedef enum _GDMA_CHANNEL_NUM_ {
GdmaNoCh = 0x0000,
GdmaCh0 = 0x0101,
GdmaCh1 = 0x0202,
GdmaCh2 = 0x0404,
GdmaCh3 = 0x0808,
GdmaCh4 = 0x1010,
GdmaCh5 = 0x2020,
GdmaCh6 = 0x4040,
GdmaCh7 = 0x8080,
GdmaAllCh = 0xffff
}GDMA_CHANNEL_NUM, *PGDMA_CHANNEL_NUM;
//3 CTL register struct
typedef enum _GDMA_CTL_TT_FC_TYPE_ {
TTFCMemToMem = 0x00,
TTFCMemToPeri = 0x01,
TTFCPeriToMem = 0x02
}GDMA_CTL_TT_FC_TYPE, *PGDMA_CTL_TT_FC_TYPE;
//Max type = Bus Width
typedef enum _GDMA_CTL_TR_WIDTH_ {
TrWidthOneByte = 0x00,
TrWidthTwoBytes = 0x01,
TrWidthFourBytes = 0x02
}GDMA_CTL_TR_WIDTH, *PGDMA_CTL_TR_WIDTH;
typedef enum _GDMA_CTL_MSIZE_ {
MsizeOne = 0x00,
MsizeFour = 0x01,
MsizeEight = 0x02
}GDMA_CTL_MSIZE, *PGDMA_CTL_MSIZE;
typedef enum _GDMA_INC_TYPE_ {
IncType = 0x00,
DecType = 0x01,
NoChange = 0x02
}GDMA_INC_TYPE, *PGDMA_INC_TYPE;
typedef struct _GDMA_CTL_REG_ {
GDMA_CTL_TT_FC_TYPE TtFc;
GDMA_CTL_TR_WIDTH DstTrWidth;
GDMA_CTL_TR_WIDTH SrcTrWidth;
GDMA_INC_TYPE Dinc;
GDMA_INC_TYPE Sinc;
GDMA_CTL_MSIZE DestMsize;
GDMA_CTL_MSIZE SrcMsize;
u8 IntEn :1; // Bit 0
u8 SrcGatherEn :1; // Bit 1
u8 DstScatterEn :1; // Bit 2
u8 LlpDstEn :1; // Bit 3
u8 LlpSrcEn :1; // Bit 4
u8 Done :1; // Bit 5
u8 Rsvd6To7 :2; //Bit 6 -7
u16 BlockSize;
}GDMA_CTL_REG, *PGDMA_CTL_REG;
//3 CFG Register Structure
typedef enum _GDMA_CH_PRIORITY_ {
Prior0 = 0,
Prior1 = 1,
Prior2 = 2,
Prior3 = 3,
Prior4 = 4,
Prior5 = 5,
Prior6 = 6,
Prior7 = 7
}GDMA_CH_PRIORITY, *PGDMA_CH_PRIORITY;
typedef enum _GDMA_LOCK_LEVEL_ {
OverComplDmaTransfer = 0x00,
OverComplDmaBlockTransfer = 0x01,
OverComplDmaTransation = 0x02
}GDMA_LOCK_LEVEL, *PGDMA_LOCK_LEVEL;
typedef struct _GDMA_CFG_REG_ {
GDMA_CH_PRIORITY ChPrior;
GDMA_LOCK_LEVEL LockBL;
GDMA_LOCK_LEVEL LockChL;
u16 MaxAbrst;
u8 SrcPer;
u8 DestPer;
u16 ChSusp :1; //Bit 0
u16 FifoEmpty :1; //Bit 1
u16 HsSelDst :1; //Bit 2
u16 HsSelSrc :1; //Bit 3
u16 LockCh :1; //Bit 4
u16 LockB :1; //Bit 5
u16 DstHsPol :1; //Bit 6
u16 SrcHsPol :1; //Bit 7
u16 ReloadSrc :1; //Bit 8
u16 ReloadDst :1; //Bit 9
u16 FifoMode :1; //Bit 10
u16 DsUpdEn :1; //Bit 11
u16 SsUpdEn :1; //Bit 12
u16 Rsvd13To15 :3;
}GDMA_CFG_REG, *PGDMA_CFG_REG;
typedef enum _GDMA_ISR_TYPE_ {
TransferType = 0x1,
BlockType = 0x2,
SrcTransferType = 0x4,
DstTransferType = 0x8,
ErrType = 0x10
}GDMA_ISR_TYPE, *PGDMA_ISR_TYPE;
VOID
HalGdmaOnOffRtl8195a (
IN VOID *Data
);
BOOL
HalGdamChInitRtl8195a(
IN VOID *Data
);
BOOL
HalGdmaChSetingRtl8195a(
IN VOID *Data
);
BOOL
HalGdmaChBlockSetingRtl8195a(
IN VOID *Data
);
VOID
HalGdmaChDisRtl8195a (
IN VOID *Data
);
VOID
HalGdmaChEnRtl8195a (
IN VOID *Data
);
VOID
HalGdmaChIsrEnAndDisRtl8195a (
IN VOID *Data
);
u8
HalGdmaChIsrCleanRtl8195a (
IN VOID *Data
);
VOID
HalGdmaChCleanAutoSrcRtl8195a (
IN VOID *Data
);
VOID
HalGdmaChCleanAutoDstRtl8195a (
IN VOID *Data
);
u32
HalGdmaQueryDArRtl8195a(
IN VOID *Data
);
u32
HalGdmaQuerySArRtl8195a(
IN VOID *Data
);
BOOL
HalGdmaQueryChEnRtl8195a (
IN VOID *Data
);
#ifdef CONFIG_CHIP_E_CUT
_LONG_CALL_ BOOL
HalGdmaChBlockSetingRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ u32
HalGdmaQueryDArRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ u32
HalGdmaQuerySArRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ BOOL
HalGdmaQueryChEnRtl8195a_V04 (
IN VOID *Data
);
#endif // #ifdef CONFIG_CHIP_E_CUT
#endif

View file

@ -0,0 +1,352 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_GPIO_H_
#define _RTL8195A_GPIO_H_
#include "hal_api.h"
#include "hal_gpio.h"
#define GPIO_PORTA_DR 0x00 // data register
#define GPIO_PORTA_DDR 0x04 // data direction
#define GPIO_PORTA_CTRL 0x08 // data source control, we should keep it as default: data source from software
#define GPIO_PORTB_DR 0x0c // data register
#define GPIO_PORTB_DDR 0x10 // data direction
#define GPIO_PORTB_CTRL 0x14 // data source control, we should keep it as default: data source from software
#define GPIO_PORTC_DR 0x18 // data register
#define GPIO_PORTC_DDR 0x1c // data direction
#define GPIO_PORTC_CTRL 0x20 // data source control, we should keep it as default: data source from software
//1 Only the PORTA can be configured to generate interrupts
#define GPIO_INT_EN 0x30 // Interrupt enable register
#define GPIO_INT_MASK 0x34 // Interrupt mask
#define GPIO_INT_TYPE 0x38 // Interrupt type(level/edge) register
#define GPIO_INT_POLARITY 0x3C // Interrupt polarity(Active low/high) register
#define GPIO_INT_STATUS 0x40 // Interrupt status
#define GPIO_INT_RAWSTATUS 0x44 // Interrupt status without mask
#define GPIO_DEBOUNCE 0x48 // Interrupt signal debounce
#define GPIO_PORTA_EOI 0x4c // Clear interrupt
#define GPIO_EXT_PORTA 0x50 // GPIO IN read or OUT read back
#define GPIO_EXT_PORTB 0x54 // GPIO IN read or OUT read back
#define GPIO_EXT_PORTC 0x58 // GPIO IN read or OUT read back
#define GPIO_INT_SYNC 0x60 // Is level-sensitive interrupt being sync sith PCLK
enum {
HAL_GPIO_HIGHZ = 0,
HAL_GPIO_PULL_LOW = 1,
HAL_GPIO_PULL_HIGH = 2
};
//======================================================
// ROM Function prototype
extern PHAL_GPIO_ADAPTER _pHAL_Gpio_Adapter;
static __inline HAL_Status
GPIO_Lock (
VOID
)
{
HAL_Status Status;
if (_pHAL_Gpio_Adapter->EnterCritical) {
_pHAL_Gpio_Adapter->EnterCritical();
}
if(_pHAL_Gpio_Adapter->Locked) {
Status = HAL_BUSY;
}
else {
_pHAL_Gpio_Adapter->Locked = 1;
Status = HAL_OK;
}
if (_pHAL_Gpio_Adapter->ExitCritical) {
_pHAL_Gpio_Adapter->ExitCritical();
}
return Status;
}
static __inline VOID
GPIO_UnLock (
VOID
)
{
if (_pHAL_Gpio_Adapter->EnterCritical) {
_pHAL_Gpio_Adapter->EnterCritical();
}
_pHAL_Gpio_Adapter->Locked = 0;
if (_pHAL_Gpio_Adapter->ExitCritical) {
_pHAL_Gpio_Adapter->ExitCritical();
}
}
_LONG_CALL_ extern u32
HAL_GPIO_IrqHandler_8195a(
IN VOID *pData
);
_LONG_CALL_ extern u32
HAL_GPIO_MbedIrqHandler_8195a(
IN VOID *pData
);
_LONG_CALL_ HAL_Status
HAL_GPIO_IntCtrl_8195a(
HAL_GPIO_PIN *GPIO_Pin,
u32 En
);
_LONG_CALL_ HAL_Status
HAL_GPIO_Init_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_DeInit_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_GPIO_PIN_STATE
HAL_GPIO_ReadPin_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_WritePin_8195a(
HAL_GPIO_PIN *GPIO_Pin,
HAL_GPIO_PIN_STATE Pin_State
);
_LONG_CALL_ HAL_Status
HAL_GPIO_RegIrq_8195a(
IN PIRQ_HANDLE pIrqHandle
);
_LONG_CALL_ HAL_Status
HAL_GPIO_UnRegIrq_8195a(
IN PIRQ_HANDLE pIrqHandle
);
_LONG_CALL_ HAL_Status
HAL_GPIO_UserRegIrq_8195a(
HAL_GPIO_PIN *GPIO_Pin,
VOID *IrqHandler,
VOID *IrqData
);
_LONG_CALL_ HAL_Status
HAL_GPIO_UserUnRegIrq_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_MaskIrq_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_UnMaskIrq_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_IntDebounce_8195a(
HAL_GPIO_PIN *GPIO_Pin,
u8 Enable
);
_LONG_CALL_ u32
HAL_GPIO_GetIPPinName_8195a(
u32 chip_pin
);
_LONG_CALL_ HAL_Status
HAL_GPIO_PullCtrl_8195a(
u32 chip_pin,
u8 pull_type
);
_LONG_CALL_ u32
GPIO_GetChipPinName_8195a(
u32 port,
u32 pin
);
_LONG_CALL_ VOID
GPIO_PullCtrl_8195a(
u32 chip_pin,
u8 pull_type
);
_LONG_CALL_ VOID
GPIO_Int_SetType_8195a(
u8 pin_num,
u8 int_mode
);
_LONG_CALL_ HAL_Status HAL_GPIO_IntCtrl_8195aV02(HAL_GPIO_PIN *GPIO_Pin, u32 En);
_LONG_CALL_ u32 GPIO_Int_Clear_8195aV02(u32 irq_clr);
HAL_Status
HAL_GPIO_ClearISR_8195a(
HAL_GPIO_PIN *GPIO_Pin
);
/********** HAL In-Line Functions **********/
/**
* @brief De-Initializes a GPIO Pin, reset it as default setting.
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval HAL_Status
*/
static __inline VOID
HAL_GPIO_DeInit(
HAL_GPIO_PIN *GPIO_Pin
)
{
HAL_GPIO_DeInit_8195a(GPIO_Pin);
}
/**
* @brief Reads the specified input port pin.
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval The input port pin current status(High or Low).
*/
static __inline s32
HAL_GPIO_ReadPin(
HAL_GPIO_PIN *GPIO_Pin
)
{
return (s32)HAL_GPIO_ReadPin_8195a(GPIO_Pin);
}
/**
* @brief Write the specified output port pin.
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @param Pin_State: The state going to be set to the assigned GPIO pin.
*
* @retval None
*/
static __inline VOID
HAL_GPIO_WritePin(
HAL_GPIO_PIN *GPIO_Pin,
u32 Value
)
{
HAL_GPIO_WritePin_8195a(GPIO_Pin, (HAL_GPIO_PIN_STATE)Value);
}
/**
* @brief To register a user interrupt handler for a specified pin
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @param IrqHandler: The IRQ handler to be assigned to the specified pin
*
* @param IrqData: The pointer will be pass the the IRQ handler
*
* @retval None
*/
static __inline VOID
HAL_GPIO_UserRegIrq(
HAL_GPIO_PIN *GPIO_Pin,
VOID *IrqHandler,
VOID *IrqData
)
{
HAL_GPIO_UserRegIrq_8195a(GPIO_Pin, IrqHandler, IrqData);
}
/**
* @brief To un-register a user interrupt handler for a specified pin
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval None
*/
static __inline VOID
HAL_GPIO_UserUnRegIrq(
HAL_GPIO_PIN *GPIO_Pin
)
{
HAL_GPIO_UserUnRegIrq_8195a(GPIO_Pin);
}
/**
* @brief Enable/Disable GPIO interrupt
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin initialization.
*
* @param En: Enable (1) or Disable (0)
*
* @retval HAL_Status
*/
static __inline VOID
HAL_GPIO_IntCtrl(
HAL_GPIO_PIN *GPIO_Pin,
u32 En
)
{
HAL_GPIO_IntCtrl_8195a(GPIO_Pin, En);
}
/**
* @brief Mask the interrupt of a specified pin
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval None
*/
static __inline VOID
HAL_GPIO_MaskIrq(
HAL_GPIO_PIN *GPIO_Pin
)
{
HAL_GPIO_MaskIrq_8195a(GPIO_Pin);
}
/**
* @brief UnMask the interrupt of a specified pin
*
* @param GPIO_Pin: The data structer which contains the parameters for the GPIO Pin.
*
* @retval None
*/
static __inline VOID
HAL_GPIO_UnMaskIrq(
HAL_GPIO_PIN *GPIO_Pin
)
{
HAL_GPIO_ClearISR_8195a(GPIO_Pin);
HAL_GPIO_UnMaskIrq_8195a(GPIO_Pin);
}
#endif // end of "#define _RTL8195A_GPIO_H_"

View file

@ -0,0 +1,851 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_I2C_H_
#define _RTL8195A_I2C_H_
#include "hal_api.h"
//================ Register Bit Field ==================
//2 REG_DW_I2C_IC_CON
#define BIT_IC_CON_IC_SLAVE_DISABLE BIT(6)
#define BIT_SHIFT_IC_CON_IC_SLAVE_DISABLE 6
#define BIT_MASK_IC_CON_IC_SLAVE_DISABLE 0x1
#define BIT_CTRL_IC_CON_IC_SLAVE_DISABLE(x) (((x) & BIT_MASK_IC_CON_IC_SLAVE_DISABLE) << BIT_SHIFT_IC_CON_IC_SLAVE_DISABLE)
#define BIT_IC_CON_IC_RESTART_EN BIT(5)
#define BIT_SHIFT_IC_CON_IC_RESTART_EN 5
#define BIT_MASK_IC_CON_IC_RESTART_EN 0x1
#define BIT_CTRL_IC_CON_IC_RESTART_EN(x) (((x) & BIT_MASK_IC_CON_IC_RESTART_EN) << BIT_SHIFT_IC_CON_IC_RESTART_EN)
#define BIT_IC_CON_IC_10BITADDR_MASTER BIT(4)
#define BIT_SHIFT_IC_CON_IC_10BITADDR_MASTER 4
#define BIT_MASK_IC_CON_IC_10BITADDR_MASTER 0x1
#define BIT_CTRL_IC_CON_IC_10BITADDR_MASTER(x) (((x) & BIT_MASK_IC_CON_IC_10BITADDR_MASTER) << BIT_SHIFT_IC_CON_IC_10BITADDR_MASTER)
#define BIT_IC_CON_IC_10BITADDR_SLAVE BIT(3)
#define BIT_SHIFT_IC_CON_IC_10BITADDR_SLAVE 3
#define BIT_MASK_IC_CON_IC_10BITADDR_SLAVE 0x1
#define BIT_CTRL_IC_CON_IC_10BITADDR_SLAVE(x) (((x) & BIT_MASK_IC_CON_IC_10BITADDR_SLAVE) << BIT_SHIFT_IC_CON_IC_10BITADDR_SLAVE)
#define BIT_SHIFT_IC_CON_SPEED 1
#define BIT_MASK_IC_CON_SPEED 0x3
#define BIT_IC_CON_SPEED(x) (((x) & BIT_MASK_IC_CON_SPEED) << BIT_SHIFT_IC_CON_SPEED)
#define BIT_CTRL_IC_CON_SPEED(x) (((x) & BIT_MASK_IC_CON_SPEED) << BIT_SHIFT_IC_CON_SPEED)
#define BIT_GET_IC_CON_SPEED(x) (((x) >> BIT_SHIFT_IC_CON_SPEED) & BIT_MASK_IC_CON_SPEED)
#define BIT_IC_CON_MASTER_MODE BIT(0)
#define BIT_SHIFT_IC_CON_MASTER_MODE 0
#define BIT_MASK_IC_CON_MASTER_MODE 0x1
#define BIT_CTRL_IC_CON_MASTER_MODE(x) (((x) & BIT_MASK_IC_CON_MASTER_MODE) << BIT_SHIFT_IC_CON_MASTER_MODE)
//2 REG_DW_I2C_IC_TAR
#define BIT_IC_TAR_IC_10BITADDR_MASTER BIT(12)
#define BIT_SHIFT_IC_TAR_IC_10BITADDR_MASTER 12
#define BIT_MASK_IC_TAR_IC_10BITADDR_MASTER 0x1
#define BIT_CTRL_IC_TAR_IC_10BITADDR_MASTER(x) (((x) & BIT_MASK_IC_TAR_IC_10BITADDR_MASTER) << BIT_SHIFT_IC_TAR_IC_10BITADDR_MASTER)
#define BIT_IC_TAR_SPECIAL BIT(11)
#define BIT_SHIFT_IC_TAR_SPECIAL 11
#define BIT_MASK_IC_TAR_SPECIAL 0x1
#define BIT_CTRL_IC_TAR_SPECIAL(x) (((x) & BIT_MASK_IC_TAR_SPECIAL) << BIT_SHIFT_IC_TAR_SPECIAL)
#define BIT_IC_TAR_GC_OR_START BIT(10)
#define BIT_SHIFT_IC_TAR_GC_OR_START 10
#define BIT_MASK_IC_TAR_GC_OR_START 0x1
#define BIT_CTRL_IC_TAR_GC_OR_START(x) (((x) & BIT_MASK_IC_TAR_GC_OR_START) << BIT_SHIFT_IC_TAR_GC_OR_START)
#define BIT_SHIFT_IC_TAR 0
#define BIT_MASK_IC_TAR 0x3ff
#define BIT_IC_TAR(x) (((x) & BIT_MASK_IC_TAR) << BIT_SHIFT_IC_TAR)
#define BIT_CTRL_IC_TAR(x) (((x) & BIT_MASK_IC_TAR) << BIT_SHIFT_IC_TAR)
#define BIT_GET_IC_TAR(x) (((x) >> BIT_SHIFT_IC_TAR) & BIT_MASK_IC_TAR)
//2 REG_DW_I2C_IC_SAR
#define BIT_SHIFT_IC_SAR 0
#define BIT_MASK_IC_SAR 0x3ff
#define BIT_IC_SAR(x) (((x) & BIT_MASK_IC_SAR) << BIT_SHIFT_IC_SAR)
#define BIT_CTRL_IC_SAR(x) (((x) & BIT_MASK_IC_SAR) << BIT_SHIFT_IC_SAR)
#define BIT_GET_IC_SAR(x) (((x) >> BIT_SHIFT_IC_SAR) & BIT_MASK_IC_SAR)
//2 REG_DW_I2C_IC_HS_MADDR
#define BIT_SHIFT_IC_HS_MADDR 0
#define BIT_MASK_IC_HS_MADDR 0x7
#define BIT_IC_HS_MADDR(x) (((x) & BIT_MASK_IC_HS_MADDR) << BIT_SHIFT_IC_HS_MADDR)
#define BIT_CTRL_IC_HS_MADDR(x) (((x) & BIT_MASK_IC_HS_MADDR) << BIT_SHIFT_IC_HS_MADDR)
#define BIT_GET_IC_HS_MADDR(x) (((x) >> BIT_SHIFT_IC_HS_MADDR) & BIT_MASK_IC_HS_MADDR)
//2 REG_DW_I2C_IC_DATA_CMD
#define BIT_IC_DATA_CMD_RESTART BIT(10)
#define BIT_SHIFT_IC_DATA_CMD_RESTART 10
#define BIT_MASK_IC_DATA_CMD_RESTART 0x1
#define BIT_CTRL_IC_DATA_CMD_RESTART(x) (((x) & BIT_MASK_IC_DATA_CMD_RESTART) << BIT_SHIFT_IC_DATA_CMD_RESTART)
#define BIT_IC_DATA_CMD_STOP BIT(9)
#define BIT_SHIFT_IC_DATA_CMD_STOP 9
#define BIT_MASK_IC_DATA_CMD_STOP 0x1
#define BIT_CTRL_IC_DATA_CMD_STOP(x) (((x) & BIT_MASK_IC_DATA_CMD_STOP) << BIT_SHIFT_IC_DATA_CMD_STOP)
#define BIT_IC_DATA_CMD_CMD BIT(8)
#define BIT_SHIFT_IC_DATA_CMD_CMD 8
#define BIT_MASK_IC_DATA_CMD_CMD 0x1
#define BIT_CTRL_IC_DATA_CMD_CMD(x) (((x) & BIT_MASK_IC_DATA_CMD_CMD) << BIT_SHIFT_IC_DATA_CMD_CMD)
#define BIT_SHIFT_IC_DATA_CMD_DAT 0
#define BIT_MASK_IC_DATA_CMD_DAT 0xff
#define BIT_IC_DATA_CMD_DAT(x) (((x) & BIT_MASK_IC_DATA_CMD_DAT) << BIT_SHIFT_IC_DATA_CMD_DAT)
#define BIT_CTRL_IC_DATA_CMD_DAT(x) (((x) & BIT_MASK_IC_DATA_CMD_DAT) << BIT_SHIFT_IC_DATA_CMD_DAT)
#define BIT_GET_IC_DATA_CMD_DAT(x) (((x) >> BIT_SHIFT_IC_DATA_CMD_DAT) & BIT_MASK_IC_DATA_CMD_DAT)
//2 REG_DW_I2C_IC_SS_SCL_HCNT
#define BIT_SHIFT_IC_SS_SCL_HCNT 0
#define BIT_MASK_IC_SS_SCL_HCNT 0xffff
#define BIT_IC_SS_SCL_HCNT(x) (((x) & BIT_MASK_IC_SS_SCL_HCNT) << BIT_SHIFT_IC_SS_SCL_HCNT)
#define BIT_CTRL_IC_SS_SCL_HCNT(x) (((x) & BIT_MASK_IC_SS_SCL_HCNT) << BIT_SHIFT_IC_SS_SCL_HCNT)
#define BIT_GET_IC_SS_SCL_HCNT(x) (((x) >> BIT_SHIFT_IC_SS_SCL_HCNT) & BIT_MASK_IC_SS_SCL_HCNT)
//2 REG_DW_I2C_IC_SS_SCL_LCNT
#define BIT_SHIFT_IC_SS_SCL_LCNT 0
#define BIT_MASK_IC_SS_SCL_LCNT 0xffff
#define BIT_IC_SS_SCL_LCNT(x) (((x) & BIT_MASK_IC_SS_SCL_LCNT) << BIT_SHIFT_IC_SS_SCL_LCNT)
#define BIT_CTRL_IC_SS_SCL_LCNT(x) (((x) & BIT_MASK_IC_SS_SCL_LCNT) << BIT_SHIFT_IC_SS_SCL_LCNT)
#define BIT_GET_IC_SS_SCL_LCNT(x) (((x) >> BIT_SHIFT_IC_SS_SCL_LCNT) & BIT_MASK_IC_SS_SCL_LCNT)
//2 REG_DW_I2C_IC_FS_SCL_HCNT
#define BIT_SHIFT_IC_FS_SCL_HCNT 0
#define BIT_MASK_IC_FS_SCL_HCNT 0xffff
#define BIT_IC_FS_SCL_HCNT(x) (((x) & BIT_MASK_IC_FS_SCL_HCNT) << BIT_SHIFT_IC_FS_SCL_HCNT)
#define BIT_CTRL_IC_FS_SCL_HCNT(x) (((x) & BIT_MASK_IC_FS_SCL_HCNT) << BIT_SHIFT_IC_FS_SCL_HCNT)
#define BIT_GET_IC_FS_SCL_HCNT(x) (((x) >> BIT_SHIFT_IC_FS_SCL_HCNT) & BIT_MASK_IC_FS_SCL_HCNT)
//2 REG_DW_I2C_IC_FS_SCL_LCNT
#define BIT_SHIFT_IC_FS_SCL_LCNT 0
#define BIT_MASK_IC_FS_SCL_LCNT 0xffff
#define BIT_IC_FS_SCL_LCNT(x) (((x) & BIT_MASK_IC_FS_SCL_LCNT) << BIT_SHIFT_IC_FS_SCL_LCNT)
#define BIT_CTRL_IC_FS_SCL_LCNT(x) (((x) & BIT_MASK_IC_FS_SCL_LCNT) << BIT_SHIFT_IC_FS_SCL_LCNT)
#define BIT_GET_IC_FS_SCL_LCNT(x) (((x) >> BIT_SHIFT_IC_FS_SCL_LCNT) & BIT_MASK_IC_FS_SCL_LCNT)
//2 REG_DW_I2C_IC_HS_SCL_HCNT
#define BIT_SHIFT_IC_HS_SCL_HCNT 0
#define BIT_MASK_IC_HS_SCL_HCNT 0xffff
#define BIT_IC_HS_SCL_HCNT(x) (((x) & BIT_MASK_IC_HS_SCL_HCNT) << BIT_SHIFT_IC_HS_SCL_HCNT)
#define BIT_CTRL_IC_HS_SCL_HCNT(x) (((x) & BIT_MASK_IC_HS_SCL_HCNT) << BIT_SHIFT_IC_HS_SCL_HCNT)
#define BIT_GET_IC_HS_SCL_HCNT(x) (((x) >> BIT_SHIFT_IC_HS_SCL_HCNT) & BIT_MASK_IC_HS_SCL_HCNT)
//2 REG_DW_I2C_IC_HS_SCL_LCNT
#define BIT_SHIFT_IC_HS_SCL_LCNT 0
#define BIT_MASK_IC_HS_SCL_LCNT 0xffff
#define BIT_IC_HS_SCL_LCNT(x) (((x) & BIT_MASK_IC_HS_SCL_LCNT) << BIT_SHIFT_IC_HS_SCL_LCNT)
#define BIT_CTRL_IC_HS_SCL_LCNT(x) (((x) & BIT_MASK_IC_HS_SCL_LCNT) << BIT_SHIFT_IC_HS_SCL_LCNT)
#define BIT_GET_IC_HS_SCL_LCNT(x) (((x) >> BIT_SHIFT_IC_HS_SCL_LCNT) & BIT_MASK_IC_HS_SCL_LCNT)
//2 REG_DW_I2C_IC_INTR_STAT
#define BIT_IC_INTR_STAT_R_GEN_CALL BIT(11)
#define BIT_SHIFT_IC_INTR_STAT_R_GEN_CALL 11
#define BIT_MASK_IC_INTR_STAT_R_GEN_CALL 0x1
#define BIT_CTRL_IC_INTR_STAT_R_GEN_CALL(x) (((x) & BIT_MASK_IC_INTR_STAT_R_GEN_CALL) << BIT_SHIFT_IC_INTR_STAT_R_GEN_CALL)
#define BIT_IC_INTR_STAT_R_START_DET BIT(10)
#define BIT_SHIFT_IC_INTR_STAT_R_START_DET 10
#define BIT_MASK_IC_INTR_STAT_R_START_DET 0x1
#define BIT_CTRL_IC_INTR_STAT_R_START_DET(x) (((x) & BIT_MASK_IC_INTR_STAT_R_START_DET) << BIT_SHIFT_IC_INTR_STAT_R_START_DET)
#define BIT_IC_INTR_STAT_R_STOP_DET BIT(9)
#define BIT_SHIFT_IC_INTR_STAT_R_STOP_DET 9
#define BIT_MASK_IC_INTR_STAT_R_STOP_DET 0x1
#define BIT_CTRL_IC_INTR_STAT_R_STOP_DET(x) (((x) & BIT_MASK_IC_INTR_STAT_R_STOP_DET) << BIT_SHIFT_IC_INTR_STAT_R_STOP_DET)
#define BIT_IC_INTR_STAT_R_ACTIVITY BIT(8)
#define BIT_SHIFT_IC_INTR_STAT_R_ACTIVITY 8
#define BIT_MASK_IC_INTR_STAT_R_ACTIVITY 0x1
#define BIT_CTRL_IC_INTR_STAT_R_ACTIVITY(x) (((x) & BIT_MASK_IC_INTR_STAT_R_ACTIVITY) << BIT_SHIFT_IC_INTR_STAT_R_ACTIVITY)
#define BIT_IC_INTR_STAT_R_RX_DONE BIT(7)
#define BIT_SHIFT_IC_INTR_STAT_R_RX_DONE 7
#define BIT_MASK_IC_INTR_STAT_R_RX_DONE 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RX_DONE(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RX_DONE) << BIT_SHIFT_IC_INTR_STAT_R_RX_DONE)
#define BIT_IC_INTR_STAT_R_TX_ABRT BIT(6)
#define BIT_SHIFT_IC_INTR_STAT_R_TX_ABRT 6
#define BIT_MASK_IC_INTR_STAT_R_TX_ABRT 0x1
#define BIT_CTRL_IC_INTR_STAT_R_TX_ABRT(x) (((x) & BIT_MASK_IC_INTR_STAT_R_TX_ABRT) << BIT_SHIFT_IC_INTR_STAT_R_TX_ABRT)
#define BIT_IC_INTR_STAT_R_RD_REQ BIT(5)
#define BIT_SHIFT_IC_INTR_STAT_R_RD_REQ 5
#define BIT_MASK_IC_INTR_STAT_R_RD_REQ 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RD_REQ(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RD_REQ) << BIT_SHIFT_IC_INTR_STAT_R_RD_REQ)
#define BIT_IC_INTR_STAT_R_TX_EMPTY BIT(4)
#define BIT_SHIFT_IC_INTR_STAT_R_TX_EMPTY 4
#define BIT_MASK_IC_INTR_STAT_R_TX_EMPTY 0x1
#define BIT_CTRL_IC_INTR_STAT_R_TX_EMPTY(x) (((x) & BIT_MASK_IC_INTR_STAT_R_TX_EMPTY) << BIT_SHIFT_IC_INTR_STAT_R_TX_EMPTY)
#define BIT_IC_INTR_STAT_R_TX_OVER BIT(3)
#define BIT_SHIFT_IC_INTR_STAT_R_TX_OVER 3
#define BIT_MASK_IC_INTR_STAT_R_TX_OVER 0x1
#define BIT_CTRL_IC_INTR_STAT_R_TX_OVER(x) (((x) & BIT_MASK_IC_INTR_STAT_R_TX_OVER) << BIT_SHIFT_IC_INTR_STAT_R_TX_OVER)
#define BIT_IC_INTR_STAT_R_RX_FULL BIT(2)
#define BIT_SHIFT_IC_INTR_STAT_R_RX_FULL 2
#define BIT_MASK_IC_INTR_STAT_R_RX_FULL 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RX_FULL(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RX_FULL) << BIT_SHIFT_IC_INTR_STAT_R_RX_FULL)
#define BIT_IC_INTR_STAT_R_RX_OVER BIT(1)
#define BIT_SHIFT_IC_INTR_STAT_R_RX_OVER 1
#define BIT_MASK_IC_INTR_STAT_R_RX_OVER 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RX_OVER(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RX_OVER) << BIT_SHIFT_IC_INTR_STAT_R_RX_OVER)
#define BIT_IC_INTR_STAT_R_RX_UNDER BIT(0)
#define BIT_SHIFT_IC_INTR_STAT_R_RX_UNDER 0
#define BIT_MASK_IC_INTR_STAT_R_RX_UNDER 0x1
#define BIT_CTRL_IC_INTR_STAT_R_RX_UNDER(x) (((x) & BIT_MASK_IC_INTR_STAT_R_RX_UNDER) << BIT_SHIFT_IC_INTR_STAT_R_RX_UNDER)
//2 REG_DW_I2C_IC_INTR_MASK
#define BIT_IC_INTR_MASK_M_GEN_CALL BIT(11)
#define BIT_SHIFT_IC_INTR_MASK_M_GEN_CALL 11
#define BIT_MASK_IC_INTR_MASK_M_GEN_CALL 0x1
#define BIT_CTRL_IC_INTR_MASK_M_GEN_CALL(x) (((x) & BIT_MASK_IC_INTR_MASK_M_GEN_CALL) << BIT_SHIFT_IC_INTR_MASK_M_GEN_CALL)
#define BIT_IC_INTR_MASK_M_START_DET BIT(10)
#define BIT_SHIFT_IC_INTR_MASK_M_START_DET 10
#define BIT_MASK_IC_INTR_MASK_M_START_DET 0x1
#define BIT_CTRL_IC_INTR_MASK_M_START_DET(x) (((x) & BIT_MASK_IC_INTR_MASK_M_START_DET) << BIT_SHIFT_IC_INTR_MASK_M_START_DET)
#define BIT_IC_INTR_MASK_M_STOP_DET BIT(9)
#define BIT_SHIFT_IC_INTR_MASK_M_STOP_DET 9
#define BIT_MASK_IC_INTR_MASK_M_STOP_DET 0x1
#define BIT_CTRL_IC_INTR_MASK_M_STOP_DET(x) (((x) & BIT_MASK_IC_INTR_MASK_M_STOP_DET) << BIT_SHIFT_IC_INTR_MASK_M_STOP_DET)
#define BIT_IC_INTR_MASK_M_ACTIVITY BIT(8)
#define BIT_SHIFT_IC_INTR_MASK_M_ACTIVITY 8
#define BIT_MASK_IC_INTR_MASK_M_ACTIVITY 0x1
#define BIT_CTRL_IC_INTR_MASK_M_ACTIVITY(x) (((x) & BIT_MASK_IC_INTR_MASK_M_ACTIVITY) << BIT_SHIFT_IC_INTR_MASK_M_ACTIVITY)
#define BIT_IC_INTR_MASK_M_RX_DONE BIT(7)
#define BIT_SHIFT_IC_INTR_MASK_M_RX_DONE 7
#define BIT_MASK_IC_INTR_MASK_M_RX_DONE 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RX_DONE(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RX_DONE) << BIT_SHIFT_IC_INTR_MASK_M_RX_DONE)
#define BIT_IC_INTR_MASK_M_TX_ABRT BIT(6)
#define BIT_SHIFT_IC_INTR_MASK_M_TX_ABRT 6
#define BIT_MASK_IC_INTR_MASK_M_TX_ABRT 0x1
#define BIT_CTRL_IC_INTR_MASK_M_TX_ABRT(x) (((x) & BIT_MASK_IC_INTR_MASK_M_TX_ABRT) << BIT_SHIFT_IC_INTR_MASK_M_TX_ABRT)
#define BIT_IC_INTR_MASK_M_RD_REQ BIT(5)
#define BIT_SHIFT_IC_INTR_MASK_M_RD_REQ 5
#define BIT_MASK_IC_INTR_MASK_M_RD_REQ 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RD_REQ(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RD_REQ) << BIT_SHIFT_IC_INTR_MASK_M_RD_REQ)
#define BIT_IC_INTR_MASK_M_TX_EMPTY BIT(4)
#define BIT_SHIFT_IC_INTR_MASK_M_TX_EMPTY 4
#define BIT_MASK_IC_INTR_MASK_M_TX_EMPTY 0x1
#define BIT_CTRL_IC_INTR_MASK_M_TX_EMPTY(x) (((x) & BIT_MASK_IC_INTR_MASK_M_TX_EMPTY) << BIT_SHIFT_IC_INTR_MASK_M_TX_EMPTY)
#define BIT_IC_INTR_MASK_M_TX_OVER BIT(3)
#define BIT_SHIFT_IC_INTR_MASK_M_TX_OVER 3
#define BIT_MASK_IC_INTR_MASK_M_TX_OVER 0x1
#define BIT_CTRL_IC_INTR_MASK_M_TX_OVER(x) (((x) & BIT_MASK_IC_INTR_MASK_M_TX_OVER) << BIT_SHIFT_IC_INTR_MASK_M_TX_OVER)
#define BIT_IC_INTR_MASK_M_RX_FULL BIT(2)
#define BIT_SHIFT_IC_INTR_MASK_M_RX_FULL 2
#define BIT_MASK_IC_INTR_MASK_M_RX_FULL 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RX_FULL(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RX_FULL) << BIT_SHIFT_IC_INTR_MASK_M_RX_FULL)
#define BIT_IC_INTR_MASK_M_RX_OVER BIT(1)
#define BIT_SHIFT_IC_INTR_MASK_M_RX_OVER 1
#define BIT_MASK_IC_INTR_MASK_M_RX_OVER 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RX_OVER(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RX_OVER) << BIT_SHIFT_IC_INTR_MASK_M_RX_OVER)
#define BIT_IC_INTR_MASK_M_RX_UNDER BIT(0)
#define BIT_SHIFT_IC_INTR_MASK_M_RX_UNDER 0
#define BIT_MASK_IC_INTR_MASK_M_RX_UNDER 0x1
#define BIT_CTRL_IC_INTR_MASK_M_RX_UNDER(x) (((x) & BIT_MASK_IC_INTR_MASK_M_RX_UNDER) << BIT_SHIFT_IC_INTR_MASK_M_RX_UNDER)
//2 REG_DW_I2C_IC_RAW_INTR_STAT
#define BIT_IC_RAW_INTR_STAT_GEN_CALL BIT(11)
#define BIT_SHIFT_IC_RAW_INTR_STAT_GEN_CALL 11
#define BIT_MASK_IC_RAW_INTR_STAT_GEN_CALL 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_GEN_CALL(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_GEN_CALL) << BIT_SHIFT_IC_RAW_INTR_STAT_GEN_CALL)
#define BIT_IC_RAW_INTR_STAT_START_DET BIT(10)
#define BIT_SHIFT_IC_RAW_INTR_STAT_START_DET 10
#define BIT_MASK_IC_RAW_INTR_STAT_START_DET 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_START_DET(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_START_DET) << BIT_SHIFT_IC_RAW_INTR_STAT_START_DET)
#define BIT_IC_RAW_INTR_STAT_STOP_DET BIT(9)
#define BIT_SHIFT_IC_RAW_INTR_STAT_STOP_DET 9
#define BIT_MASK_IC_RAW_INTR_STAT_STOP_DET 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_STOP_DET(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_STOP_DET) << BIT_SHIFT_IC_RAW_INTR_STAT_STOP_DET)
#define BIT_IC_RAW_INTR_STAT_ACTIVITY BIT(8)
#define BIT_SHIFT_IC_RAW_INTR_STAT_ACTIVITY 8
#define BIT_MASK_IC_RAW_INTR_STAT_ACTIVITY 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_ACTIVITY(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_ACTIVITY) << BIT_SHIFT_IC_RAW_INTR_STAT_ACTIVITY)
#define BIT_IC_RAW_INTR_STAT_RX_DONE BIT(7)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RX_DONE 7
#define BIT_MASK_IC_RAW_INTR_STAT_RX_DONE 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RX_DONE(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RX_DONE) << BIT_SHIFT_IC_RAW_INTR_STAT_RX_DONE)
#define BIT_IC_RAW_INTR_STAT_TX_ABRT BIT(6)
#define BIT_SHIFT_IC_RAW_INTR_STAT_TX_ABRT 6
#define BIT_MASK_IC_RAW_INTR_STAT_TX_ABRT 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_TX_ABRT(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_TX_ABRT) << BIT_SHIFT_IC_RAW_INTR_STAT_TX_ABRT)
#define BIT_IC_RAW_INTR_STAT_RD_REQ BIT(5)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RD_REQ 5
#define BIT_MASK_IC_RAW_INTR_STAT_RD_REQ 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RD_REQ(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RD_REQ) << BIT_SHIFT_IC_RAW_INTR_STAT_RD_REQ)
#define BIT_IC_RAW_INTR_STAT_TX_EMPTY BIT(4)
#define BIT_SHIFT_IC_RAW_INTR_STAT_TX_EMPTY 4
#define BIT_MASK_IC_RAW_INTR_STAT_TX_EMPTY 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_TX_EMPTY(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_TX_EMPTY) << BIT_SHIFT_IC_RAW_INTR_STAT_TX_EMPTY)
#define BIT_IC_RAW_INTR_STAT_TX_OVER BIT(3)
#define BIT_SHIFT_IC_RAW_INTR_STAT_TX_OVER 3
#define BIT_MASK_IC_RAW_INTR_STAT_TX_OVER 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_TX_OVER(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_TX_OVER) << BIT_SHIFT_IC_RAW_INTR_STAT_TX_OVER)
#define BIT_IC_RAW_INTR_STAT_RX_FULL BIT(2)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RX_FULL 2
#define BIT_MASK_IC_RAW_INTR_STAT_RX_FULL 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RX_FULL(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RX_FULL) << BIT_SHIFT_IC_RAW_INTR_STAT_RX_FULL)
#define BIT_IC_RAW_INTR_STAT_RX_OVER BIT(1)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RX_OVER 1
#define BIT_MASK_IC_RAW_INTR_STAT_RX_OVER 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RX_OVER(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RX_OVER) << BIT_SHIFT_IC_RAW_INTR_STAT_RX_OVER)
#define BIT_IC_RAW_INTR_STAT_RX_UNDER BIT(0)
#define BIT_SHIFT_IC_RAW_INTR_STAT_RX_UNDER 0
#define BIT_MASK_IC_RAW_INTR_STAT_RX_UNDER 0x1
#define BIT_CTRL_IC_RAW_INTR_STAT_RX_UNDER(x) (((x) & BIT_MASK_IC_RAW_INTR_STAT_RX_UNDER) << BIT_SHIFT_IC_RAW_INTR_STAT_RX_UNDER)
//2 REG_DW_I2C_IC_RX_TL
#define BIT_SHIFT_IC_RX_TL 0
#define BIT_MASK_IC_RX_TL 0xff
#define BIT_IC_RX_TL(x) (((x) & BIT_MASK_IC_RX_TL) << BIT_SHIFT_IC_RX_TL)
#define BIT_CTRL_IC_RX_TL(x) (((x) & BIT_MASK_IC_RX_TL) << BIT_SHIFT_IC_RX_TL)
#define BIT_GET_IC_RX_TL(x) (((x) >> BIT_SHIFT_IC_RX_TL) & BIT_MASK_IC_RX_TL)
//2 REG_DW_I2C_IC_TX_TL
#define BIT_SHIFT_IC_TX_TL 0
#define BIT_MASK_IC_TX_TL 0xff
#define BIT_IC_TX_TL(x) (((x) & BIT_MASK_IC_TX_TL) << BIT_SHIFT_IC_TX_TL)
#define BIT_CTRL_IC_TX_TL(x) (((x) & BIT_MASK_IC_TX_TL) << BIT_SHIFT_IC_TX_TL)
#define BIT_GET_IC_TX_TL(x) (((x) >> BIT_SHIFT_IC_TX_TL) & BIT_MASK_IC_TX_TL)
//2 REG_DW_I2C_IC_CLR_INTR
#define BIT_IC_CLR_INTR BIT(0)
#define BIT_SHIFT_IC_CLR_INTR 0
#define BIT_MASK_IC_CLR_INTR 0x1
#define BIT_CTRL_IC_CLR_INTR(x) (((x) & BIT_MASK_IC_CLR_INTR) << BIT_SHIFT_IC_CLR_INTR)
//2 REG_DW_I2C_IC_CLR_RX_UNDER
#define BIT_IC_CLR_RX_UNDER BIT(0)
#define BIT_SHIFT_IC_CLR_RX_UNDER 0
#define BIT_MASK_IC_CLR_RX_UNDER 0x1
#define BIT_CTRL_IC_CLR_RX_UNDER(x) (((x) & BIT_MASK_IC_CLR_RX_UNDER) << BIT_SHIFT_IC_CLR_RX_UNDER)
//2 REG_DW_I2C_IC_CLR_RX_OVER
#define BIT_IC_CLR_RX_OVER BIT(0)
#define BIT_SHIFT_IC_CLR_RX_OVER 0
#define BIT_MASK_IC_CLR_RX_OVER 0x1
#define BIT_CTRL_IC_CLR_RX_OVER(x) (((x) & BIT_MASK_IC_CLR_RX_OVER) << BIT_SHIFT_IC_CLR_RX_OVER)
//2 REG_DW_I2C_IC_CLR_TX_OVER
#define BIT_IC_CLR_TX_OVER BIT(0)
#define BIT_SHIFT_IC_CLR_TX_OVER 0
#define BIT_MASK_IC_CLR_TX_OVER 0x1
#define BIT_CTRL_IC_CLR_TX_OVER(x) (((x) & BIT_MASK_IC_CLR_TX_OVER) << BIT_SHIFT_IC_CLR_TX_OVER)
//2 REG_DW_I2C_IC_CLR_RD_REQ
#define BIT_IC_CLR_RD_REQ BIT(0)
#define BIT_SHIFT_IC_CLR_RD_REQ 0
#define BIT_MASK_IC_CLR_RD_REQ 0x1
#define BIT_CTRL_IC_CLR_RD_REQ(x) (((x) & BIT_MASK_IC_CLR_RD_REQ) << BIT_SHIFT_IC_CLR_RD_REQ)
//2 REG_DW_I2C_IC_CLR_TX_ABRT
#define BIT_CLR_RD_REQ BIT(0)
#define BIT_SHIFT_CLR_RD_REQ 0
#define BIT_MASK_CLR_RD_REQ 0x1
#define BIT_CTRL_CLR_RD_REQ(x) (((x) & BIT_MASK_CLR_RD_REQ) << BIT_SHIFT_CLR_RD_REQ)
//2 REG_DW_I2C_IC_CLR_RX_DONE
#define BIT_IC_CLR_RX_DONE BIT(0)
#define BIT_SHIFT_IC_CLR_RX_DONE 0
#define BIT_MASK_IC_CLR_RX_DONE 0x1
#define BIT_CTRL_IC_CLR_RX_DONE(x) (((x) & BIT_MASK_IC_CLR_RX_DONE) << BIT_SHIFT_IC_CLR_RX_DONE)
//2 REG_DW_I2C_IC_CLR_ACTIVITY
#define BIT_IC_CLR_ACTIVITY BIT(0)
#define BIT_SHIFT_IC_CLR_ACTIVITY 0
#define BIT_MASK_IC_CLR_ACTIVITY 0x1
#define BIT_CTRL_IC_CLR_ACTIVITY(x) (((x) & BIT_MASK_IC_CLR_ACTIVITY) << BIT_SHIFT_IC_CLR_ACTIVITY)
//2 REG_DW_I2C_IC_CLR_STOP_DET
#define BIT_IC_CLR_STOP_DET BIT(0)
#define BIT_SHIFT_IC_CLR_STOP_DET 0
#define BIT_MASK_IC_CLR_STOP_DET 0x1
#define BIT_CTRL_IC_CLR_STOP_DET(x) (((x) & BIT_MASK_IC_CLR_STOP_DET) << BIT_SHIFT_IC_CLR_STOP_DET)
//2 REG_DW_I2C_IC_CLR_START_DET
#define BIT_IC_CLR_START_DET BIT(0)
#define BIT_SHIFT_IC_CLR_START_DET 0
#define BIT_MASK_IC_CLR_START_DET 0x1
#define BIT_CTRL_IC_CLR_START_DET(x) (((x) & BIT_MASK_IC_CLR_START_DET) << BIT_SHIFT_IC_CLR_START_DET)
//2 REG_DW_I2C_IC_CLR_GEN_CALL
#define BIT_IC_CLR_GEN_CALL BIT(0)
#define BIT_SHIFT_IC_CLR_GEN_CALL 0
#define BIT_MASK_IC_CLR_GEN_CALL 0x1
#define BIT_CTRL_IC_CLR_GEN_CALL(x) (((x) & BIT_MASK_IC_CLR_GEN_CALL) << BIT_SHIFT_IC_CLR_GEN_CALL)
//2 REG_DW_I2C_IC_ENABLE
#define BIT_IC_ENABLE BIT(0)
#define BIT_SHIFT_IC_ENABLE 0
#define BIT_MASK_IC_ENABLE 0x1
#define BIT_CTRL_IC_ENABLE(x) (((x) & BIT_MASK_IC_ENABLE) << BIT_SHIFT_IC_ENABLE)
//2 REG_DW_I2C_IC_STATUS
#define BIT_IC_STATUS_SLV_ACTIVITY BIT(6)
#define BIT_SHIFT_IC_STATUS_SLV_ACTIVITY 6
#define BIT_MASK_IC_STATUS_SLV_ACTIVITY 0x1
#define BIT_CTRL_IC_STATUS_SLV_ACTIVITY(x) (((x) & BIT_MASK_IC_STATUS_SLV_ACTIVITY) << BIT_SHIFT_IC_STATUS_SLV_ACTIVITY)
#define BIT_IC_STATUS_MST_ACTIVITY BIT(5)
#define BIT_SHIFT_IC_STATUS_MST_ACTIVITY 5
#define BIT_MASK_IC_STATUS_MST_ACTIVITY 0x1
#define BIT_CTRL_IC_STATUS_MST_ACTIVITY(x) (((x) & BIT_MASK_IC_STATUS_MST_ACTIVITY) << BIT_SHIFT_IC_STATUS_MST_ACTIVITY)
#define BIT_IC_STATUS_RFF BIT(4)
#define BIT_SHIFT_IC_STATUS_RFF 4
#define BIT_MASK_IC_STATUS_RFF 0x1
#define BIT_CTRL_IC_STATUS_RFF(x) (((x) & BIT_MASK_IC_STATUS_RFF) << BIT_SHIFT_IC_STATUS_RFF)
#define BIT_IC_STATUS_RFNE BIT(3)
#define BIT_SHIFT_IC_STATUS_RFNE 3
#define BIT_MASK_IC_STATUS_RFNE 0x1
#define BIT_CTRL_IC_STATUS_RFNE(x) (((x) & BIT_MASK_IC_STATUS_RFNE) << BIT_SHIFT_IC_STATUS_RFNE)
#define BIT_IC_STATUS_TFE BIT(2)
#define BIT_SHIFT_IC_STATUS_TFE 2
#define BIT_MASK_IC_STATUS_TFE 0x1
#define BIT_CTRL_IC_STATUS_TFE(x) (((x) & BIT_MASK_IC_STATUS_TFE) << BIT_SHIFT_IC_STATUS_TFE)
#define BIT_IC_STATUS_TFNF BIT(1)
#define BIT_SHIFT_IC_STATUS_TFNF 1
#define BIT_MASK_IC_STATUS_TFNF 0x1
#define BIT_CTRL_IC_STATUS_TFNF(x) (((x) & BIT_MASK_IC_STATUS_TFNF) << BIT_SHIFT_IC_STATUS_TFNF)
#define BIT_IC_STATUS_ACTIVITY BIT(0)
#define BIT_SHIFT_IC_STATUS_ACTIVITY 0
#define BIT_MASK_IC_STATUS_ACTIVITY 0x1
#define BIT_CTRL_IC_STATUS_ACTIVITY(x) (((x) & BIT_MASK_IC_STATUS_ACTIVITY) << BIT_SHIFT_IC_STATUS_ACTIVITY)
//2 REG_DW_I2C_IC_TXFLR
#define BIT_SHIFT_IC_TXFLR 0
#define BIT_MASK_IC_TXFLR 0x3f
#define BIT_IC_TXFLR(x) (((x) & BIT_MASK_IC_TXFLR) << BIT_SHIFT_IC_TXFLR)
#define BIT_CTRL_IC_TXFLR(x) (((x) & BIT_MASK_IC_TXFLR) << BIT_SHIFT_IC_TXFLR)
#define BIT_GET_IC_TXFLR(x) (((x) >> BIT_SHIFT_IC_TXFLR) & BIT_MASK_IC_TXFLR)
//2 REG_DW_I2C_IC_RXFLR
#define BIT_SHIFT_IC_RXFLR 0
#define BIT_MASK_IC_RXFLR 0x1f
#define BIT_IC_RXFLR(x) (((x) & BIT_MASK_IC_RXFLR) << BIT_SHIFT_IC_RXFLR)
#define BIT_CTRL_IC_RXFLR(x) (((x) & BIT_MASK_IC_RXFLR) << BIT_SHIFT_IC_RXFLR)
#define BIT_GET_IC_RXFLR(x) (((x) >> BIT_SHIFT_IC_RXFLR) & BIT_MASK_IC_RXFLR)
//2 REG_DW_I2C_IC_SDA_HOLD
#define BIT_SHIFT_IC_SDA_HOLD 0
#define BIT_MASK_IC_SDA_HOLD 0xffff
#define BIT_IC_SDA_HOLD(x) (((x) & BIT_MASK_IC_SDA_HOLD) << BIT_SHIFT_IC_SDA_HOLD)
#define BIT_CTRL_IC_SDA_HOLD(x) (((x) & BIT_MASK_IC_SDA_HOLD) << BIT_SHIFT_IC_SDA_HOLD)
#define BIT_GET_IC_SDA_HOLD(x) (((x) >> BIT_SHIFT_IC_SDA_HOLD) & BIT_MASK_IC_SDA_HOLD)
//2 REG_DW_I2C_IC_TX_ABRT_SOURCE
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX BIT(15)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX 15
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLVRD_INTX)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST BIT(14)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST 14
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLV_ARBLOST)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO BIT(13)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO 13
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SLVFLUSH_TXFIFO)
#define BIT_IC_TX_ABRT_SOURCE_ARB_LOST BIT(12)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ARB_LOST 12
#define BIT_MASK_IC_TX_ABRT_SOURCE_ARB_LOST 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ARB_LOST(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ARB_LOST) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ARB_LOST)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS BIT(11)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS 11
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_MASTER_DIS)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT BIT(10)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT 10
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10B_RD_NORSTRT)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT BIT(9)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT 9
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_NORSTRT)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT BIT(8)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT 8
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_HS_NORSTRT)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET BIT(7)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET 7
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_SBYTE_ACKDET)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET BIT(6)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET 6
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_HS_ACKDET)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ BIT(5)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ 5
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_GCALL_READ)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK BIT(4)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK 4
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_GCALL_NOACK)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK BIT(3)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK 3
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_TXDATA_NOACK)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK BIT(2)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK 2
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10ADDR2_NOACK)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK BIT(1)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK 1
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_10ADDR1_NOACK)
#define BIT_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK BIT(0)
#define BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK 0
#define BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK 0x1
#define BIT_CTRL_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK(x) (((x) & BIT_MASK_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK) << BIT_SHIFT_IC_TX_ABRT_SOURCE_ABRT_7B_ADDR_NOACK)
//2 REG_DW_I2C_IC_SLV_DATA_NACK_ONLY
#define BIT_IC_SLV_DATA_NACK_ONLY BIT(0)
#define BIT_SHIFT_IC_SLV_DATA_NACK_ONLY 0
#define BIT_MASK_IC_SLV_DATA_NACK_ONLY 0x1
#define BIT_CTRL_IC_SLV_DATA_NACK_ONLY(x) (((x) & BIT_MASK_IC_SLV_DATA_NACK_ONLY) << BIT_SHIFT_IC_SLV_DATA_NACK_ONLY)
//2 REG_DW_I2C_IC_DMA_CR
#define BIT_IC_DMA_CR_TDMAE BIT(1)
#define BIT_SHIFT_IC_DMA_CR_TDMAE 1
#define BIT_MASK_IC_DMA_CR_TDMAE 0x1
#define BIT_CTRL_IC_DMA_CR_TDMAE(x) (((x) & BIT_MASK_IC_DMA_CR_TDMAE) << BIT_SHIFT_IC_DMA_CR_TDMAE)
#define BIT_IC_DMA_CR_RDMAE BIT(0)
#define BIT_SHIFT_IC_DMA_CR_RDMAE 0
#define BIT_MASK_IC_DMA_CR_RDMAE 0x1
#define BIT_CTRL_IC_DMA_CR_RDMAE(x) (((x) & BIT_MASK_IC_DMA_CR_RDMAE) << BIT_SHIFT_IC_DMA_CR_RDMAE)
//2 REG_DW_I2C_IC_DMA_TDLR
#define BIT_SHIFT_IC_DMA_TDLR_DMATDL 0
#define BIT_MASK_IC_DMA_TDLR_DMATDL 0x1f
#define BIT_IC_DMA_TDLR_DMATDL(x) (((x) & BIT_MASK_IC_DMA_TDLR_DMATDL) << BIT_SHIFT_IC_DMA_TDLR_DMATDL)
#define BIT_CTRL_IC_DMA_TDLR_DMATDL(x) (((x) & BIT_MASK_IC_DMA_TDLR_DMATDL) << BIT_SHIFT_IC_DMA_TDLR_DMATDL)
#define BIT_GET_IC_DMA_TDLR_DMATDL(x) (((x) >> BIT_SHIFT_IC_DMA_TDLR_DMATDL) & BIT_MASK_IC_DMA_TDLR_DMATDL)
//2 REG_DW_I2C_IC_DMA_RDLR
#define BIT_SHIFT_IC_DMA_RDLR_DMARDL 0
#define BIT_MASK_IC_DMA_RDLR_DMARDL 0xf
#define BIT_IC_DMA_RDLR_DMARDL(x) (((x) & BIT_MASK_IC_DMA_RDLR_DMARDL) << BIT_SHIFT_IC_DMA_RDLR_DMARDL)
#define BIT_CTRL_IC_DMA_RDLR_DMARDL(x) (((x) & BIT_MASK_IC_DMA_RDLR_DMARDL) << BIT_SHIFT_IC_DMA_RDLR_DMARDL)
#define BIT_GET_IC_DMA_RDLR_DMARDL(x) (((x) >> BIT_SHIFT_IC_DMA_RDLR_DMARDL) & BIT_MASK_IC_DMA_RDLR_DMARDL)
//2 REG_DW_I2C_IC_SDA_SETUP
#define BIT_SHIFT_IC_SDA_SETUP 0
#define BIT_MASK_IC_SDA_SETUP 0xff
#define BIT_IC_SDA_SETUP(x) (((x) & BIT_MASK_IC_SDA_SETUP) << BIT_SHIFT_IC_SDA_SETUP)
#define BIT_CTRL_IC_SDA_SETUP(x) (((x) & BIT_MASK_IC_SDA_SETUP) << BIT_SHIFT_IC_SDA_SETUP)
#define BIT_GET_IC_SDA_SETUP(x) (((x) >> BIT_SHIFT_IC_SDA_SETUP) & BIT_MASK_IC_SDA_SETUP)
//2 REG_DW_I2C_IC_ACK_GENERAL_CALL
#define BIT_IC_ACK_GENERAL_CALL BIT(0)
#define BIT_SHIFT_IC_ACK_GENERAL_CALL 0
#define BIT_MASK_IC_ACK_GENERAL_CALL 0x1
#define BIT_CTRL_IC_ACK_GENERAL_CALL(x) (((x) & BIT_MASK_IC_ACK_GENERAL_CALL) << BIT_SHIFT_IC_ACK_GENERAL_CALL)
//2 REG_DW_I2C_IC_ENABLE_STATUS
#define BIT_IC_ENABLE_STATUS_SLV_RX_DATA_LOST BIT(2)
#define BIT_SHIFT_IC_ENABLE_STATUS_SLV_RX_DATA_LOST 2
#define BIT_MASK_IC_ENABLE_STATUS_SLV_RX_DATA_LOST 0x1
#define BIT_CTRL_IC_ENABLE_STATUS_SLV_RX_DATA_LOST(x) (((x) & BIT_MASK_IC_ENABLE_STATUS_SLV_RX_DATA_LOST) << BIT_SHIFT_IC_ENABLE_STATUS_SLV_RX_DATA_LOST)
#define BIT_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY BIT(1)
#define BIT_SHIFT_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY 1
#define BIT_MASK_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY 0x1
#define BIT_CTRL_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY(x) (((x) & BIT_MASK_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY) << BIT_SHIFT_IC_ENABLE_STATUS_SLV_DISABLED_WHILE_BUSY)
#define BIT_IC_ENABLE_STATUS_IC_EN BIT(0)
#define BIT_SHIFT_IC_ENABLE_STATUS_IC_EN 0
#define BIT_MASK_IC_ENABLE_STATUS_IC_EN 0x1
#define BIT_CTRL_IC_ENABLE_STATUS_IC_EN(x) (((x) & BIT_MASK_IC_ENABLE_STATUS_IC_EN) << BIT_SHIFT_IC_ENABLE_STATUS_IC_EN)
//2 REG_DW_I2C_IC_COMP_PARAM_1
#define BIT_SHIFT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH 16
#define BIT_MASK_IC_COMP_PARAM_1_TX_BUFFER_DEPTH 0xff
#define BIT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_TX_BUFFER_DEPTH) << BIT_SHIFT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH)
#define BIT_CTRL_IC_COMP_PARAM_1_TX_BUFFER_DEPTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_TX_BUFFER_DEPTH) << BIT_SHIFT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH)
#define BIT_GET_IC_COMP_PARAM_1_TX_BUFFER_DEPTH(x) (((x) >> BIT_SHIFT_IC_COMP_PARAM_1_TX_BUFFER_DEPTH) & BIT_MASK_IC_COMP_PARAM_1_TX_BUFFER_DEPTH)
#define BIT_SHIFT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH 8
#define BIT_MASK_IC_COMP_PARAM_1_RX_BUFFER_DEPTH 0xff
#define BIT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_RX_BUFFER_DEPTH) << BIT_SHIFT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH)
#define BIT_CTRL_IC_COMP_PARAM_1_RX_BUFFER_DEPTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_RX_BUFFER_DEPTH) << BIT_SHIFT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH)
#define BIT_GET_IC_COMP_PARAM_1_RX_BUFFER_DEPTH(x) (((x) >> BIT_SHIFT_IC_COMP_PARAM_1_RX_BUFFER_DEPTH) & BIT_MASK_IC_COMP_PARAM_1_RX_BUFFER_DEPTH)
#define BIT_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS BIT(7)
#define BIT_SHIFT_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS 7
#define BIT_MASK_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS 0x1
#define BIT_CTRL_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS) << BIT_SHIFT_IC_COMP_PARAM_1_ADD_ENCODED_PARAMS)
#define BIT_IC_COMP_PARAM_1_HAS_DMA BIT(6)
#define BIT_SHIFT_IC_COMP_PARAM_1_HAS_DMA 6
#define BIT_MASK_IC_COMP_PARAM_1_HAS_DMA 0x1
#define BIT_CTRL_IC_COMP_PARAM_1_HAS_DMA(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_HAS_DMA) << BIT_SHIFT_IC_COMP_PARAM_1_HAS_DMA)
#define BIT_IC_COMP_PARAM_1_INTR_IO BIT(5)
#define BIT_SHIFT_IC_COMP_PARAM_1_INTR_IO 5
#define BIT_MASK_IC_COMP_PARAM_1_INTR_IO 0x1
#define BIT_CTRL_IC_COMP_PARAM_1_INTR_IO(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_INTR_IO) << BIT_SHIFT_IC_COMP_PARAM_1_INTR_IO)
#define BIT_IC_COMP_PARAM_1_HC_COUNT_VALUES BIT(4)
#define BIT_SHIFT_IC_COMP_PARAM_1_HC_COUNT_VALUES 4
#define BIT_MASK_IC_COMP_PARAM_1_HC_COUNT_VALUES 0x1
#define BIT_CTRL_IC_COMP_PARAM_1_HC_COUNT_VALUES(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_HC_COUNT_VALUES) << BIT_SHIFT_IC_COMP_PARAM_1_HC_COUNT_VALUES)
#define BIT_SHIFT_IC_COMP_PARAM_1_MAX_SPEED_MODE 2
#define BIT_MASK_IC_COMP_PARAM_1_MAX_SPEED_MODE 0x3
#define BIT_IC_COMP_PARAM_1_MAX_SPEED_MODE(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_MAX_SPEED_MODE) << BIT_SHIFT_IC_COMP_PARAM_1_MAX_SPEED_MODE)
#define BIT_CTRL_IC_COMP_PARAM_1_MAX_SPEED_MODE(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_MAX_SPEED_MODE) << BIT_SHIFT_IC_COMP_PARAM_1_MAX_SPEED_MODE)
#define BIT_GET_IC_COMP_PARAM_1_MAX_SPEED_MODE(x) (((x) >> BIT_SHIFT_IC_COMP_PARAM_1_MAX_SPEED_MODE) & BIT_MASK_IC_COMP_PARAM_1_MAX_SPEED_MODE)
#define BIT_SHIFT_IC_COMP_PARAM_1_APB_DATA_WIDTH 0
#define BIT_MASK_IC_COMP_PARAM_1_APB_DATA_WIDTH 0x3
#define BIT_IC_COMP_PARAM_1_APB_DATA_WIDTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_APB_DATA_WIDTH) << BIT_SHIFT_IC_COMP_PARAM_1_APB_DATA_WIDTH)
#define BIT_CTRL_IC_COMP_PARAM_1_APB_DATA_WIDTH(x) (((x) & BIT_MASK_IC_COMP_PARAM_1_APB_DATA_WIDTH) << BIT_SHIFT_IC_COMP_PARAM_1_APB_DATA_WIDTH)
#define BIT_GET_IC_COMP_PARAM_1_APB_DATA_WIDTH(x) (((x) >> BIT_SHIFT_IC_COMP_PARAM_1_APB_DATA_WIDTH) & BIT_MASK_IC_COMP_PARAM_1_APB_DATA_WIDTH)
//2 REG_DW_I2C_IC_COMP_VERSION
#define BIT_SHIFT_IC_COMP_VERSION 0
#define BIT_MASK_IC_COMP_VERSION 0xffffffffL
#define BIT_IC_COMP_VERSION(x) (((x) & BIT_MASK_IC_COMP_VERSION) << BIT_SHIFT_IC_COMP_VERSION)
#define BIT_CTRL_IC_COMP_VERSION(x) (((x) & BIT_MASK_IC_COMP_VERSION) << BIT_SHIFT_IC_COMP_VERSION)
#define BIT_GET_IC_COMP_VERSION(x) (((x) >> BIT_SHIFT_IC_COMP_VERSION) & BIT_MASK_IC_COMP_VERSION)
//2 REG_DW_I2C_IC_COMP_TYPE
#define BIT_SHIFT_IC_COMP_TYPE 0
#define BIT_MASK_IC_COMP_TYPE 0xffffffffL
#define BIT_IC_COMP_TYPE(x) (((x) & BIT_MASK_IC_COMP_TYPE) << BIT_SHIFT_IC_COMP_TYPE)
#define BIT_CTRL_IC_COMP_TYPE(x) (((x) & BIT_MASK_IC_COMP_TYPE) << BIT_SHIFT_IC_COMP_TYPE)
#define BIT_GET_IC_COMP_TYPE(x) (((x) >> BIT_SHIFT_IC_COMP_TYPE) & BIT_MASK_IC_COMP_TYPE)
//======================== Register Address Definition ========================
#define REG_DW_I2C_IC_CON 0x0000
#define REG_DW_I2C_IC_TAR 0x0004
#define REG_DW_I2C_IC_SAR 0x0008
#define REG_DW_I2C_IC_HS_MADDR 0x000C
#define REG_DW_I2C_IC_DATA_CMD 0x0010
#define REG_DW_I2C_IC_SS_SCL_HCNT 0x0014
#define REG_DW_I2C_IC_SS_SCL_LCNT 0x0018
#define REG_DW_I2C_IC_FS_SCL_HCNT 0x001C
#define REG_DW_I2C_IC_FS_SCL_LCNT 0x0020
#define REG_DW_I2C_IC_HS_SCL_HCNT 0x0024
#define REG_DW_I2C_IC_HS_SCL_LCNT 0x0028
#define REG_DW_I2C_IC_INTR_STAT 0x002C
#define REG_DW_I2C_IC_INTR_MASK 0x0030
#define REG_DW_I2C_IC_RAW_INTR_STAT 0x0034
#define REG_DW_I2C_IC_RX_TL 0x0038
#define REG_DW_I2C_IC_TX_TL 0x003C
#define REG_DW_I2C_IC_CLR_INTR 0x0040
#define REG_DW_I2C_IC_CLR_RX_UNDER 0x0044
#define REG_DW_I2C_IC_CLR_RX_OVER 0x0048
#define REG_DW_I2C_IC_CLR_TX_OVER 0x004C
#define REG_DW_I2C_IC_CLR_RD_REQ 0x0050
#define REG_DW_I2C_IC_CLR_TX_ABRT 0x0054
#define REG_DW_I2C_IC_CLR_RX_DONE 0x0058
#define REG_DW_I2C_IC_CLR_ACTIVITY 0x005C
#define REG_DW_I2C_IC_CLR_STOP_DET 0x0060
#define REG_DW_I2C_IC_CLR_START_DET 0x0064
#define REG_DW_I2C_IC_CLR_GEN_CALL 0x0068
#define REG_DW_I2C_IC_ENABLE 0x006C
#define REG_DW_I2C_IC_STATUS 0x0070
#define REG_DW_I2C_IC_TXFLR 0x0074
#define REG_DW_I2C_IC_RXFLR 0x0078
#define REG_DW_I2C_IC_SDA_HOLD 0x007C
#define REG_DW_I2C_IC_TX_ABRT_SOURCE 0x0080
#define REG_DW_I2C_IC_SLV_DATA_NACK_ONLY 0x0084
#define REG_DW_I2C_IC_DMA_CR 0x0088
#define REG_DW_I2C_IC_DMA_TDLR 0x008C
#define REG_DW_I2C_IC_DMA_RDLR 0x0090
#define REG_DW_I2C_IC_SDA_SETUP 0x0094
#define REG_DW_I2C_IC_ACK_GENERAL_CALL 0x0098
#define REG_DW_I2C_IC_ENABLE_STATUS 0x009C
#define REG_DW_I2C_IC_COMP_PARAM_1 0x00F4
#define REG_DW_I2C_IC_COMP_VERSION 0x00F8
#define REG_DW_I2C_IC_COMP_TYPE 0x00FC
//======================================================
// I2C related enumeration
// I2C Address Mode
typedef enum _I2C_ADDR_MODE_ {
I2C_ADDR_7BIT = 0,
I2C_ADDR_10BIT = 1,
}I2C_ADDR_MODE,*PI2C_ADDR_MODE;
// I2C Speed Mode
typedef enum _I2C_SPD_MODE_ {
I2C_SS_MODE = 1,
I2C_FS_MODE = 2,
I2C_HS_MODE = 3,
}I2C_SPD_MODE,*PI2C_SPD_MODE;
//I2C Timing Parameters
#define I2C_SS_MIN_SCL_HTIME 4000 //the unit is ns.
#define I2C_SS_MIN_SCL_LTIME 4700 //the unit is ns.
#define I2C_FS_MIN_SCL_HTIME 600 //the unit is ns.
#define I2C_FS_MIN_SCL_LTIME 1300 //the unit is ns.
#define I2C_HS_MIN_SCL_HTIME_100 60 //the unit is ns, with bus loading = 100pf
#define I2C_HS_MIN_SCL_LTIME_100 120 //the unit is ns., with bus loading = 100pf
#define I2C_HS_MIN_SCL_HTIME_400 160 //the unit is ns, with bus loading = 400pf
#define I2C_HS_MIN_SCL_LTIME_400 320 //the unit is ns., with bus loading = 400pf
//======================================================
//I2C Essential functions and macros
_LONG_CALL_ROM_ VOID HalI2CWrite32(IN u8 I2CIdx, IN u8 I2CReg, IN u32 I2CVal);
_LONG_CALL_ROM_ u32 HalI2CRead32(IN u8 I2CIdx, IN u8 I2CReg);
#define HAL_I2C_WRITE32(I2CIdx, addr, value) HalI2CWrite32(I2CIdx,addr,value)
#define HAL_I2C_READ32(I2CIdx, addr) HalI2CRead32(I2CIdx,addr)
// Rtl8195a I2C function prototypes
_LONG_CALL_ HAL_Status HalI2CEnableRtl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CInit8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CDeInit8195a(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status HalI2CSetCLKRtl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CMassSendRtl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CSendRtl8195a(IN VOID *Data);
_LONG_CALL_ u8 HalI2CReceiveRtl8195a(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status HalI2CIntrCtrl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CClrIntrRtl8195a(IN VOID *Data);
_LONG_CALL_ROM_ HAL_Status HalI2CClrAllIntrRtl8195a(IN VOID *Data);
_LONG_CALL_ HAL_Status HalI2CDMACtrl8195a(IN VOID *Data);
_LONG_CALL_ u32 HalI2CReadRegRtl8195a(IN VOID *Data, IN u8 I2CReg);
_LONG_CALL_ HAL_Status HalI2CWriteRegRtl8195a(IN VOID *Data, IN u8 I2CReg, IN u32 RegVal);
//Rtl8195a I2C V02 function prototype
_LONG_CALL_ HAL_Status HalI2CSendRtl8195aV02(IN VOID *Data);
#if defined(CONFIG_CHIP_A_CUT) || defined(CONFIG_CHIP_B_CUT) || defined(CONFIG_CHIP_C_CUT)
_LONG_CALL_ HAL_Status HalI2CSetCLKRtl8195aV02(IN VOID *Data);
#elif defined(CONFIG_CHIP_E_CUT)
_LONG_CALL_ROM_ HAL_Status HalI2CSetCLKRtl8195aV02(IN VOID *Data);
#endif
//Rtl8195a I2C V02 function prototype END
HAL_Status HalI2CInit8195a_Patch(IN VOID *Data);
HAL_Status HalI2CSendRtl8195a_Patch(IN VOID *Data);
HAL_Status HalI2CSetCLKRtl8195a_Patch(IN VOID *Data);
#endif

View file

@ -0,0 +1,617 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_I2S_H_
#define _RTL8195A_I2S_H_
//=============== Register Bit Field Definition ====================
// REG_I2S_CONTROL
#define BIT_CTLX_I2S_EN BIT(0)
#define BIT_SHIFT_CTLX_I2S_EN 0
#define BIT_MASK_CTLX_I2S_EN 0x1
#define BIT_CTRL_CTLX_I2S_EN(x) (((x) & BIT_MASK_CTLX_I2S_EN) << BIT_SHIFT_CTLX_I2S_EN)
#define BIT_SHIFT_CTLX_I2S_TRX_ACT 1
#define BIT_MASK_CTLX_I2S_TRX_ACT 0x3
#define BIT_CTRL_CTLX_I2S_TRX_ACT(x) (((x) & BIT_MASK_CTLX_I2S_TRX_ACT) << BIT_SHIFT_CTLX_I2S_TRX_ACT)
#define BIT_GET_CTLX_I2S_TRX_ACT(x) (((x) >> BIT_SHIFT_CTLX_I2S_TRX_ACT) & BIT_MASK_CTLX_I2S_TRX_ACT)
#define BIT_SHIFT_CTLX_I2S_CH_NUM 3
#define BIT_MASK_CTLX_I2S_CH_NUM 0x3
#define BIT_CTRL_CTLX_I2S_CH_NUM(x) (((x) & BIT_MASK_CTLX_I2S_CH_NUM) << BIT_SHIFT_CTLX_I2S_CH_NUM)
#define BIT_GET_CTLX_I2S_CH_NUM(x) (((x) >> BIT_SHIFT_CTLX_I2S_CH_NUM) & BIT_MASK_CTLX_I2S_CH_NUM)
#define BIT_CTLX_I2S_WL BIT(6)
#define BIT_SHIFT_CTLX_I2S_WL 6
#define BIT_MASK_CTLX_I2S_WL 0x1
#define BIT_CTRL_CTLX_I2S_WL(x) (((x) & BIT_MASK_CTLX_I2S_WL) << BIT_SHIFT_CTLX_I2S_WL)
#define BIT_CTLX_I2S_LRSWAP BIT(10)
#define BIT_SHIFT_CTLX_I2S_LRSWAP 10
#define BIT_MASK_CTLX_I2S_LRSWAP 0x1
#define BIT_CTRL_CTLX_I2S_LRSWAP(x) (((x) & BIT_MASK_CTLX_I2S_LRSWAP) << BIT_SHIFT_CTLX_I2S_LRSWAP)
#define BIT_CTLX_I2S_SCK_INV BIT(11)
#define BIT_SHIFT_CTLX_I2S_SCK_INV 11
#define BIT_MASK_CTLX_I2S_SCK_INV 0x1
#define BIT_CTRL_CTLX_I2S_SCK_INV(x) (((x) & BIT_MASK_CTLX_I2S_SCK_INV) << BIT_SHIFT_CTLX_I2S_SCK_INV)
#define BIT_CTLX_I2S_ENDIAN_SWAP BIT(12)
#define BIT_SHIFT_CTLX_I2S_ENDIAN_SWAP 12
#define BIT_MASK_CTLX_I2S_ENDIAN_SWAP 0x1
#define BIT_CTRL_CTLX_I2S_ENDIAN_SWAP(x) (((x) & BIT_MASK_CTLX_I2S_ENDIAN_SWAP) << BIT_SHIFT_CTLX_I2S_ENDIAN_SWAP)
#define BIT_CTLX_I2S_SLAVE_MODE BIT(29)
#define BIT_SHIFT_CTLX_I2S_SLAVE_MODE 29
#define BIT_MASK_CTLX_I2S_SLAVE_MODE 0x1
#define BIT_CTRL_CTLX_I2S_SLAVE_MODE(x) (((x) & BIT_MASK_CTLX_I2S_SLAVE_MODE) << BIT_SHIFT_CTLX_I2S_SLAVE_MODE)
#define BIT_CTLX_I2S_CLK_SRC BIT(30)
#define BIT_SHIFT_CTLX_I2S_CLK_SRC 30
#define BIT_MASK_CTLX_I2S_CLK_SRC 0x1
#define BIT_CTRL_CTLX_I2S_CLK_SRC(x) (((x) & BIT_MASK_CTLX_I2S_CLK_SRC) << BIT_SHIFT_CTLX_I2S_CLK_SRC)
#define BIT_CTLX_I2S_SW_RSTN BIT(31)
#define BIT_SHIFT_CTLX_I2S_SW_RSTN 31
#define BIT_MASK_CTLX_I2S_SW_RSTN 0x1
#define BIT_CTRL_CTLX_I2S_SW_RSTN(x) (((x) & BIT_MASK_CTLX_I2S_SW_RSTN) << BIT_SHIFT_CTLX_I2S_SW_RSTN)
// REG_I2S_SETTING
#define BIT_SHIFT_SETTING_I2S_PAGE_SZ 0
#define BIT_MASK_SETTING_I2S_PAGE_SZ 0xFFF
#define BIT_CTRL_SETTING_I2S_PAGE_SZ(x) (((x) & BIT_MASK_SETTING_I2S_PAGE_SZ) << BIT_SHIFT_SETTING_I2S_PAGE_SZ)
#define BIT_GET_SETTING_I2S_PAGE_SZ(x) (((x) >> BIT_SHIFT_SETTING_I2S_PAGE_SZ) & BIT_MASK_SETTING_I2S_PAGE_SZ)
#define BIT_SHIFT_SETTING_I2S_PAGE_NUM 12
#define BIT_MASK_SETTING_I2S_PAGE_NUM 0x3
#define BIT_CTRL_SETTING_I2S_PAGE_NUM(x) (((x) & BIT_MASK_SETTING_I2S_PAGE_NUM) << BIT_SHIFT_SETTING_I2S_PAGE_NUM)
#define BIT_GET_SETTING_I2S_PAGE_NUM(x) (((x) >> BIT_SHIFT_SETTING_I2S_PAGE_NUM) & BIT_MASK_SETTING_I2S_PAGE_NUM)
#define BIT_SHIFT_SETTING_I2S_SAMPLE_RATE 14
#define BIT_MASK_SETTING_I2S_SAMPLE_RATE 0x7
#define BIT_CTRL_SETTING_I2S_SAMPLE_RATE(x) (((x) & BIT_MASK_SETTING_I2S_SAMPLE_RATE) << BIT_SHIFT_SETTING_I2S_SAMPLE_RATE)
#define BIT_GET_SETTING_I2S_SAMPLE_RATE(x) (((x) >> BIT_SHIFT_SETTING_I2S_SAMPLE_RATE) & BIT_MASK_SETTING_I2S_SAMPLE_RATE)
// i2s trx page own bit
#define BIT_PAGE_I2S_OWN_BIT BIT(31)
#define BIT_SHIFT_PAGE_I2S_OWN_BIT 31
#define BIT_MASK_PAGE_I2S_OWN_BIT 0x1
#define BIT_CTRL_PAGE_I2S_OWN_BIT(x) (((x) & BIT_MASK_PAGE_I2S_OWN_BIT) << BIT_SHIFT_PAGE_I2S_OWN_BIT)
//=============== Register Address Definition ====================
#define REG_I2S_PAGE_OWN_OFF 0x004
#define REG_I2S_CTL 0x000
#define REG_I2S_TX_PAGE_PTR 0x004
#define REG_I2S_RX_PAGE_PTR 0x008
#define REG_I2S_SETTING 0x00C
#define REG_I2S_TX_MASK_INT 0x010
#define REG_I2S_TX_STATUS_INT 0x014
#define REG_I2S_RX_MASK_INT 0x018
#define REG_I2S_RX_STATUS_INT 0x01c
#define REG_I2S_TX_PAGE0_OWN 0x020
#define REG_I2S_TX_PAGE1_OWN 0x024
#define REG_I2S_TX_PAGE2_OWN 0x028
#define REG_I2S_TX_PAGE3_OWN 0x02C
#define REG_I2S_RX_PAGE0_OWN 0x030
#define REG_I2S_RX_PAGE1_OWN 0x034
#define REG_I2S_RX_PAGE2_OWN 0x038
#define REG_I2S_RX_PAGE3_OWN 0x03C
/*I2S Essential Functions and Macros*/
VOID
HalI2SWrite32(
IN u8 I2SIdx,
IN u8 I2SReg,
IN u32 I2SVal
);
u32
HalI2SRead32(
IN u8 I2SIdx,
IN u8 I2SReg
);
/*
#define HAL_I2SX_READ32(I2sIndex, addr) \
HAL_READ32(I2S0_REG_BASE+ (I2sIndex*I2S1_REG_OFF), addr)
#define HAL_I2SX_WRITE32(I2sIndex, addr, value) \
HAL_WRITE32((I2S0_REG_BASE+ (I2sIndex*I2S1_REG_OFF)), addr, value)
*/
#define HAL_I2S_WRITE32(I2SIdx, addr, value) HalI2SWrite32(I2SIdx,addr,value)
#define HAL_I2S_READ32(I2SIdx, addr) HalI2SRead32(I2SIdx,addr)
/* I2S debug output*/
#define I2S_PREFIX "RTL8195A[i2s]: "
#define I2S_PREFIX_LVL " [i2s_DBG]: "
typedef enum _I2S_DBG_LVL_ {
HAL_I2S_LVL = 0x01,
SAL_I2S_LVL = 0x02,
VERI_I2S_LVL = 0x03,
}I2S_DBG_LVL,*PI2S_DBG_LVL;
#ifdef CONFIG_DEBUG_LOG
#ifdef CONFIG_DEBUG_LOG_I2S_HAL
#define DBG_8195A_I2S(...) do{ \
_DbgDump("\r"I2S_PREFIX __VA_ARGS__);\
}while(0)
#define I2SDBGLVL 0xFF
#define DBG_8195A_I2S_LVL(LVL,...) do{\
if (LVL&I2SDBGLVL){\
_DbgDump("\r"I2S_PREFIX_LVL __VA_ARGS__);\
}\
}while(0)
#else
#define DBG_I2S_LOG_PERD 100
#define DBG_8195A_I2S(...)
#define DBG_8195A_I2S_LVL(...)
#endif
#else
#define DBG_I2S_LOG_PERD 100
#define DBG_8195A_I2S(...)
#define DBG_8195A_I2S_LVL(...)
#endif
/*
#define REG_I2S_PAGE_OWN_OFF 0x004
#define REG_I2S_CTL 0x000
#define REG_I2S_TX_PAGE_PTR 0x004
#define REG_I2S_RX_PAGE_PTR 0x008
#define REG_I2S_SETTING 0x00C
#define REG_I2S_TX_MASK_INT 0x010
#define REG_I2S_TX_STATUS_INT 0x014
#define REG_I2S_RX_MASK_INT 0x018
#define REG_I2S_RX_STATUS_INT 0x01c
#define REG_I2S_TX_PAGE0_OWN 0x020
#define REG_I2S_TX_PAGE1_OWN 0x024
#define REG_I2S_TX_PAGE2_OWN 0x028
#define REG_I2S_TX_PAGE3_OWN 0x02C
#define REG_I2S_RX_PAGE0_OWN 0x030
#define REG_I2S_RX_PAGE1_OWN 0x034
#define REG_I2S_RX_PAGE2_OWN 0x038
#define REG_I2S_RX_PAGE3_OWN 0x03C
*/
/* template
#define BIT_SHIFT_CTLX_ 7
#define BIT_MASK_CTLX_ 0x1
#define BIT_CTLX_(x) (((x) & BIT_MASK_CTLX_) << BIT_SHIFT_CTLX_)
#define BIT_INV_CTLX_ (~(BIT_MASK_CTLX_ << BIT_SHIFT_CTLX_))
*//*
#define BIT_SHIFT_CTLX_IIS_EN 0
#define BIT_MASK_CTLX_IIS_EN 0x1
#define BIT_CTLX_IIS_EN(x) (((x) & BIT_MASK_CTLX_IIS_EN) << BIT_SHIFT_CTLX_IIS_EN)
#define BIT_INV_CTLX_IIS_EN (~(BIT_MASK_CTLX_IIS_EN << BIT_SHIFT_CTLX_IIS_EN))
#define BIT_SHIFT_CTLX_TRX 1
#define BIT_MASK_CTLX_TRX 0x3
#define BIT_CTLX_TRX(x) (((x) & BIT_MASK_CTLX_TRX) << BIT_SHIFT_CTLX_TRX)
#define BIT_INV_CTLX_TRX (~(BIT_MASK_CTLX_TRX << BIT_SHIFT_CTLX_TRX))
#define BIT_SHIFT_CTLX_CH_NUM 3
#define BIT_MASK_CTLX_CH_NUM 0x3
#define BIT_CTLX_CH_NUM(x) (((x) & BIT_MASK_CTLX_CH_NUM) << BIT_SHIFT_CTLX_CH_NUM)
#define BIT_INV_CTLX_CH_NUM (~(BIT_MASK_CTLX_CH_NUM << BIT_SHIFT_CTLX_CH_NUM))
#define BIT_SHIFT_CTLX_EDGE_SW 5
#define BIT_MASK_CTLX_EDGE_SW 0x1
#define BIT_CTLX_EDGE_SW(x) (((x) & BIT_MASK_CTLX_EDGE_SW) << BIT_SHIFT_CTLX_EDGE_SW)
#define BIT_INV_CTLX_EDGE_SW (~(BIT_MASK_CTLX_EDGE_SW << BIT_SHIFT_CTLX_EDGE_SW))
#define BIT_SHIFT_CTLX_WL 6
#define BIT_MASK_CTLX_WL 0x1
#define BIT_CTLX_WL(x) (((x) & BIT_MASK_CTLX_WL) << BIT_SHIFT_CTLX_WL)
#define BIT_INV_CTLX_WL (~(BIT_MASK_CTLX_WL << BIT_SHIFT_CTLX_WL))
#define BIT_SHIFT_CTLX_LOOP_BACK 7
#define BIT_MASK_CTLX_LOOP_BACK 0x1
#define BIT_CTLX_LOOP_BACK(x) (((x) & BIT_MASK_CTLX_LOOP_BACK) << BIT_SHIFT_CTLX_LOOP_BACK)
#define BIT_INV_CTLX_LOOP_BACK (~(BIT_MASK_CTLX_LOOP_BACK << BIT_SHIFT_CTLX_LOOP_BACK))
#define BIT_SHIFT_CTLX_FORMAT 8
#define BIT_MASK_CTLX_FORMAT 0x3
#define BIT_CTLX_FORMAT(x) (((x) & BIT_MASK_CTLX_FORMAT) << BIT_SHIFT_CTLX_FORMAT)
#define BIT_INV_CTLX_FORMAT (~(BIT_MASK_CTLX_FORMAT << BIT_SHIFT_CTLX_FORMAT))
#define BIT_SHIFT_CTLX_LRSWAP 10
#define BIT_MASK_CTLX_LRSWAP 0x1
#define BIT_CTLX_LRSWAP(x) (((x) & BIT_MASK_CTLX_LRSWAP) << BIT_SHIFT_CTLX_LRSWAP)
#define BIT_INV_CTLX_LRSWAP (~(BIT_MASK_CTLX_LRSWAP << BIT_SHIFT_CTLX_LRSWAP))
#define BIT_SHIFT_CTLX_SCK_INV 11
#define BIT_MASK_CTLX_SCK_INV 0x1
#define BIT_CTLX_SCK_INV(x) (((x) & BIT_MASK_CTLX_SCK_INV) << BIT_SHIFT_CTLX_SCK_INV)
#define BIT_INV_CTLX_SCK_INV (~(BIT_MASK_CTLX_SCK_INV << BIT_SHIFT_CTLX_SCK_INV))
#define BIT_SHIFT_CTLX_ENDIAN_SWAP 12
#define BIT_MASK_CTLX_ENDIAN_SWAP 0x1
#define BIT_CTLX_ENDIAN_SWAP(x) (((x) & BIT_MASK_CTLX_ENDIAN_SWAP) << BIT_SHIFT_CTLX_ENDIAN_SWAP)
#define BIT_INV_CTLX_ENDIAN_SWAP (~(BIT_MASK_CTLX_ENDIAN_SWAP << BIT_SHIFT_CTLX_ENDIAN_SWAP))
#define BIT_SHIFT_CTLX_DEBUG_SWITCH 15
#define BIT_MASK_CTLX_DEBUG_SWITCH 0x3
#define BIT_CTLX_DEBUG_SWITCH(x) (((x) & BIT_MASK_CTLX_DEBUG_SWITCH) << BIT_SHIFT_CTLX_DEBUG_SWITCH)
#define BIT_INV_CTLX_DEBUG_SWITCH (~(BIT_MASK_CTLX_DEBUG_SWITCH << BIT_SHIFT_CTLX_DEBUG_SWITCH))
#define BIT_SHIFT_CTLX_SLAVE_SEL 29
#define BIT_MASK_CTLX_SLAVE_SEL 0x1
#define BIT_CTLX_SLAVE_SEL(x) (((x) & BIT_MASK_CTLX_SLAVE_SEL) << BIT_SHIFT_CTLX_SLAVE_SEL)
#define BIT_INV_CTLX_SLAVE_SEL (~(BIT_MASK_CTLX_SLAVE_SEL << BIT_SHIFT_CTLX_SLAVE_SEL))
#define BIT_SHIFT_CTLX_CLK_SRC 30
#define BIT_MASK_CTLX_CLK_SRC 0x1
#define BIT_CTLX_CLK_SRC(x) (((x) & BIT_MASK_CTLX_CLK_SRC) << BIT_SHIFT_CTLX_CLK_SRC)
#define BIT_INV_CTLX_CLK_SRC (~(BIT_MASK_CTLX_CLK_SRC << BIT_SHIFT_CTLX_CLK_SRC))
#define BIT_SHIFT_CTLX_SW_RSTN 31
#define BIT_MASK_CTLX_SW_RSTN 0x1
#define BIT_CTLX_SW_RSTN(x) (((x) & BIT_MASK_CTLX_SW_RSTN) << BIT_SHIFT_CTLX_SW_RSTN)
#define BIT_INV_CTLX_SW_RSTN (~(BIT_MASK_CTLX_SW_RSTN << BIT_SHIFT_CTLX_SW_RSTN))
#define BIT_SHIFT_SETTING_PAGE_SZ 0
#define BIT_MASK_SETTING_PAGE_SZ 0xFFF
#define BIT_SETTING_PAGE_SZ(x) (((x) & BIT_MASK_SETTING_PAGE_SZ) << BIT_SHIFT_SETTING_PAGE_SZ)
#define BIT_INV_SETTING_PAGE_SZ (~(BIT_MASK_SETTING_PAGE_SZ << BIT_SHIFT_SETTING_PAGE_SZ))
#define BIT_SHIFT_SETTING_PAGE_NUM 12
#define BIT_MASK_SETTING_PAGE_NUM 0x3
#define BIT_SETTING_PAGE_NUM(x) (((x) & BIT_MASK_SETTING_PAGE_NUM) << BIT_SHIFT_SETTING_PAGE_NUM)
#define BIT_INV_SETTING_PAGE_NUM (~(BIT_MASK_SETTING_PAGE_NUM << BIT_SHIFT_SETTING_PAGE_NUM))
#define BIT_SHIFT_SETTING_SAMPLE_RATE 14
#define BIT_MASK_SETTING_SAMPLE_RATE 0x7
#define BIT_SETTING_SAMPLE_RATE(x) (((x) & BIT_MASK_SETTING_SAMPLE_RATE) << BIT_SHIFT_SETTING_SAMPLE_RATE)
#define BIT_INV_SETTING_SAMPLE_RATE (~(BIT_MASK_SETTING_SAMPLE_RATE << BIT_SHIFT_SETTING_SAMPLE_RATE))
*/
typedef enum _I2S_CTL_FORMAT {
FormatI2s = 0x00,
FormatLeftJustified = 0x01,
FormatRightJustified = 0x02
}I2S_CTL_FORMAT, *PI2S_CTL_FORMAT;
typedef enum _I2S_CTL_CHNUM {
ChannelStereo = 0x00,
Channel5p1 = 0x01,
ChannelMono = 0x02
}I2S_CTL_CHNUM, *PI2S_CTL_CHNUM;
typedef enum _I2S_CTL_TRX_ACT {
RxOnly = 0x00,
TxOnly = 0x01,
TXRX = 0x02
}I2S_CTL_TRX_ACT, *PI2S_CTL_TRX_ACT;
/*
typedef struct _I2S_CTL_REG_ {
I2S_CTL_FORMAT Format;
I2S_CTL_CHNUM ChNum;
I2S_CTL_TRX_ACT TrxAct;
u32 I2s_En :1; // Bit 0
u32 Rsvd1to4 :4; // Bit 1-4 is TrxAct, ChNum
u32 EdgeSw :1; // Bit 5 Edge switch
u32 WordLength :1; // Bit 6
u32 LoopBack :1; // Bit 7
u32 Rsvd8to9 :2; // Bit 8-9 is Format
u32 DacLrSwap :1; // Bit 10
u32 SckInv :1; // Bit 11
u32 EndianSwap :1; // Bit 12
u32 Rsvd13to14 :2; // Bit 11-14
u32 DebugSwitch :2; // Bit 15-16
u32 Rsvd17to28 :12; // Bit 17-28
u32 SlaveMode :1; // Bit 29
u32 SR44p1KHz :1; // Bit 30
u32 SwRstn :1; // Bit 31
} I2S_CTL_REG, *PI2S_CTL_REG;
*/
typedef enum _I2S_SETTING_PAGE_NUM {
I2s1Page = 0x00,
I2s2Page = 0x01,
I2s3Page = 0x02,
I2s4Page = 0x03
}I2S_SETTING_PAGE_NUM, *PI2S_SETTING_PAGE_NUM;
//sampling rate
typedef enum _I2S_SETTING_SR {
I2sSR8K = 0x00,
I2sSR16K = 0x01,
I2sSR24K = 0x02,
I2sSR32K = 0x03,
I2sSR48K = 0x05,
I2sSR44p1K = 0x15,
I2sSR96K = 0x06,
I2sSR88p2K = 0x16
}I2S_SETTING_SR, *PI2S_SETTING_SR;
/*
typedef struct _I2S_SETTING_REG_ {
I2S_SETTING_PAGE_NUM PageNum;
I2S_SETTING_SR SampleRate;
u32 PageSize:12; // Bit 0-11
}I2S_SETTING_REG, *PI2S_SETTING_REG;
typedef enum _I2S_TX_ISR {
I2sTxP0OK = 0x01,
I2sTxP1OK = 0x02,
I2sTxP2OK = 0x04,
I2sTxP3OK = 0x08,
I2sTxPageUn = 0x10,
I2sTxFifoEmpty = 0x20
}I2S_TX_ISR, *PI2S_TX_ISR;
typedef enum _I2S_RX_ISR {
I2sRxP0OK = 0x01,
I2sRxP1OK = 0x02,
I2sRxP2OK = 0x04,
I2sRxP3OK = 0x08,
I2sRxPageUn = 0x10,
I2sRxFifoFull = 0x20
}I2S_RX_ISR, *PI2S_RX_ISR;
*/
/* Hal I2S function prototype*/
RTK_STATUS
HalI2SInitRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SInitRtl8195a_Patch(
IN VOID *Data
);
RTK_STATUS
HalI2SDeInitRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2STxRtl8195a(
IN VOID *Data,
IN u8 *pBuff
);
RTK_STATUS
HalI2SRxRtl8195a(
IN VOID *Data,
OUT u8 *pBuff
);
RTK_STATUS
HalI2SEnableRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SIntrCtrlRtl8195a(
IN VOID *Data
);
u32
HalI2SReadRegRtl8195a(
IN VOID *Data,
IN u8 I2SReg
);
RTK_STATUS
HalI2SSetRateRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetWordLenRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetChNumRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetPageNumRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetPageSizeRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetDirectionRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SSetDMABufRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SClrIntrRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SClrAllIntrRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SDMACtrlRtl8195a(
IN VOID *Data
);
u8
HalI2SGetTxPageRtl8195a(
IN VOID *Data
);
u8
HalI2SGetRxPageRtl8195a(
IN VOID *Data
);
RTK_STATUS
HalI2SPageSendRtl8195a(
IN VOID *Data,
IN u8 PageIdx
);
#if 0
RTK_STATUS
HalI2SPageRecvRtl8195a(
IN VOID *Data,
IN u8 PageIdx
);
#else
RTK_STATUS
HalI2SPageRecvRtl8195a(
IN VOID *Data
);
#endif
RTK_STATUS
HalI2SClearAllOwnBitRtl8195a(
IN VOID *Data
);
// HAL functions Wrapper
static __inline VOID
HalI2SSetRate(
IN VOID *Data
)
{
HalI2SSetRateRtl8195a(Data);
}
static __inline VOID
HalI2SSetWordLen(
IN VOID *Data
)
{
HalI2SSetWordLenRtl8195a(Data);
}
static __inline VOID
HalI2SSetChNum(
IN VOID *Data
)
{
HalI2SSetChNumRtl8195a(Data);
}
static __inline VOID
HalI2SSetPageNum(
IN VOID *Data
)
{
HalI2SSetPageNumRtl8195a(Data);
}
static __inline VOID
HalI2SSetPageSize(
IN VOID *Data
)
{
HalI2SSetPageSizeRtl8195a(Data);
}
static __inline VOID
HalI2SSetDirection(
IN VOID *Data
)
{
HalI2SSetDirectionRtl8195a(Data);
}
static __inline VOID
HalI2SSetDMABuf(
IN VOID *Data
)
{
HalI2SSetDMABufRtl8195a(Data);
}
static __inline u8
HalI2SGetTxPage(
IN VOID *Data
)
{
return HalI2SGetTxPageRtl8195a(Data);
}
static __inline u8
HalI2SGetRxPage(
IN VOID *Data
)
{
return HalI2SGetRxPageRtl8195a(Data);
}
static __inline VOID
HalI2SPageSend(
IN VOID *Data,
IN u8 PageIdx
)
{
HalI2SPageSendRtl8195a(Data, PageIdx);
}
#if 0
static __inline VOID
HalI2SPageRecv(
IN VOID *Data,
IN u8 PageIdx
)
{
HalI2SPageRecvRtl8195a(Data, PageIdx);
}
#else
static __inline VOID
HalI2SPageRecv(
IN VOID *Data
)
{
HalI2SPageRecvRtl8195a(Data);
}
#endif
static __inline VOID
HalI2SClearAllOwnBit(
IN VOID *Data
)
{
HalI2SClearAllOwnBitRtl8195a(Data);
}
#endif /* _RTL8195A_I2S_H_ */

View file

@ -0,0 +1,155 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_NFC_H_
#define _RTL8195A_NFC_H_
#include "hal_api.h"
//#include "osdep_api.h"
#ifdef CONFIG_NFC_VERIFY
#include "../test/nfc/rtl8195a_nfc_test.h"
#endif
#if CONFIG_NFC_NORMAL
//===================== Register Bit Field Definition =====================
// TODO:
//===================== Register Address Definition =====================
//TODO:
//#include "osdep_api.h"
#define N2A_Q_LENGTH 10
#define N2ARLENGTH 4
//#define NFCTAGLENGTH 36 // maximum 36*4=144 bytes
#define NFCTAG_BASE 0x7F000
#define NFCTAG_PAGESIZE 256
#define NFCTAG_MAXPAGEIDX 16//(4*(1024/NFCTAG_PAGESIZE))
#define A2NWCLENGTH 4
#define FLASHAPPLENGTH 31
#define FLASHAPP_BASE 0x7E000
#define FLASH_PAGESIZE 128
#define FLASH_MAXPAGEIDX 32//(4*(1024/FLASH_PAGESIZE))
typedef struct _A2N_CATCH_W_ {
//u8 Vaild;
u8 A2NCatchRPage;
u32 A2NCatchWData[A2NWCLENGTH];
}A2N_CATCH_W_QUEUE, *PA2N_CATCH_W_QUEUE;
typedef struct _A2N_MAILBOX_Q_ {
u8 Length;
u8 Response;
u32 Content[A2NWCLENGTH+1];
}A2N_MAILBOX_Q,*PA2N_MAILBOX_Q;
typedef struct _N2A_CATCH_R_ {
u8 Vaild;
u8 N2ACatchRPage;
u32 N2ACatchRData[N2ARLENGTH];
}N2A_CATCH_R_QUEUE, *PN2A_CATCH_R_QUEUE;
typedef struct _N2A_R_ {
u8 Vaild;
u8 N2ARPage;
}N2A_R_QUEUE, *PN2A_R_QUEUE;
typedef struct _N2A_W_ {
u8 Vaild;
u8 N2AWPage;
u32 N2AWData;
}N2A_W_QUEUE, *PN2A_W_QUEUE;
typedef struct _NFC_ADAPTER_ {
u8 Function;
u32 NFCIsr;
u8 N2ABoxOpen;
u8 A2NSeq;
//u8 NFCTagFlashWIdx;
//u8 NFCTagFlashRIdx;
// u32 NFCTag[NFCTAGLENGTH];
#if !TASK_SCHEDULER_DISABLED
void * VeriSema;
#else
u32 VeriSema;
#endif
#ifdef PLATFORM_FREERTOS
void * NFCTask;
#else
u32 NFCTask;
#endif
#ifdef CONFIG_NFC_VERIFY
//N2A Write Tag
u8 N2AWQRIdx;
u8 N2AWQWIdx;
N2A_W_QUEUE N2AWQ[N2A_Q_LENGTH];
//N2A Read Tag
u8 N2ARQRIdx;
u8 N2ARQWIdx;
N2A_R_QUEUE N2ARQ[N2A_Q_LENGTH];
//N2A Read Catch
u8 N2ARCRIdx;
u8 N2ARCWIdx;
N2A_CATCH_R_QUEUE N2ACatchR[N2A_Q_LENGTH];
#endif
//A2N Write Catch
//u8 A2NWCRIdx;
//u8 A2NWCWIdx;
//A2N_CATCH_W_QUEUE A2NCatchW[N2A_Q_LENGTH];
//A2N Write mailbox queue
u8 A2NWMailBox;
u8 A2NWQRIdx;
u8 A2NWQWIdx;
A2N_MAILBOX_Q A2NMAILQ[N2A_Q_LENGTH];
u8 TaskStop;
void *nfc_obj;
}NFC_ADAPTER, *PNFC_ADAPTER;
typedef enum _N2A_CMD_ {
TAG_READ = 0,
TAG_WRITE = 1,
CATCH_READ_DATA = 2,
NFC_R_PRESENT = 4,
N2A_MAILBOX_STATE = 5,
EXT_CLK_REQ = 6,
MAX_N2ACMD
} N2A_CMD, *PN2A_CMD;
typedef enum _A2N_CMD_ {
TAG_READ_DATA = 0,
CATCH_READ = 2,
CATCH_WRITE = 3,
A2N_MAILBOX_STATE = 4,
CONFIRM_N2A_BOX_STATE = 5,
EXT_CLK_RSP = 6,
MAX_A2NCMD
} A2N_CMD, *PA2N_CMD;
// Callback event defination
typedef enum _NFC_HAL_EVENT_ {
NFC_HAL_READER_PRESENT = (1<<0),
NFC_HAL_READ = (1<<1),
NFC_HAL_WRITE = (1<<2),
NFC_HAL_ERR = (1<<3),
NFC_HAL_CACHE_RD = (1<<4)
}NFC_CB_EVENT, *PNFC_CB_EVENT;
VOID A2NWriteCatch(IN VOID *pNFCAdapte, IN u8 N2AWPage,
IN u8 Length, IN u32 *WData);
VOID A2NReadCatch(IN VOID *pNFCAdapte, IN u8 A2NRPage);
VOID HalNFCDmemInit(IN u32 *pTagData, IN u32 TagLen);
VOID HalNFCInit(PNFC_ADAPTER pNFCAdp);
VOID HalNFCDeinit(PNFC_ADAPTER pNFCAdp);
VOID HalNFCFwDownload(VOID);
u32 HalNFCDbgRead32(IN u32 Addr);
VOID HalNFCDbgWrite32(IN u32 Addr, IN u32 Data);
#endif //CONFIG_NFC_NORMAL
#endif // #ifndef _RTL8195A_NFC_H_

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,37 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_PWM_H_
#define _RTL8195A_PWM_H_
extern void
HAL_Pwm_SetDuty_8195a(
HAL_PWM_ADAPTER *pPwmAdapt,
u32 period,
u32 pulse_width
);
extern HAL_Status
HAL_Pwm_Init_8195a(
HAL_PWM_ADAPTER *pPwmAdapt
);
extern void
HAL_Pwm_Enable_8195a(
HAL_PWM_ADAPTER *pPwmAdapt
);
extern void
HAL_Pwm_Disable_8195a(
HAL_PWM_ADAPTER *pPwmAdapt
);
#endif

View file

@ -0,0 +1,498 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_SSI_H_
#define _RTL8195A_SSI_H_
#define SSI_DUMMY_DATA 0x00 // for master mode, we need to push a Dummy data to TX FIFO for read
#define SSI_CLK_SPI1 (PLATFORM_CLOCK/2)
#define SSI_CLK_SPI0_2 (PLATFORM_CLOCK/4)
/* Parameters of DW_apb_ssi for RTL8195A */
#define SSI_TX_FIFO_DEPTH 64
#define TX_ABW 6 // 1-8, log2(SSI_TX_FIFO_DEPTH)
#define SSI_RX_FIFO_DEPTH 64
#define RX_ABW 6 // 1-8, log2(SSI_RX_FIFO_DEPTH)
#define SSI0_REG_BASE 0x40042000
#define SSI1_REG_BASE 0x40042400
#define SSI2_REG_BASE 0x40042800
/* Memory Map of DW_apb_ssi */
#define REG_DW_SSI_CTRLR0 0x00 // 16 bits
#define REG_DW_SSI_CTRLR1 0x04 // 16 bits
#define REG_DW_SSI_SSIENR 0x08 // 1 bit
#define REG_DW_SSI_MWCR 0x0C // 3 bits
#define REG_DW_SSI_SER 0x10 //
#define REG_DW_SSI_BAUDR 0x14 // 16 bits
#define REG_DW_SSI_TXFTLR 0x18 // TX_ABW
#define REG_DW_SSI_RXFTLR 0x1C // RX_ABW
#define REG_DW_SSI_TXFLR 0x20 //
#define REG_DW_SSI_RXFLR 0x24 //
#define REG_DW_SSI_SR 0x28 // 7 bits
#define REG_DW_SSI_IMR 0x2C //
#define REG_DW_SSI_ISR 0x30 // 6 bits
#define REG_DW_SSI_RISR 0x34 // 6 bits
#define REG_DW_SSI_TXOICR 0x38 // 1 bits
#define REG_DW_SSI_RXOICR 0x3C // 1 bits
#define REG_DW_SSI_RXUICR 0x40 // 1 bits
#define REG_DW_SSI_MSTICR 0x44 // 1 bits
#define REG_DW_SSI_ICR 0x48 // 1 bits
#define REG_DW_SSI_DMACR 0x4C // 2 bits
#define REG_DW_SSI_DMATDLR 0x50 // TX_ABW
#define REG_DW_SSI_DMARDLR 0x54 // RX_ABW
#define REG_DW_SSI_IDR 0x58 // 32 bits
#define REG_DW_SSI_COMP_VERSION 0x5C // 32 bits
#define REG_DW_SSI_DR 0x60 // 16 bits 0x60-0xEC
#define REG_DW_SSI_RX_SAMPLE_DLY 0xF0 // 8 bits
#define REG_DW_SSI_RSVD_0 0xF4 // 32 bits
#define REG_DW_SSI_RSVD_1 0xF8 // 32 bits
#define REG_DW_SSI_RSVD_2 0xFC // 32 bits
// CTRLR0 0x00 // 16 bits, 6.2.1
// DFS Reset Value: 0x7
#define BIT_SHIFT_CTRLR0_DFS 0
#define BIT_MASK_CTRLR0_DFS 0xF
#define BIT_CTRLR0_DFS(x)(((x) & BIT_MASK_CTRLR0_DFS) << BIT_SHIFT_CTRLR0_DFS)
#define BIT_INVC_CTRLR0_DFS (~(BIT_MASK_CTRLR0_DFS << BIT_SHIFT_CTRLR0_DFS))
#define BIT_SHIFT_CTRLR0_FRF 4
#define BIT_MASK_CTRLR0_FRF 0x3
#define BIT_CTRLR0_FRF(x)(((x) & BIT_MASK_CTRLR0_FRF) << BIT_SHIFT_CTRLR0_FRF)
#define BIT_INVC_CTRLR0_FRF (~(BIT_MASK_CTRLR0_FRF << BIT_SHIFT_CTRLR0_FRF))
#define BIT_SHIFT_CTRLR0_SCPH 6
#define BIT_MASK_CTRLR0_SCPH 0x1
#define BIT_CTRLR0_SCPH(x)(((x) & BIT_MASK_CTRLR0_SCPH) << BIT_SHIFT_CTRLR0_SCPH)
#define BIT_INVC_CTRLR0_SCPH (~(BIT_MASK_CTRLR0_SCPH << BIT_SHIFT_CTRLR0_SCPH))
#define BIT_SHIFT_CTRLR0_SCPOL 7
#define BIT_MASK_CTRLR0_SCPOL 0x1
#define BIT_CTRLR0_SCPOL(x)(((x) & BIT_MASK_CTRLR0_SCPOL) << BIT_SHIFT_CTRLR0_SCPOL)
#define BIT_INVC_CTRLR0_SCPOL (~(BIT_MASK_CTRLR0_SCPOL << BIT_SHIFT_CTRLR0_SCPOL))
#define BIT_SHIFT_CTRLR0_TMOD 8
#define BIT_MASK_CTRLR0_TMOD 0x3
#define BIT_CTRLR0_TMOD(x)(((x) & BIT_MASK_CTRLR0_TMOD) << BIT_SHIFT_CTRLR0_TMOD)
#define BIT_INVC_CTRLR0_TMOD (~(BIT_MASK_CTRLR0_TMOD << BIT_SHIFT_CTRLR0_TMOD))
#define BIT_SHIFT_CTRLR0_SLV_OE 10
#define BIT_MASK_CTRLR0_SLV_OE 0x1
#define BIT_CTRLR0_SLV_OE(x)(((x) & BIT_MASK_CTRLR0_SLV_OE) << BIT_SHIFT_CTRLR0_SLV_OE)
#define BIT_INVC_CTRLR0_SLV_OE (~(BIT_MASK_CTRLR0_SLV_OE << BIT_SHIFT_CTRLR0_SLV_OE))
#define BIT_SHIFT_CTRLR0_SRL 11
#define BIT_MASK_CTRLR0_SRL 0x1
#define BIT_CTRLR0_SRL(x)(((x) & BIT_MASK_CTRLR0_SRL) << BIT_SHIFT_CTRLR0_SRL)
#define BIT_INVC_CTRLR0_SRL (~(BIT_MASK_CTRLR0_SRL << BIT_SHIFT_CTRLR0_SRL))
#define BIT_SHIFT_CTRLR0_CFS 12
#define BIT_MASK_CTRLR0_CFS 0xF
#define BIT_CTRLR0_CFS(x)(((x) & BIT_MASK_CTRLR0_CFS) << BIT_SHIFT_CTRLR0_CFS)
#define BIT_INVC_CTRLR0_CFS (~(BIT_MASK_CTRLR0_CFS << BIT_SHIFT_CTRLR0_CFS))
// CTRLR1 0x04 // 16 bits
#define BIT_SHIFT_CTRLR1_NDF 0
#define BIT_MASK_CTRLR1_NDF 0xFFFF
#define BIT_CTRLR1_NDF(x)(((x) & BIT_MASK_CTRLR1_NDF) << BIT_SHIFT_CTRLR1_NDF)
#define BIT_INVC_CTRLR1_NDF (~(BIT_MASK_CTRLR1_NDF << BIT_SHIFT_CTRLR1_NDF))
// SSIENR 0x08 // 1 bit
#define BIT_SHIFT_SSIENR_SSI_EN 0
#define BIT_MASK_SSIENR_SSI_EN 0x1
#define BIT_SSIENR_SSI_EN(x)(((x) & BIT_MASK_SSIENR_SSI_EN) << BIT_SHIFT_SSIENR_SSI_EN)
#define BIT_INVC_SSIENR_SSI_EN (~(BIT_MASK_SSIENR_SSI_EN << BIT_SHIFT_SSIENR_SSI_EN))
// MWCR 0x0c // 3 bits
#define BIT_SHIFT_MWCR_MWMOD 0
#define BIT_MASK_MWCR_MWMOD 0x1
#define BIT_MWCR_MWMOD(x)(((x) & BIT_MASK_MWCR_MWMOD) << BIT_SHIFT_MWCR_MWMOD)
#define BIT_INVC_MWCR_MWMOD (~(BIT_MASK_MWCR_MWMOD << BIT_SHIFT_MWCR_MWMOD))
#define BIT_SHIFT_MWCR_MDD 1
#define BIT_MASK_MWCR_MDD 0x1
#define BIT_MWCR_MDD(x)(((x) & BIT_MASK_MWCR_MDD) << BIT_SHIFT_MWCR_MDD)
#define BIT_INVC_MWCR_MDD (~(BIT_MASK_MWCR_MDD << BIT_SHIFT_MWCR_MDD))
#define BIT_SHIFT_MWCR_MHS 2
#define BIT_MASK_MWCR_MHS 0x1
#define BIT_MWCR_MHS(x)(((x) & BIT_MASK_MWCR_MHS) << BIT_SHIFT_MWCR_MHS)
#define BIT_INVC_MWCR_MHS (~(BIT_MASK_MWCR_MHS << BIT_SHIFT_MWCR_MHS))
// SER 0x10 // Variable Length
#define BIT_SHIFT_SER_SER 0
#define BIT_MASK_SER_SER 0xFF
#define BIT_SER_SER(x)(((x) & BIT_MASK_SER_SER) << BIT_SHIFT_SER_SER)
#define BIT_INVC_SER_SER (~(BIT_MASK_SER_SER << BIT_SHIFT_SER_SER))
// BAUDR 0x14 // 16 bits
#define BIT_SHIFT_BAUDR_SCKDV 0
#define BIT_MASK_BAUDR_SCKDV 0xFFFF
#define BIT_BAUDR_SCKDV(x)(((x) & BIT_MASK_BAUDR_SCKDV) << BIT_SHIFT_BAUDR_SCKDV)
#define BIT_INVC_BAUDR_SCKDV (~(BIT_MASK_BAUDR_SCKDV << BIT_SHIFT_BAUDR_SCKDV))
// TXFLTR 0x18 // Variable Length
#define BIT_SHIFT_TXFTLR_TFT 0
#define BIT_MASK_TXFTLR_TFT 0x3F // (TX_ABW-1):0
#define BIT_TXFTLR_TFT(x)(((x) & BIT_MASK_TXFTLR_TFT) << BIT_SHIFT_TXFTLR_TFT)
#define BIT_INVC_TXFTLR_TFT (~(BIT_MASK_TXFTLR_TFT << BIT_SHIFT_TXFTLR_TFT))
// RXFLTR 0x1c // Variable Length
#define BIT_SHIFT_RXFTLR_RFT 0
#define BIT_MASK_RXFTLR_RFT 0x3F // (RX_ABW-1):0
#define BIT_RXFTLR_RFT(x)(((x) & BIT_MASK_RXFTLR_RFT) << BIT_SHIFT_RXFTLR_RFT)
#define BIT_INVC_RXFTLR_RFT (~(BIT_MASK_RXFTLR_RFT << BIT_SHIFT_RXFTLR_RFT))
// TXFLR 0x20 // see [READ ONLY]
#define BIT_MASK_TXFLR_TXTFL 0x7F // (TX_ABW):0
// RXFLR 0x24 // see [READ ONLY]
#define BIT_MASK_RXFLR_RXTFL 0x7F // (RX_ABW):0
// SR 0x28 // 7 bits [READ ONLY]
#define BIT_SR_BUSY BIT0
#define BIT_SR_TFNF BIT1
#define BIT_SR_TFE BIT2
#define BIT_SR_RFNE BIT3
#define BIT_SR_RFF BIT4
#define BIT_SR_TXE BIT5
#define BIT_SR_DCOL BIT6
// IMR 0x2c // see
#define BIT_SHIFT_IMR_TXEIM 0
#define BIT_MASK_IMR_TXEIM 0x1
// #define BIT_IMR_TXEIM(x)(((x) & BIT_MASK_IMR_TXEIM) << BIT_SHIFT_IMR_TXEIM)
#define BIT_INVC_IMR_TXEIM (~(BIT_MASK_IMR_TXEIM << BIT_SHIFT_IMR_TXEIM))
#define BIT_SHIFT_IMR_TXOIM 1
#define BIT_MASK_IMR_TXOIM 0x1
// #define BIT_IMR_TXOIM(x)(((x) & BIT_MASK_IMR_TXOIM) << BIT_SHIFT_IMR_TXOIM)
#define BIT_INVC_IMR_TXOIM (~(BIT_MASK_IMR_TXOIM << BIT_SHIFT_IMR_TXOIM))
#define BIT_SHIFT_IMR_RXUIM 2
#define BIT_MASK_IMR_RXUIM 0x1
// #define BIT_IMR_RXUIM(x)(((x) & BIT_MASK_IMR_RXUIM) << BIT_SHIFT_IMR_RXUIM)
#define BIT_INVC_IMR_RXUIM (~(BIT_MASK_IMR_RXUIM << BIT_SHIFT_IMR_RXUIM))
#define BIT_SHIFT_IMR_RXOIM 3
#define BIT_MASK_IMR_RXOIM 0x1
// #define BIT_IMR_RXOIM(x)(((x) & BIT_MASK_IMR_RXOIM) << BIT_SHIFT_IMR_RXOIM)
#define BIT_INVC_IMR_RXOIM (~(BIT_MASK_IMR_RXOIM << BIT_SHIFT_IMR_RXOIM))
#define BIT_SHIFT_IMR_RXFIM 4
#define BIT_MASK_IMR_RXFIM 0x1
// #define BIT_IMR_RXFIM(x)(((x) & BIT_MASK_IMR_RXFIM) << BIT_SHIFT_IMR_RXFIM)
#define BIT_INVC_IMR_RXFIM (~(BIT_MASK_IMR_RXFIM << BIT_SHIFT_IMR_RXFIM))
#define BIT_SHIFT_IMR_MSTIM 5
#define BIT_MASK_IMR_MSTIM 0x1
// #define BIT_IMR_MSTIM(x)(((x) & BIT_MASK_IMR_MSTIM) << BIT_SHIFT_IMR_MSTIM)
#define BIT_INVC_IMR_MSTIM (~(BIT_MASK_IMR_MSTIM << BIT_SHIFT_IMR_MSTIM))
#define BIT_IMR_TXEIM BIT0
#define BIT_IMR_TXOIM BIT1
#define BIT_IMR_RXUIM BIT2
#define BIT_IMR_RXOIM BIT3
#define BIT_IMR_RXFIM BIT4
#define BIT_IMR_MSTIM BIT5
// ISR 0x30 // 6 bits [READ ONLY]
#define BIT_ISR_TXEIS BIT0
#define BIT_ISR_TXOIS BIT1
#define BIT_ISR_RXUIS BIT2
#define BIT_ISR_RXOIS BIT3
#define BIT_ISR_RXFIS BIT4
#define BIT_ISR_MSTIS BIT5
// RISR 0x34 // 6 bits [READ ONLY]
#define BIT_RISR_TXEIR BIT0
#define BIT_RISR_TXOIR BIT1
#define BIT_RISR_RXUIR BIT2
#define BIT_RISR_RXOIR BIT3
#define BIT_RISR_RXFIR BIT4
#define BIT_RISR_MSTIR BIT5
// TXOICR 0x38 // 1 bits [READ ONLY]
// RXOICR 0x3c // 1 bits [READ ONLY]
// RXUICR 0x40 // 1 bits [READ ONLY]
// MSTICR 0x44 // 1 bits [READ ONLY]
// ICR 0x48 // 1 bits [READ ONLY]
// DMACR 0x4c // 2 bits
#define BIT_SHIFT_DMACR_RDMAE 0
#define BIT_MASK_DMACR_RDMAE 0x1
#define BIT_DMACR_RDMAE(x)(((x) & BIT_MASK_DMACR_RDMAE) << BIT_SHIFT_DMACR_RDMAE)
#define BIT_INVC_DMACR_RDMAE (~(BIT_MASK_DMACR_RDMAE << BIT_SHIFT_DMACR_RDMAE))
#define BIT_SHIFT_DMACR_TDMAE 1
#define BIT_MASK_DMACR_TDMAE 0x1
#define BIT_DMACR_TDMAE(x)(((x) & BIT_MASK_DMACR_TDMAE) << BIT_SHIFT_DMACR_TDMAE)
#define BIT_INVC_DMACR_TDMAE (~(BIT_MASK_DMACR_TDMAE << BIT_SHIFT_DMACR_TDMAE))
// DMATDLR 0x50
#define BIT_SHIFT_DMATDLR_DMATDL 0
#define BIT_MASK_DMATDLR_DMATDL 0x3F // (TX_ABW-1):0
#define BIT_DMATDLR_DMATDL(x)(((x) & BIT_MASK_DMATDLR_DMATDL) << BIT_SHIFT_DMATDLR_DMATDL)
#define BIT_INVC_DMATDLR_DMATDL (~(BIT_MASK_DMATDLR_DMATDL << BIT_SHIFT_DMATDLR_DMATDL))
// DMARDLR 0x54
#define BIT_SHIFT_DMARDLR_DMARDL 0
#define BIT_MASK_DMARDLR_DMARDL 0x3F // (RX_ABW-1):0
#define BIT_DMARDLR_DMARDL(x)(((x) & BIT_MASK_DMARDLR_DMARDL) << BIT_SHIFT_DMARDLR_DMARDL)
#define BIT_INVC_DMARDLR_DMARDL (~(BIT_MASK_DMARDLR_DMARDL << BIT_SHIFT_DMARDLR_DMARDL))
// IDR 0x58 // 32 bits [READ ONLY]
// COMP_VERSION 0x5c // 32 bits [READ ONLY]
// DR 0x60 // 16 bits 0x60-0xEC
#define BIT_SHIFT_DR_DR 0
#define BIT_MASK_DR_DR 0xFFFF
#define BIT_DR_DR(x)(((x) & BIT_MASK_DR_DR) << BIT_SHIFT_DR_DR)
#define BIT_INVC_DR_DR (~(BIT_MASK_DR_DR << BIT_SHIFT_DR_DR))
// RX_SAMPLE_DLY 0xF0 // 8 bits
#define BIT_SHIFT_RX_SAMPLE_DLY_RSD 0
#define BIT_MASK_RX_SAMPLE_DLY_RSD 0xFFFF
#define BIT_RX_SAMPLE_DLY_RSD(x)(((x) & BIT_MASK_RX_SAMPLE_DLY_RSD) << BIT_SHIFT_RX_SAMPLE_DLY_RSD)
#define BIT_INVC_RX_SAMPLE_DLY_RSD (~(BIT_MASK_RX_SAMPLE_DLY_RSD << BIT_SHIFT_RX_SAMPLE_DLY_RSD))
// RSVD_0 0xF4 // 32 bits
// RSVD_1 0xF8 // 32 bits
// RSVD_2 0xFC // 32 bits
// SSI0 Pinmux
#define BIT_SHIFT_SSI0_PIN_EN 0
#define BIT_MASK_SSI0_PIN_EN 0x1
#define BIT_SSI0_PIN_EN(x)(((x) & BIT_MASK_SSI0_PIN_EN) << BIT_SHIFT_SSI0_PIN_EN)
#define BIT_INVC_SSI0_PIN_EN (~(BIT_MASK_SSI0_PIN_EN << BIT_SHIFT_SSI0_PIN_EN))
#define BIT_SHIFT_SSI0_PIN_SEL 1
#define BIT_MASK_SSI0_PIN_SEL 0x7
#define BIT_SSI0_PIN_SEL(x)(((x) & BIT_MASK_SSI0_PIN_SEL) << BIT_SHIFT_SSI0_PIN_SEL)
#define BIT_INVC_SSI0_PIN_SEL (~(BIT_MASK_SSI0_PIN_SEL << BIT_SHIFT_SSI0_PIN_SEL))
// SSI1 Pinmux
#define BIT_SHIFT_SSI1_PIN_EN 4
#define BIT_MASK_SSI1_PIN_EN 0x1
#define BIT_SSI1_PIN_EN(x)(((x) & BIT_MASK_SSI1_PIN_EN) << BIT_SHIFT_SSI1_PIN_EN)
#define BIT_INVC_SSI1_PIN_EN (~(BIT_MASK_SSI1_PIN_EN << BIT_SHIFT_SSI1_PIN_EN))
#define BIT_SHIFT_SSI1_PIN_SEL 5
#define BIT_MASK_SSI1_PIN_SEL 0x7
#define BIT_SSI1_PIN_SEL(x)(((x) & BIT_MASK_SSI1_PIN_SEL) << BIT_SHIFT_SSI1_PIN_SEL)
#define BIT_INVC_SSI1_PIN_SEL (~(BIT_MASK_SSI1_PIN_SEL << BIT_SHIFT_SSI1_PIN_SEL))
// SSI2 Pinmux
#define BIT_SHIFT_SSI2_PIN_EN 8
#define BIT_MASK_SSI2_PIN_EN 0x1
#define BIT_SSI2_PIN_EN(x)(((x) & BIT_MASK_SSI2_PIN_EN) << BIT_SHIFT_SSI2_PIN_EN)
#define BIT_INVC_SSI2_PIN_EN (~(BIT_MASK_SSI2_PIN_EN << BIT_SHIFT_SSI2_PIN_EN))
#define BIT_SHIFT_SSI2_PIN_SEL 9
#define BIT_MASK_SSI2_PIN_SEL 0x7
#define BIT_SSI2_PIN_SEL(x)(((x) & BIT_MASK_SSI2_PIN_SEL) << BIT_SHIFT_SSI2_PIN_SEL)
#define BIT_INVC_SSI2_PIN_SEL (~(BIT_MASK_SSI2_PIN_SEL << BIT_SHIFT_SSI2_PIN_SEL))
// SSI0 Multiple Chip Selection (Pinmux Select is controlled by BIT_SSI0_PIN_SEL)
#define BIT_SHIFT_SSI0_MULTI_CS_EN 28
#define BIT_MASK_SSI0_MULTI_CS_EN 0x1
#define BIT_SSI0_MULTI_CS_EN(x)(((x) & BIT_MASK_SSI0_MULTI_CS_EN) << BIT_SHIFT_SSI0_MULTI_CS_EN)
#define BIT_INVC_SSI0_MULTI_CS_EN (~(BIT_MASK_SSI0_MULTI_CS_EN << BIT_SHIFT_SSI0_MULTI_CS_EN))
#define HAL_SSI_READ32(SsiIndex, addr) \
HAL_READ32(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr)
#define HAL_SSI_WRITE32(SsiIndex, addr, value) \
HAL_WRITE32(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr, value)
#define HAL_SSI_READ16(SsiIndex, addr) \
HAL_READ16(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr)
#define HAL_SSI_WRITE16(SsiIndex, addr, value) \
HAL_WRITE16(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr, value)
#define HAL_SSI_READ8(SsiIndex, addr) \
HAL_READ8(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr)
#define HAL_SSI_WRITE8(SsiIndex, addr, value) \
HAL_WRITE8(SPI0_REG_BASE+ (SsiIndex*SSI_REG_OFF), addr, value)
// SSI Pinmux Select
typedef enum _SSI0_PINMUX_SELECT_ {
SSI0_MUX_TO_GPIOE = S0,
SSI0_MUX_TO_GPIOC = S1
}SSI0_PINMUX_SELECT, *PSSI0_PINMUX_SELECT;
typedef enum _SSI1_PINMUX_SELECT_ {
SSI1_MUX_TO_GPIOA = S0,
SSI1_MUX_TO_GPIOB = S1,
SSI1_MUX_TO_GPIOD = S2
}SSI1_PINMUX_SELECT, *PSSI1_PINMUX_SELECT;
typedef enum _SSI2_PINMUX_SELECT_ {
SSI2_MUX_TO_GPIOG = S0,
SSI2_MUX_TO_GPIOE = S1,
SSI2_MUX_TO_GPIOD = S2
}SSI2_PINMUX_SELECT, *PSSI2_PINMUX_SELECT;
typedef enum _SSI0_MULTI_CS_PINMUX_SELECT_ {
SSI0_CS_MUX_TO_GPIOE = S0,
SSI0_CS_MUX_TO_GPIOC = S1
}SSI0_MULTI_CS_PINMUX_SELECT, *PSSI0_MULTI_CS_PINMUX_SELECT;
typedef enum _SSI_CTRLR0_TMOD_ {
TMOD_TR = 0,
TMOD_TO = 1,
TMOD_RO = 2,
TMOD_EEPROM_R = 3
}SSI_CTRLR0_TMOD, *PSSI_CTRLR0_TMOD;
typedef enum _SSI_CTRLR0_SCPOL_ {
SCPOL_INACTIVE_IS_LOW = 0,
SCPOL_INACTIVE_IS_HIGH = 1
}SSI_CTRLR0_SCPOL, *PSSI_CTRLR0_SCPOL;
typedef enum _SSI_CTRLR0_SCPH_ {
SCPH_TOGGLES_IN_MIDDLE = 0,
SCPH_TOGGLES_AT_START = 1
}SSI_CTRLR0_SCPH, *PSSI_CTRLR0_SCPH;
typedef enum _SSI_CTRLR0_DFS_ {
DFS_4_BITS = 3,
DFS_5_BITS = 4,
DFS_6_BITS = 5,
DFS_7_BITS = 6,
DFS_8_BITS = 7,
DFS_9_BITS = 8,
DFS_10_BITS = 9,
DFS_11_BITS = 10,
DFS_12_BITS = 11,
DFS_13_BITS = 12,
DFS_14_BITS = 13,
DFS_15_BITS = 14,
DFS_16_BITS = 15,
}SSI_CTRLR0_DFS, *PSSI_CTRLR0_DFS;
typedef enum _SSI_CTRLR0_CFS_ {
CFS_1_BIT = 0,
CFS_2_BITS = 1,
CFS_3_BITS = 2,
CFS_4_BITS = 3,
CFS_5_BITS = 4,
CFS_6_BITS = 5,
CFS_7_BITS = 6,
CFS_8_BITS = 7,
CFS_9_BITS = 8,
CFS_10_BITS = 9,
CFS_11_BITS = 10,
CFS_12_BITS = 11,
CFS_13_BITS = 12,
CFS_14_BITS = 13,
CFS_15_BITS = 14,
CFS_16_BITS = 15
}SSI_CTRLR0_CFS, *PSSI_CTRLR0_CFS;
typedef enum _SSI_CTRLR0_SLV_OE_ {
SLV_TXD_ENABLE = 0,
SLV_TXD_DISABLE = 1
}SSI_CTRLR0_SLV_OE, *PSSI_CTRLR0_SLV_OE;
typedef enum _SSI_ROLE_SELECT_ {
SSI_SLAVE = 0,
SSI_MASTER = 1
}SSI_ROLE_SELECT, *PSSI_ROLE_SELECT;
typedef enum _SSI_FRAME_FORMAT_ {
FRF_MOTOROLA_SPI = 0,
FRF_TI_SSP = 1,
FRF_NS_MICROWIRE = 2,
FRF_RSVD = 3
}SSI_FRAME_FORMAT, *PSSI_FRAME_FORMAT;
typedef enum _SSI_DMACR_ENABLE_ {
SSI_NODMA = 0,
SSI_RXDMA_ENABLE = 1,
SSI_TXDMA_ENABLE = 2,
SSI_TRDMA_ENABLE = 3
}SSI_DMACR_ENABLE, *PSSI_DMACR_ENABLE;
typedef enum _SSI_MWCR_HANDSHAKE_ {
MW_HANDSHAKE_DISABLE = 0,
MW_HANDSHAKE_ENABLE = 1
}SSI_MWCR_HANDSHAKE, *PSSI_MWCR_HANDSHAKE;
typedef enum _SSI_MWCR_DIRECTION_ {
MW_DIRECTION_SLAVE_TO_MASTER = 0,
MW_DIRECTION_MASTER_TO_SLAVE = 1
}SSI_MWCR_DIRECTION, *PSSI_MWCR_DIRECTION;
typedef enum _SSI_MWCR_TMOD_ {
MW_TMOD_NONSEQUENTIAL = 0,
MW_TMOD_SEQUENTIAL = 1
}SSI_MWCR_TMOD, *PSSI_MWCR_TMOD;
typedef enum _SSI_DATA_TRANSFER_MECHANISM_ {
SSI_DTM_BASIC,
SSI_DTM_INTERRUPT,
SSI_DTM_DMA
}SSI_DATA_TRANSFER_MECHANISM, *PSSI_DATA_TRANSFER_MECHANISM;
_LONG_CALL_ HAL_Status HalSsiPinmuxEnableRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiEnableRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiDisableRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiInitRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiSetSclkPolarityRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiSetSclkPhaseRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiWriteRtl8195a(VOID *Adaptor, u32 value);
_LONG_CALL_ HAL_Status HalSsiLoadSettingRtl8195a(VOID *Adaptor, VOID *Setting);
_LONG_CALL_ HAL_Status HalSsiSetInterruptMaskRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiSetDeviceRoleRtl8195a(VOID *Adaptor, u32 Role);
_LONG_CALL_ HAL_Status HalSsiInterruptEnableRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiInterruptDisableRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiReadInterruptRtl8195a(VOID *Adaptor, VOID *RxData, u32 Length);
_LONG_CALL_ HAL_Status HalSsiSetRxFifoThresholdLevelRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiSetTxFifoThresholdLevelRtl8195a(VOID *Adaptor);
_LONG_CALL_ HAL_Status HalSsiWriteInterruptRtl8195a(VOID *Adaptor, VOID *TxData, u32 Length);
_LONG_CALL_ HAL_Status HalSsiSetSlaveEnableRegisterRtl8195a(VOID *Adaptor, u32 SlaveIndex);
_LONG_CALL_ u32 HalSsiBusyRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiWriteableRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiReadableRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiGetInterruptMaskRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiGetRxFifoLevelRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiGetTxFifoLevelRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiGetStatusRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiGetInterruptStatusRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiReadRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiGetRawInterruptStatusRtl8195a(VOID *Adaptor);
_LONG_CALL_ u32 HalSsiGetSlaveEnableRegisterRtl8195a(VOID *Adaptor);
_LONG_CALL_ VOID _SsiReadInterrupt(VOID *Adaptor);
_LONG_CALL_ VOID _SsiWriteInterrupt(VOID *Adaptor);
_LONG_CALL_ u32 _SsiIrqHandle(VOID *Adaptor);
// ROM code patch
VOID _SsiReadInterruptRtl8195a(VOID *Adapter);
VOID _SsiWriteInterruptRtl8195a(VOID *Adapter);
HAL_Status HalSsiInitRtl8195a_Patch(VOID *Adaptor);
HAL_Status HalSsiPinmuxEnableRtl8195a_Patch(VOID *Adaptor);
HAL_Status HalSsiPinmuxDisableRtl8195a(VOID *Adaptor);
HAL_Status HalSsiDeInitRtl8195a(VOID * Adapter);
HAL_Status HalSsiClockOffRtl8195a(VOID * Adapter);
HAL_Status HalSsiClockOnRtl8195a(VOID * Adapter);
VOID HalSsiSetSclkRtl8195a(VOID *Adapter, u32 ClkRate);
HAL_Status HalSsiIntReadRtl8195a(VOID *Adapter, VOID *RxData, u32 Length);
HAL_Status HalSsiIntWriteRtl8195a(VOID *Adapter, u8 *pTxData, u32 Length);
#ifdef CONFIG_GDMA_EN
VOID HalSsiTxGdmaLoadDefRtl8195a(VOID *Adapter);
VOID HalSsiRxGdmaLoadDefRtl8195a(VOID *Adapter);
VOID HalSsiDmaInitRtl8195a(VOID *Adapter);
HAL_Status HalSsiDmaSendRtl8195a(VOID *Adapter, u8 *pTxData, u32 Length);
HAL_Status HalSsiDmaRecvRtl8195a(VOID *Adapter, u8 *pRxData, u32 Length);
#endif // end of "#ifdef CONFIG_GDMA_EN"
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,235 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_TIMER_H_
#define _RTL8195A_TIMER_H_
#define TIMER_TICK_US 31
#define TIMER_LOAD_COUNT_OFF 0x00
#define TIMER_CURRENT_VAL_OFF 0x04
#define TIMER_CTL_REG_OFF 0x08
#define TIMER_EOI_OFF 0x0c
#define TIMER_INT_STATUS_OFF 0x10
#define TIMER_INTERVAL 0x14
#define TIMERS_INT_STATUS_OFF 0xa0
#define TIMERS_EOI_OFF 0xa4
#define TIMERS_RAW_INT_STATUS_OFF 0xa8
#define TIMERS_COMP_VER_OFF 0xac
#define MAX_TIMER_VECTOR_TABLE_NUM 6
#define HAL_TIMER_READ32(addr) (*((volatile u32*)(TIMER_REG_BASE + addr)))//HAL_READ32(TIMER_REG_BASE, addr)
#define HAL_TIMER_WRITE32(addr, value) ((*((volatile u32*)(TIMER_REG_BASE + addr))) = value)//HAL_WRITE32(TIMER_REG_BASE, addr, value)
#define HAL_TIMER_READ16(addr) (*((volatile u16*)(TIMER_REG_BASE + addr)))//HAL_READ16(TIMER_REG_BASE, addr)
#define HAL_TIMER_WRITE16(addr, value) ((*((volatile u16*)(TIMER_REG_BASE + addr))) = value)//HAL_WRITE16(TIMER_REG_BASE, addr, value)
#define HAL_TIMER_READ8(addr) (*((volatile u8*)(TIMER_REG_BASE + addr)))//HAL_READ8(TIMER_REG_BASE, addr)
#define HAL_TIMER_WRITE8(addr, value) ((*((volatile u8*)(TIMER_REG_BASE + addr))) = value)//HAL_WRITE8(TIMER_REG_BASE, addr, value)
_LONG_CALL_ u32
HalGetTimerIdRtl8195a(
IN u32 *TimerID
);
_LONG_CALL_ BOOL
HalTimerInitRtl8195a(
IN VOID *Data
);
_LONG_CALL_ u32
HalTimerReadCountRtl8195a(
IN u32 TimerId
);
_LONG_CALL_ VOID
HalTimerIrqClearRtl8195a(
IN u32 TimerId
);
_LONG_CALL_ VOID
HalTimerDisRtl8195a(
IN u32 TimerId
);
_LONG_CALL_ VOID
HalTimerEnRtl8195a(
IN u32 TimerId
);
_LONG_CALL_ VOID
HalTimerDumpRegRtl8195a(
IN u32 TimerId
);
// ROM Code patch
HAL_Status
HalTimerInitRtl8195a_Patch(
IN VOID *Data
);
u32
HalTimerReadCountRtl8195a_Patch(
IN u32 TimerId
);
VOID
HalTimerReLoadRtl8195a_Patch(
IN u32 TimerId,
IN u32 LoadUs
);
u32
HalTimerReadCountRtl8195a_Patch(
IN u32 TimerId
);
VOID
HalTimerIrqEnRtl8195a(
IN u32 TimerId
);
VOID
HalTimerIrqDisRtl8195a(
IN u32 TimerId
);
VOID
HalTimerClearIsrRtl8195a(
IN u32 TimerId
);
VOID
HalTimerEnRtl8195a_Patch(
IN u32 TimerId
);
VOID
HalTimerDisRtl8195a_Patch(
IN u32 TimerId
);
VOID
HalTimerDeInitRtl8195a_Patch(
IN VOID *Data
);
#ifdef CONFIG_CHIP_C_CUT
__weak _LONG_CALL_
VOID
HalTimerIrq2To7HandleV02(
IN VOID *Data
);
__weak _LONG_CALL_
HAL_Status
HalTimerIrqRegisterRtl8195aV02(
IN VOID *Data
);
__weak _LONG_CALL_
HAL_Status
HalTimerInitRtl8195aV02(
IN VOID *Data
);
__weak _LONG_CALL_
u32
HalTimerReadCountRtl8195aV02(
IN u32 TimerId
);
__weak _LONG_CALL_
VOID
HalTimerReLoadRtl8195aV02(
IN u32 TimerId,
IN u32 LoadUs
);
__weak _LONG_CALL_
HAL_Status
HalTimerIrqUnRegisterRtl8195aV02(
IN VOID *Data
);
__weak _LONG_CALL_
VOID
HalTimerDeInitRtl8195aV02(
IN VOID *Data
);
#endif // end of "#ifdef CONFIG_CHIP_C_CUT"
// HAL functions wrapper
static __inline HAL_Status
HalTimerInit(
IN VOID *Data
)
{
return (HalTimerInitRtl8195a_Patch(Data));
}
static __inline VOID
HalTimerEnable(
IN u32 TimerId
)
{
HalTimerIrqEnRtl8195a(TimerId);
HalTimerEnRtl8195a_Patch(TimerId);
}
static __inline VOID
HalTimerDisable(
IN u32 TimerId
)
{
HalTimerDisRtl8195a_Patch(TimerId);
}
static __inline VOID
HalTimerClearIsr(
IN u32 TimerId
)
{
HalTimerClearIsrRtl8195a(TimerId);
}
static __inline VOID
HalTimerReLoad(
IN u32 TimerId,
IN u32 LoadUs
)
{
HalTimerReLoadRtl8195a_Patch(TimerId, LoadUs);
}
#ifndef CONFIG_CHIP_C_CUT
static __inline VOID
HalTimerDeInit(
IN VOID *Data
)
{
HalTimerDeInitRtl8195a_Patch(Data);
}
#else
static __inline VOID
HalTimerDeInit(
IN VOID *Data
)
{
HalTimerDeInitRtl8195aV02(Data);
}
#endif // end of "#ifndef CONFIG_CHIP_C_CUT"
#endif //_RTL8195A_TIMER_H_

View file

@ -0,0 +1,532 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_UART_H_
#define _RTL8195A_UART_H_
#define MAX_UART_INDEX 2
#define RUART_DLL_OFF 0x00
#define RUART_DLM_OFF 0x04 //RW, DLAB = 1
#define RUART_INTERRUPT_EN_REG_OFF 0x04
#define RUART_IER_ERBI 0x01 //BIT0, Enable Received Data Available Interrupt (rx trigger)
#define RUART_IER_ETBEI (1<<1) //BIT1, Enable Transmitter FIFO Empty Interrupt (tx fifo empty)
#define RUART_IER_ELSI (1<<2) //BIT2, Enable Receiver Line Status Interrupt (receiver line status)
#define RUART_IER_EDSSI (1<<3) //BIT3, Enable Modem Status Interrupt (modem status transition)
#define RUART_INT_ID_REG_OFF 0x08 //[R]
#define RUART_IIR_INT_PEND 0x01
#define RUART_IIR_INT_ID (0x07<<1) //011(3), 010(2), 110(6), 001(1), 000(0)
#define RUART_FIFO_CTL_REG_OFF 0x08 //[W]
#define RUART_FIFO_CTL_REG_CLEAR_RXFIFO (1<<1) //BIT1, 0x02, Write 1 clear
#define RUART_FIFO_CTL_REG_CLEAR_TXFIFO (1<<2) //BIT2, 0x04, Write 1 clear
#define RUART_FIFO_CTL_REG_DMA_ENABLE 0x08 //BIT3
#define FIFO_CTL_DEFAULT_WITH_FIFO_DMA 0xC9
#define FIFO_CTL_DEFAULT_WITH_FIFO 0xC1
#define RUART_MODEM_CTL_REG_OFF 0x10
#define RUART_MCR_RTS BIT1
#define RUART_MCL_AUTOFLOW_ENABLE (1<<5) //BIT5, 0x20
#define RUART_LINE_CTL_REG_OFF 0x0C
#define RUART_LINE_CTL_REG_DLAB_ENABLE (1<<7) //BIT7, 0x80
#define RUART_LINE_STATUS_REG_OFF 0x14
#define RUART_LINE_STATUS_REG_DR 0x01 //BIT0, Data Ready indicator
#define RUART_LINE_STATUS_ERR_OVERRUN (1<<1) //BIT1, Over Run
#define RUART_LINE_STATUS_ERR_PARITY (1<<2) //BIT2, Parity error
#define RUART_LINE_STATUS_ERR_FRAMING (1<<3) //BIT3, Framing error
#define RUART_LINE_STATUS_ERR_BREAK (1<<4) //BIT4, Break interrupt error
#define RUART_LINE_STATUS_REG_THRE (1<<5) //BIT5, 0x20, Transmit Holding Register Empty Interrupt enable
#define RUART_LINE_STATUS_REG_TEMT (1<<6) //BIT6, 0x40, Transmitter Empty indicator(bit)
#define RUART_LINE_STATUS_ERR_RXFIFO (1<<7) //BIT7, RX FIFO error
#define RUART_LINE_STATUS_ERR (RUART_LINE_STATUS_ERR_OVERRUN|RUART_LINE_STATUS_ERR_PARITY| \
RUART_LINE_STATUS_ERR_FRAMING|RUART_LINE_STATUS_ERR_BREAK| \
RUART_LINE_STATUS_ERR_RXFIFO) //Line status error
#define RUART_MODEM_STATUS_REG_OFF 0x18 //Modem Status Register
#define RUART_SCRATCH_PAD_REG_OFF 0x1C //Scratch Pad Register
#define RUART_SP_REG_RXBREAK_INT_STATUS (1<<7) //BIT7, 0x80, Write 1 clear
#define RUART_SP_REG_DBG_SEL (0x0F<<8) //[11:8], Debug port selection
#define RUART_SP_REG_XFACTOR_ADJ (0x7FF<<16) //[26:16]
#define RUART_STS_REG_OFF 0x20
#define RUART_STS_REG_RESET_RCV (1<<3) //BIT3, 0x08, Reset Uart Receiver
#define RUART_STS_REG_XFACTOR 0xF<<4
#define RUART_REV_BUF_REG_OFF 0x24 //Receiver Buffer Register
#define RUART_TRAN_HOLD_REG_OFF 0x24 //Transmitter Holding Register
#define RUART_MISC_CTL_REG_OFF 0x28
#define RUART_TXDMA_BURSTSIZE_MASK 0xF8 //7:3
#define RUART_RXDMA_BURSTSIZE_MASK 0x1F00 //12:8
#define RUART_DEBUG_REG_OFF 0x3C
// RUART_LINE_CTL_REG_OFF (0x0C)
#define BIT_SHIFT_LCR_WLS 0 // word length select: 0: 7 bits, 1: 8bits
#define BIT_MASK_LCR_WLS_8BITS 0x1
#define BIT_LCR_WLS(x)(((x) & BIT_MASK_LCR_WLS_8BITS) << BIT_SHIFT_LCR_WLS)
#define BIT_CLR_LCR_WLS (~(BIT_MASK_LCR_WLS_8BITS << BIT_SHIFT_LCR_WLS))
#define BIT_SHIFT_LCR_STB 2 // Stop bit select: 0: no stop bit, 1: 1 stop bit
#define BIT_MASK_LCR_STB_EN 0x1
#define BIT_LCR_STB_EN(x)(((x) & BIT_MASK_LCR_STB_EN) << BIT_SHIFT_LCR_STB)
#define BIT_INVC_LCR_STB_EN (~(BIT_MASK_LCR_STB_EN << BIT_SHIFT_LCR_STB))
#define BIT_SHIFT_LCR_PARITY_EN 3
#define BIT_MASK_LCR_PARITY_EN 0x1
#define BIT_LCR_PARITY_EN(x)(((x) & BIT_MASK_LCR_PARITY_EN) << BIT_SHIFT_LCR_PARITY_EN)
#define BIT_INVC_LCR_PARITY_EN (~(BIT_MASK_LCR_PARITY_EN << BIT_SHIFT_LCR_PARITY_EN))
#define BIT_SHIFT_LCR_PARITY_TYPE 4
#define BIT_MASK_LCR_PARITY_TYPE 0x1
#define BIT_LCR_PARITY_TYPE(x)(((x) & BIT_MASK_LCR_PARITY_TYPE) << BIT_SHIFT_LCR_PARITY_TYPE)
#define BIT_INVC_LCR_PARITY_TYPE (~(BIT_MASK_LCR_PARITY_TYPE << BIT_SHIFT_LCR_PARITY_TYPE))
#define BIT_SHIFT_LCR_STICK_PARITY_EN 5
#define BIT_MASK_LCR_STICK_PARITY_EN 0x1
#define BIT_LCR_STICK_PARITY_EN(x)(((x) & BIT_MASK_LCR_STICK_PARITY_EN) << BIT_SHIFT_LCR_STICK_PARITY_EN)
#define BIT_INVC_LCR_STICK_PARITY_EN (~(BIT_MASK_LCR_STICK_PARITY_EN << BIT_SHIFT_LCR_STICK_PARITY_EN))
#define BIT_SHIFT_LCR_BREAK_CTRL 6
#define BIT_MASK_LCR_BREAK_CTRL 0x1
#define BIT_UART_LCR_BREAK_CTRL ((BIT_MASK_LCR_BREAK_CTRL) << BIT_SHIFT_LCR_BREAK_CTRL)
#define RUART_BAUD_RATE_2400 2400
#define RUART_BAUD_RATE_4800 4800
#define RUART_BAUD_RATE_9600 9600
#define RUART_BAUD_RATE_19200 19200
#define RUART_BAUD_RATE_38400 38400
#define RUART_BAUD_RATE_57600 57600
#define RUART_BAUD_RATE_115200 115200
#define RUART_BAUD_RATE_921600 921600
#define RUART_BAUD_RATE_1152000 1152000
#define HAL_RUART_READ32(UartIndex, addr) \
HAL_READ32(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr)
#define HAL_RUART_WRITE32(UartIndex, addr, value) \
HAL_WRITE32(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr, value)
#define HAL_RUART_READ16(UartIndex, addr) \
HAL_READ16(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr)
#define HAL_RUART_WRITE16(UartIndex, addr, value) \
HAL_WRITE16(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr, value)
#define HAL_RUART_READ8(UartIndex, addr) \
HAL_READ8(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr)
#define HAL_RUART_WRITE8(UartIndex, addr, value) \
HAL_WRITE8(UART0_REG_BASE+ (UartIndex*RUART_REG_OFF), addr, value)
#define UART_OVSR_POOL_MIN 1000
#define UART_OVSR_POOL_MAX 2090
#define DIVISOR_RESOLUTION 10
#define JITTER_LIMIT 100
#define UART_SCLK (200000000*5/12)
typedef struct _RUART_SPEED_SETTING_ {
u32 BaudRate;
u32 Ovsr;
u32 Div;
u16 Ovsr_adj;
u8 Ovsr_adj_max_bits; // 9: No parity, 10: with Parity
u8 Ovsr_adj_bits;
u16 *Ovsr_adj_map;
u32 max_err; // 10 ~ 100: 30
u32 Ovsr_min; // 10 ~ 20: 1000
u32 Ovsr_max; // 10 ~ 20: 2000
u32 divisor_resolution; // 1 ~ 20: 10
u32 jitter_lim; // 50 ~ 100: 100
u32 sclk; // 83.33333 MHz
}RUART_SPEED_SETTING, *PRUART_SPEED_SETTING;
typedef enum _UART_RXFIFO_TRIGGER_LEVEL_ {
OneByte = 0x00,
FourBytes = 0x01,
EightBytes = 0x10,
FourteenBytes = 0x11
}UART_RXFIFO_TRIGGER_LEVEL, *PUART_RXFIFO_TRIGGER_LEVEL;
typedef enum _RUART0_PINMUX_SELECT_ {
RUART0_MUX_TO_GPIOC = S0,
RUART0_MUX_TO_GPIOE = S1,
RUART0_MUX_TO_GPIOA = S2
}RUART0_PINMUX_SELECT, *PRUART0_PINMUX_SELECT;
typedef enum _RUART1_PINMUX_SELECT_ {
RUART1_MUX_TO_GPIOD = S0,
RUART1_MUX_TO_GPIOE = S1,
RUART1_MUX_TO_GPIOB = S2
}RUART1_PINMUX_SELECT, *PRUART1_PINMUX_SELECT;
typedef enum _RUART2_PINMUX_SELECT_ {
RUART2_MUX_TO_GPIOA = S0,
RUART2_MUX_TO_GPIOC = S1,
RUART2_MUX_TO_GPIOD = S2
}RUART2_PINMUX_SELECT, *PRUART2_PINMUX_SELECT;
typedef enum _RUART_FLOW_CONTROL_ {
AUTOFLOW_DISABLE = 0,
AUTOFLOW_ENABLE = 1
}RUART_FLOW_CONTROL, *PRUART_FLOW_CONTROL;
typedef enum _RUART_WORD_LEN_SEL_ {
RUART_WLS_7BITS = 0,
RUART_WLS_8BITS = 1
}RUART_WORD_LEN_SEL, *PRUART_WORD_LEN_SEL;
typedef enum _RUART_STOP_BITS_ {
RUART_STOP_BIT_1 = 0,
RUART_STOP_BIT_2 = 1
}RUART_STOP_BITS, *PRUART_STOP_BITS;
typedef enum _RUART_PARITY_CONTROL_ {
RUART_PARITY_DISABLE = 0,
RUART_PARITY_ENABLE = 1
}RUART_PARITY_CONTROL, *PRUART_PARITY_CONTROL;
typedef enum _RUART_PARITY_TYPE_ {
RUART_ODD_PARITY = 0,
RUART_EVEN_PARITY = 1
}RUART_PARITY_TYPE, *PRUART_PARITY_TYPE;
typedef enum _RUART_STICK_PARITY_CONTROL_ {
RUART_STICK_PARITY_DISABLE = 0,
RUART_STICK_PARITY_ENABLE = 1
}RUART_STICK_PARITY_CONTROL, *PRUART_STICK_PARITY_CONTROL;
typedef enum _UART_INT_ID_ {
ModemStatus = 0,
TxFifoEmpty = 1,
ReceiverDataAvailable = 2,
ReceivLineStatus = 3,
TimeoutIndication = 6
}UART_INT_ID, *PUART_INT_ID;
typedef enum _HAL_UART_State_
{
HAL_UART_STATE_NULL = 0x00, // UART hardware not been initial yet
HAL_UART_STATE_READY = 0x10, // UART is initialed, ready to use
HAL_UART_STATE_BUSY = 0x20, // UART hardware is busy on configuration
HAL_UART_STATE_BUSY_TX = 0x21, // UART is buzy on TX
HAL_UART_STATE_BUSY_RX = 0x22, // UART is busy on RX
HAL_UART_STATE_BUSY_TX_RX = 0x23, // UART is busy on TX an RX
HAL_UART_STATE_TIMEOUT = 0x30, // Transfer timeout
HAL_UART_STATE_ERROR = 0x40 // UART Error
}HAL_UART_State, *PHAL_UART_State;
typedef enum _HAL_UART_Status_
{
HAL_UART_STATUS_OK = 0x00, // Transfer OK
HAL_UART_STATUS_TIMEOUT = 0x01, // Transfer Timeout
HAL_UART_STATUS_ERR_OVERRUN = 0x02, // RX Over run
HAL_UART_STATUS_ERR_PARITY = 0x04, // Parity error
HAL_UART_STATUS_ERR_FRAM = 0x08, // Framing Error
HAL_UART_STATUS_ERR_BREAK = 0x10, // Break Interrupt
HAL_UART_STATUS_ERR_PARA = 0x20, // Parameter error
HAL_UART_STATUS_ERR_RXFIFO = 0x80, // RX FIFO error
}HAL_UART_Status, *PHAL_UART_Status;
u32
HalRuartGetDebugValueRtl8195a(
IN VOID* Data,
IN u32 DbgSel
);
#if 0
u32
FindElementIndex(
u32 Element,
u32* Array
);
#endif
VOID
RuartResetRxFifoRtl8195a(
IN u8 UartIndex
);
#if 0
VOID
RuartBusDomainEnableRtl8195a(
IN u8 UartIndex
);
#endif
HAL_Status
HalRuartResetRxFifoRtl8195a(
IN VOID *Data
);
HAL_Status
HalRuartInitRtl8195a(
IN VOID *Data
);
VOID
HalRuartDeInitRtl8195a(
IN VOID *Data ///< RUART Adapter
);
HAL_Status
HalRuartPutCRtl8195a(
IN VOID *Data,
IN u8 TxData
);
u32
HalRuartSendRtl8195a(
IN VOID *Data,
IN u8 *pTxData,
IN u32 Length,
IN u32 Timeout
);
HAL_Status
HalRuartIntSendRtl8195a(
IN VOID *Data, // PHAL_RUART_ADAPTER
IN u8 *pTxData, // the Buffer to be send
IN u32 Length // the length of data to be send
);
HAL_Status
HalRuartDmaSendRtl8195a(
IN VOID *Data, // PHAL_RUART_ADAPTER
IN u8 *pTxData, // the Buffer to be send
IN u32 Length // the length of data to be send
);
HAL_Status
HalRuartStopSendRtl8195a(
IN VOID *Data // PHAL_RUART_ADAPTER
);
HAL_Status
HalRuartGetCRtl8195a(
IN VOID *Data,
OUT u8 *pRxByte
);
u32
HalRuartRecvRtl8195a(
IN VOID *Data,
IN u8 *pRxData,
IN u32 Length,
IN u32 Timeout
);
HAL_Status
HalRuartIntRecvRtl8195a(
IN VOID *Data, ///< RUART Adapter
IN u8 *pRxData, ///< Rx buffer
IN u32 Length // buffer length
);
HAL_Status
HalRuartDmaRecvRtl8195a(
IN VOID *Data, ///< RUART Adapter
IN u8 *pRxData, ///< Rx buffer
IN u32 Length // buffer length
);
HAL_Status
HalRuartStopRecvRtl8195a(
IN VOID *Data // PHAL_RUART_ADAPTER
);
u8
HalRuartGetIMRRtl8195a(
IN VOID *Data
);
_LONG_CALL_ VOID
HalRuartSetIMRRtl8195a(
IN VOID *Data
);
VOID
HalRuartDmaInitRtl8195a(
IN VOID *Data
);
VOID
HalRuartRTSCtrlRtl8195a(
IN VOID *Data,
IN BOOLEAN RtsCtrl
);
VOID
HalRuartRegIrqRtl8195a(
IN VOID *Data
);
VOID
HalRuartIntEnableRtl8195a(
IN VOID *Data
);
VOID
HalRuartIntDisableRtl8195a(
IN VOID *Data
);
VOID
HalRuartAdapterLoadDefRtl8195a(
IN VOID *pAdp,
IN u8 UartIdx
);
VOID
HalRuartTxGdmaLoadDefRtl8195a(
IN VOID *pAdp,
IN VOID *pCfg
);
VOID
HalRuartRxGdmaLoadDefRtl8195a(
IN VOID *pAdp,
IN VOID *pCfg
);
_LONG_CALL_ HAL_Status HalRuartIntSendRtl8195aV02(
IN VOID *Data, // PHAL_RUART_ADAPTER
IN u8 *pTxData, // the Buffer to be send
IN u32 Length // the length of data to be send
);
_LONG_CALL_ HAL_Status
HalRuartIntRecvRtl8195aV02(
IN VOID *Data, ///< RUART Adapter
IN u8 *pRxData, ///< Rx buffer
IN u32 Length // buffer length
);
_LONG_CALL_ s32
FindElementIndex_v02(
u32 Element, ///< RUART Baudrate
u32* Array, ///< Pre-defined Baudrate Array
u32 ElementNo
);
_LONG_CALL_ HAL_Status HalRuartInitRtl8195a_v02(IN VOID *Data);
// New added function 2015/04/20
HAL_Status
HalRuartResetTxFifoRtl8195a(
IN VOID *Data ///< RUART Adapter
);
HAL_Status
HalRuartSetBaudRateRtl8195a(
IN VOID *Data
);
HAL_Status
HalRuartEnableRtl8195a(
IN VOID *Data
);
HAL_Status
HalRuartDisableRtl8195a(
IN VOID *Data
);
HAL_Status
HalRuartFlowCtrlRtl8195a(
IN VOID *Data
);
HAL_Status
HalRuartDmaSendRtl8195a_Patch(
IN VOID *Data,
IN u8 *pTxData,
IN u32 Length
);
HAL_Status
RuartIsTimeout (
u32 StartCount,
u32 TimeoutCnt
);
HAL_Status
HalRuartStopRecvRtl8195a_Patch(
IN VOID *Data
);
HAL_Status
HalRuartStopSendRtl8195a_Patch(
IN VOID *Data
);
VOID
HalRuartEnterCriticalRtl8195a(
IN VOID *Data
);
VOID
HalRuartExitCriticalRtl8195a(
IN VOID *Data
);
#if CONFIG_CHIP_E_CUT
_LONG_CALL_ HAL_Status
HalRuartSetBaudRateRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartInitRtl8195a_V04(
IN VOID *Data ///< RUART Adapter
);
_LONG_CALL_ HAL_Status
HalRuartEnableRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartDisableRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartFlowCtrlRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartDmaSendRtl8195a_V04(
IN VOID *Data,
IN u8 *pTxData,
IN u32 Length
);
_LONG_CALL_ HAL_Status
HalRuartStopRecvRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ HAL_Status
HalRuartStopSendRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ VOID
HalRuartEnterCriticalRtl8195a_V04(
IN VOID *Data
);
_LONG_CALL_ VOID
HalRuartExitCriticalRtl8195a_V04(
IN VOID *Data
);
#endif // #if CONFIG_CHIP_E_CUT
#endif

View file

@ -0,0 +1,111 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_USB_H_
#define _RTL8195A_USB_H_
// common command for USB
#define USB_CMD_TX_ETH 0x83 // request to TX a 802.3 packet
#define USB_CMD_TX_WLN 0x81 // request to TX a 802.11 packet
#define USB_CMD_H2C 0x11 // H2C(host to device) command packet
#define USB_CMD_MEMRD 0x51 // request to read a block of memory data
#define USB_CMD_MEMWR 0x53 // request to write a block of memory
#define USB_CMD_MEMST 0x55 // request to set a block of memory with a value
#define USB_CMD_STARTUP 0x61 // request to jump to the start up function
#define USB_CMD_RX_ETH 0x82 // indicate a RX 802.3 packet
#define USB_CMD_RX_WLN 0x80 // indicate a RX 802.11 packet
#define USB_CMD_C2H 0x10 // C2H(device to host) command packet
#define USB_CMD_MEMRD_RSP 0x50 // response to memory block read command
#define USB_CMD_MEMWR_RSP 0x52 // response to memory write command
#define USB_CMD_MEMST_RSP 0x54 // response to memory set command
#define USB_CMD_STARTED 0x60 // indicate the program has jumped to the given function
// TODO: This data structer just for test, we should modify it for the normal driver
typedef struct _USB_TX_DESC{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 txpktsize:16; // bit[15:0]
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
#else
u32 bus_agg_num:8; // bit[31:24], the bus aggregation number
u32 offset:8; // bit[23:16], store the sizeof(SDIO_TX_DESC)
u32 txpktsize:16; // bit[15:0]
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the packet type
u32 rsvd0:24;
#else
u32 rsvd0:24;
u32 type:8; // bit[7:0], the packet type
#endif
// u4Byte 2
u32 rsvd1;
// u4Byte 3
u32 rsvd2;
// u4Byte 4
u32 rsvd3;
// u4Byte 5
u32 rsvd4;
} USB_TX_DESC, *PUSB_TX_DESC;
#define SIZE_USB_TX_DESC sizeof(USB_TX_DESC)
// TODO: This data structer just for test, we should modify it for the normal driver
typedef struct _USB_RX_DESC{
// u4Byte 0
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 pkt_len:16; // bit[15:0], the packet size
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 rsvd0:6; // bit[29:24]
u32 icv:1; // bit[30], ICV error
u32 crc:1; // bit[31], CRC error
#else
u32 crc:1; // bit[31], CRC error
u32 icv:1; // bit[30], ICV error
u32 rsvd0:6; // bit[29:24]
u32 offset:8; // bit[23:16], the offset from the packet start to the buf start, also means the size of RX Desc
u32 pkt_len:16; // bit[15:0], the packet size
#endif
// u4Byte 1
#if (SYSTEM_ENDIAN==PLATFORM_LITTLE_ENDIAN)
u32 type:8; // bit[7:0], the type of this packet
u32 rsvd1:24; // bit[31:8]
#else
u32 rsvd1:24; // bit[31:8]
u32 type:8; // bit[7:0], the type of this packet
#endif
// u4Byte 2
u32 rsvd2;
// u4Byte 3
u32 rsvd3;
// u4Byte 4
u32 rsvd4;
// u4Byte 5
u32 rsvd5;
} USB_RX_DESC, *PUSB_RX_DESC;
#define SIZE_USB_RX_DESC sizeof(USB_RX_DESC)
#endif // #ifndef _RTL8195A_USB_H_

View file

@ -0,0 +1,86 @@
/*
* Routines to access hardware
*
* Copyright (c) 2014 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _RTL8195A_WDT_H_
#define _RTL8195A_WDT_H_
#define WDGTIMERELY (10*1024) //us
typedef struct _WDG_REG_ {
u16 WdgScalar;
u8 WdgEnByte;
u8 WdgClear:1;
u8 WdgCunLimit:4;
u8 Rsvd:1;
u8 WdgMode:1;
u8 WdgToISR:1;
}WDG_REG, *PWDG_REG;
typedef struct _WDG_ADAPTER_ {
WDG_REG Ctrl;
IRQ_HANDLE IrqHandle;
TIMER_ADAPTER WdgGTimer;
VOID (*UserCallback)(u32 callback_id); // User callback function
u32 callback_id;
}WDG_ADAPTER, *PWDG_ADAPTER;
typedef enum _WDG_CNTLMT_ {
CNT1H = 0,
CNT3H = 1,
CNT7H = 2,
CNTFH = 3,
CNT1FH = 4,
CNT3FH = 5,
CNT7FH = 6,
CNTFFH = 7,
CNT1FFH = 8,
CNT3FFH = 9,
CNT7FFH = 10,
CNTFFFH = 11
}WDG_CNTLMT, *PWDG_CNTLMT;
typedef enum _WDG_MODE_ {
INT_MODE = 0,
RESET_MODE = 1
}WDG_MODE, *PWDG_MODE;
extern VOID
WDGInitial(
IN u32 Period
);
extern VOID
WDGIrqInitial(
VOID
);
extern VOID
WDGIrqInitial(
VOID
);
extern VOID
WDGStop(
VOID
);
extern VOID
WDGRefresh(
VOID
);
extern VOID
WDGIrqCallBackReg(
IN VOID *CallBack,
IN u32 Id
);
#endif //_RTL8195A_WDT_H_

View file

@ -0,0 +1,501 @@
/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#ifndef __BASIC_TYPES_H__
#define __BASIC_TYPES_H__
//#define PLATFORM_FREERTOS
#include <stdint.h>
#define PLATFORM_LITTLE_ENDIAN 0
#define PLATFORM_BIG_ENDIAN 1
#define SYSTEM_ENDIAN PLATFORM_LITTLE_ENDIAN
#define SUCCESS 0
#define FAIL (-1)
#undef _SUCCESS
#define _SUCCESS 1
#undef _FAIL
#define _FAIL 0
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE (!FALSE)
#endif
#define _TRUE TRUE
#define _FALSE FALSE
#ifndef NULL
#define NULL 0
#endif
#ifdef __GNUC__
#define __weak __attribute__((weak))
#define likely(x) __builtin_expect ((x), 1)
#define unlikely(x) __builtin_expect ((x), 0)
#endif
typedef unsigned int uint;
typedef signed int sint;
#ifdef __ICCARM__
typedef signed long long __int64_t;
typedef unsigned long long __uint64_t;
#endif
#define s8 int8_t
#define u8 uint8_t
#define s16 int16_t
#define u16 uint16_t
#define s32 int32_t
#define u32 uint32_t
#define s64 int64_t
#define u64 uint64_t
#ifdef CONFIG_MBED_ENABLED
typedef unsigned int BOOL;
#else
#ifndef BOOL
typedef unsigned char BOOL;
#endif
#ifndef bool
#ifndef __cplusplus
typedef unsigned char bool;
#endif
#endif
#endif
#define UCHAR uint8_t
#define USHORT uint16_t
#define UINT uint32_t
#define ULONG uint32_t
typedef struct { volatile int counter; } atomic_t;
typedef enum _RTK_STATUS_ {
_EXIT_SUCCESS = 0,
_EXIT_FAILURE = 1
}RTK_STATUS, *PRTK_STATUS;
#define IN
#define OUT
#define VOID void
#define INOUT
#define NDIS_OID uint
#define NDIS_STATUS uint
#ifndef PVOID
typedef void * PVOID;
#endif
typedef u32 dma_addr_t;
typedef void (*proc_t)(void*);
typedef unsigned int __kernel_size_t;
typedef int __kernel_ssize_t;
typedef __kernel_size_t SIZE_T;
typedef __kernel_ssize_t SSIZE_T;
#define FIELD_OFFSET(s,field) ((SSIZE_T)&((s*)(0))->field)
#define MEM_ALIGNMENT_OFFSET (sizeof (SIZE_T))
#define MEM_ALIGNMENT_PADDING (sizeof(SIZE_T) - 1)
#define SIZE_PTR SIZE_T
#define SSIZE_PTR SSIZE_T
#ifndef ON
#define ON 1
#endif
#ifndef OFF
#define OFF 0
#endif
#ifndef ENABLE
#define ENABLE 1
#endif
#ifndef DISABLE
#define DISABLE 0
#endif
#define BIT0 0x0001
#define BIT1 0x0002
#define BIT2 0x0004
#define BIT3 0x0008
#define BIT4 0x0010
#define BIT5 0x0020
#define BIT6 0x0040
#define BIT7 0x0080
#define BIT8 0x0100
#define BIT9 0x0200
#define BIT10 0x0400
#define BIT11 0x0800
#define BIT12 0x1000
#define BIT13 0x2000
#define BIT14 0x4000
#define BIT15 0x8000
#define BIT16 0x00010000
#define BIT17 0x00020000
#define BIT18 0x00040000
#define BIT19 0x00080000
#define BIT20 0x00100000
#define BIT21 0x00200000
#define BIT22 0x00400000
#define BIT23 0x00800000
#define BIT24 0x01000000
#define BIT25 0x02000000
#define BIT26 0x04000000
#define BIT27 0x08000000
#define BIT28 0x10000000
#define BIT29 0x20000000
#define BIT30 0x40000000
#define BIT31 0x80000000
#define BIT_(__n) (1<<(__n))
#ifndef BIT
#define BIT(__n) (1<<(__n))
#endif
#if defined (__ICCARM__)
#define STRINGIFY(s) #s
#define SECTION(_name) _Pragma( STRINGIFY(location=_name))
#define ALIGNMTO(_bound) _Pragma( STRINGIFY(data_alignment=##_bound##))
#define _PACKED_ __packed
#define _LONG_CALL_
#define _LONG_CALL_ROM_
#define _WEAK __weak
#else
#define SECTION(_name) __attribute__ ((__section__(_name)))
#define ALIGNMTO(_bound) __attribute__ ((aligned (_bound)))
#define _PACKED_ __attribute__ ((packed))
#define _LONG_CALL_ __attribute__ ((long_call))
#define _LONG_CALL_ROM_ _LONG_CALL_
#define _WEAK __attribute__ ((weak))
#endif
//port from fw by thomas
// TODO: Belows are Sync from SD7-Driver. It is necessary to check correctness
#define SWAP32(x) ((u32)( \
(((u32)(x) & (u32)0x000000ff) << 24) | \
(((u32)(x) & (u32)0x0000ff00) << 8) | \
(((u32)(x) & (u32)0x00ff0000) >> 8) | \
(((u32)(x) & (u32)0xff000000) >> 24)))
#define WAP16(x) ((u16)( \
(((u16)(x) & (u16)0x00ff) << 8) | \
(((u16)(x) & (u16)0xff00) >> 8)))
#if SYSTEM_ENDIAN == PLATFORM_LITTLE_ENDIAN
#ifndef rtk_le16_to_cpu
#define rtk_cpu_to_le32(x) ((u32)(x))
#define rtk_le32_to_cpu(x) ((u32)(x))
#define rtk_cpu_to_le16(x) ((u16)(x))
#define rtk_le16_to_cpu(x) ((u16)(x))
#define rtk_cpu_to_be32(x) SWAP32((x))
#define rtk_be32_to_cpu(x) SWAP32((x))
#define rtk_cpu_to_be16(x) WAP16((x))
#define rtk_be16_to_cpu(x) WAP16((x))
#endif
#elif SYSTEM_ENDIAN == PLATFORM_BIG_ENDIAN
#ifndef rtk_le16_to_cpu
#define rtk_cpu_to_le32(x) SWAP32((x))
#define rtk_le32_to_cpu(x) SWAP32((x))
#define rtk_cpu_to_le16(x) WAP16((x))
#define rtk_le16_to_cpu(x) WAP16((x))
#define rtk_cpu_to_be32(x) ((__u32)(x))
#define rtk_be32_to_cpu(x) ((__u32)(x))
#define rtk_cpu_to_be16(x) ((__u16)(x))
#define rtk_be16_to_cpu(x) ((__u16)(x))
#endif
#endif
/*
* Call endian free function when
* 1. Read/write packet content.
* 2. Before write integer to IO.
* 3. After read integer from IO.
*/
//
// Byte Swapping routine.
//
#define EF1Byte (u8)
#define EF2Byte le16_to_cpu
#define EF4Byte le32_to_cpu
//
// Read LE format data from memory
//
#define ReadEF1Byte(_ptr) EF1Byte(*((u8 *)(_ptr)))
#define ReadEF2Byte(_ptr) EF2Byte(*((u16 *)(_ptr)))
#define ReadEF4Byte(_ptr) EF4Byte(*((u32 *)(_ptr)))
//
// Write LE data to memory
//
#define WriteEF1Byte(_ptr, _val) (*((u8 *)(_ptr)))=EF1Byte(_val)
#define WriteEF2Byte(_ptr, _val) (*((u16 *)(_ptr)))=EF2Byte(_val)
#define WriteEF4Byte(_ptr, _val) (*((u32 *)(_ptr)))=EF4Byte(_val)
//
// Example:
// BIT_LEN_MASK_32(0) => 0x00000000
// BIT_LEN_MASK_32(1) => 0x00000001
// BIT_LEN_MASK_32(2) => 0x00000003
// BIT_LEN_MASK_32(32) => 0xFFFFFFFF
//
#define BIT_LEN_MASK_32(__BitLen) \
(0xFFFFFFFF >> (32 - (__BitLen)))
//
// Example:
// BIT_OFFSET_LEN_MASK_32(0, 2) => 0x00000003
// BIT_OFFSET_LEN_MASK_32(16, 2) => 0x00030000
//
#define BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen) \
(BIT_LEN_MASK_32(__BitLen) << (__BitOffset))
//
// Description:
// Return 4-byte value in host byte ordering from
// 4-byte pointer in litten-endian system.
//
#define LE_P4BYTE_TO_HOST_4BYTE(__pStart) \
(EF4Byte(*((u32 *)(__pStart))))
//
// Description:
// Translate subfield (continuous bits in little-endian) of 4-byte value in litten byte to
// 4-byte value in host byte ordering.
//
#define LE_BITS_TO_4BYTE(__pStart, __BitOffset, __BitLen) \
( \
( LE_P4BYTE_TO_HOST_4BYTE(__pStart) >> (__BitOffset) ) \
& \
BIT_LEN_MASK_32(__BitLen) \
)
//
// Description:
// Mask subfield (continuous bits in little-endian) of 4-byte value in litten byte oredering
// and return the result in 4-byte value in host byte ordering.
//
#define LE_BITS_CLEARED_TO_4BYTE(__pStart, __BitOffset, __BitLen) \
( \
LE_P4BYTE_TO_HOST_4BYTE(__pStart) \
& \
( ~ BIT_OFFSET_LEN_MASK_32(__BitOffset, __BitLen) ) \
)
//
// Description:
// Set subfield of little-endian 4-byte value to specified value.
//
#define SET_BITS_TO_LE_4BYTE(__pStart, __BitOffset, __BitLen, __Value) \
*((u32 *)(__pStart)) = \
EF4Byte( \
LE_BITS_CLEARED_TO_4BYTE(__pStart, __BitOffset, __BitLen) \
| \
( (((u32)__Value) & BIT_LEN_MASK_32(__BitLen)) << (__BitOffset) ) \
);
#define BIT_LEN_MASK_16(__BitLen) \
(0xFFFF >> (16 - (__BitLen)))
#define BIT_OFFSET_LEN_MASK_16(__BitOffset, __BitLen) \
(BIT_LEN_MASK_16(__BitLen) << (__BitOffset))
#define LE_P2BYTE_TO_HOST_2BYTE(__pStart) \
(EF2Byte(*((u16 *)(__pStart))))
#define LE_BITS_TO_2BYTE(__pStart, __BitOffset, __BitLen) \
( \
( LE_P2BYTE_TO_HOST_2BYTE(__pStart) >> (__BitOffset) ) \
& \
BIT_LEN_MASK_16(__BitLen) \
)
#define LE_BITS_CLEARED_TO_2BYTE(__pStart, __BitOffset, __BitLen) \
( \
LE_P2BYTE_TO_HOST_2BYTE(__pStart) \
& \
( ~ BIT_OFFSET_LEN_MASK_16(__BitOffset, __BitLen) ) \
)
#define SET_BITS_TO_LE_2BYTE(__pStart, __BitOffset, __BitLen, __Value) \
*((u16 *)(__pStart)) = \
EF2Byte( \
LE_BITS_CLEARED_TO_2BYTE(__pStart, __BitOffset, __BitLen) \
| \
( (((u16)__Value) & BIT_LEN_MASK_16(__BitLen)) << (__BitOffset) ) \
);
#define BIT_LEN_MASK_8(__BitLen) \
(0xFF >> (8 - (__BitLen)))
#define BIT_OFFSET_LEN_MASK_8(__BitOffset, __BitLen) \
(BIT_LEN_MASK_8(__BitLen) << (__BitOffset))
#define LE_P1BYTE_TO_HOST_1BYTE(__pStart) \
(EF1Byte(*((u8 *)(__pStart))))
#define LE_BITS_TO_1BYTE(__pStart, __BitOffset, __BitLen) \
( \
( LE_P1BYTE_TO_HOST_1BYTE(__pStart) >> (__BitOffset) ) \
& \
BIT_LEN_MASK_8(__BitLen) \
)
#define LE_BITS_CLEARED_TO_1BYTE(__pStart, __BitOffset, __BitLen) \
( \
LE_P1BYTE_TO_HOST_1BYTE(__pStart) \
& \
( ~BIT_OFFSET_LEN_MASK_8(__BitOffset, __BitLen) ) \
)
#define SET_BITS_TO_LE_1BYTE(__pStart, __BitOffset, __BitLen, __Value) \
*((u8 *)(__pStart)) = \
EF1Byte( \
LE_BITS_CLEARED_TO_1BYTE(__pStart, __BitOffset, __BitLen) \
| \
( (((u8)__Value) & BIT_LEN_MASK_8(__BitLen)) << (__BitOffset) ) \
);
//pclint
#define LE_BITS_CLEARED_TO_1BYTE_8BIT(__pStart, __BitOffset, __BitLen) \
( \
LE_P1BYTE_TO_HOST_1BYTE(__pStart) \
)
//pclint
#define SET_BITS_TO_LE_1BYTE_8BIT(__pStart, __BitOffset, __BitLen, __Value) \
{ \
*((pu1Byte)(__pStart)) = \
EF1Byte( \
LE_BITS_CLEARED_TO_1BYTE_8BIT(__pStart, __BitOffset, __BitLen) \
| \
((u1Byte)__Value) \
); \
}
// Get the N-bytes aligment offset from the current length
#define N_BYTE_ALIGMENT(__Value, __Aligment) ((__Aligment == 1) ? (__Value) : (((__Value + __Aligment - 1) / __Aligment) * __Aligment))
typedef unsigned char BOOLEAN,*PBOOLEAN;
#define TEST_FLAG(__Flag,__testFlag) (((__Flag) & (__testFlag)) != 0)
#define SET_FLAG(__Flag, __setFlag) ((__Flag) |= __setFlag)
#define CLEAR_FLAG(__Flag, __clearFlag) ((__Flag) &= ~(__clearFlag))
#define CLEAR_FLAGS(__Flag) ((__Flag) = 0)
#define TEST_FLAGS(__Flag, __testFlags) (((__Flag) & (__testFlags)) == (__testFlags))
/* Define compilor specific symbol */
//
// inline function
//
#if defined ( __ICCARM__ )
#define __inline__ inline
#define __inline inline
#define __inline_definition //In dialect C99, inline means that a function's definition is provided
//only for inlining, and that there is another definition
//(without inline) somewhere else in the program.
//That means that this program is incomplete, because if
//add isn't inlined (for example, when compiling without optimization),
//then main will have an unresolved reference to that other definition.
// Do not inline function is the function body is defined .c file and this
// function will be called somewhere else, otherwise there is compile error
#elif defined ( __CC_ARM )
#define __inline__ __inline //__linine__ is not supported in keil compilor, use __inline instead
#define inline __inline
#define __inline_definition // for dialect C99
#elif defined ( __GNUC__ )
#define __inline__ inline
#define __inline inline
#define __inline_definition inline
#endif
//
// pack
//
#if defined (__ICCARM__)
#define RTW_PACK_STRUCT_BEGIN _Pragma( STRINGIFY(pack(1)))
#define RTW_PACK_STRUCT_STRUCT
#define RTW_PACK_STRUCT_END _Pragma( STRINGIFY(pack()))
//#define RTW_PACK_STRUCT_USE_INCLUDES
#elif defined (__CC_ARM)
#define RTW_PACK_STRUCT_BEGIN __packed
#define RTW_PACK_STRUCT_STRUCT
#define RTW_PACK_STRUCT_END
#elif defined (__GNUC__)
#define RTW_PACK_STRUCT_BEGIN
#define RTW_PACK_STRUCT_STRUCT __attribute__ ((__packed__))
#define RTW_PACK_STRUCT_END
#elif defined(PLATFORM_WINDOWS)
#define RTW_PACK_STRUCT_BEGIN
#define RTW_PACK_STRUCT_STRUCT
#define RTW_PACK_STRUCT_END
#define RTW_PACK_STRUCT_USE_INCLUDES
#endif
// for standard library
#ifdef __ICCARM__
#define __extension__ /* Ignore */
#define __restrict /* Ignore */
#endif
typedef struct _RAM_START_FUNCTION_ {
VOID (*RamStartFun) (VOID);
}RAM_START_FUNCTION, *PRAM_START_FUNCTION;
typedef struct _RAM_FUNCTION_START_TABLE_ {
VOID (*RamStartFun) (VOID);
VOID (*RamWakeupFun) (VOID);
VOID (*RamPatchFun0) (VOID);
VOID (*RamPatchFun1) (VOID);
VOID (*RamPatchFun2) (VOID);
}RAM_FUNCTION_START_TABLE, *PRAM_FUNCTION_START_TABLE;
#endif// __BASIC_TYPES_H__

View file

@ -0,0 +1,300 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _SECTION_CONFIG_H_
#define _SECTION_CONFIG_H_
#include "basic_types.h"
#define RAM_DEDECATED_VECTOR_TABLE_SECTION \
SECTION(".ram_dedecated_vector_table")
#define RAM_USER_IRQ_FUN_TABLE_SECTION \
SECTION(".ram_user_define_irq_table")
#define RAM_USER_IRQ_DATA_TABLE_SECTION \
SECTION(".ram_user_define_data_table")
//3 Timer Section
#define SECTION_RAM_TIMER2TO7_VECTOR_TABLE \
SECTION(".timer2_7_vector_table.data")
#define SECTION_RAM_BSS_TIMER_RECORDER_TABLE \
SECTION(".timer.ram.data")
#define TIMER_ROM_TEXT_SECTION \
SECTION(".timer.rom.text")
#define TIMER_ROM_DATA_SECTION \
SECTION(".timer.rom.rodata")
#define TIMER_RAM_TEXT_SECTION \
SECTION(".timer.ram.text")
#define TIMER_RAM_DATA_SECTION \
SECTION(".timer.ram.data")
//3 Wifi Section
#define WIFI_ROM_TEXT_SECTION \
SECTION(".wifi.rom.text")
#define WIFI_ROM_DATA_SECTION \
SECTION(".wifi.rom.rodata")
#define WIFI_RAM_TEXT_SECTION \
SECTION(".wifi.ram.text")
#define WIFI_RAM_DATA_SECTION \
SECTION(".wifi.ram.data")
//3 Hal Section
#define HAL_ROM_TEXT_SECTION \
SECTION(".hal.rom.text")
#define HAL_ROM_DATA_SECTION \
SECTION(".hal.rom.rodata")
#define HAL_RAM_TEXT_SECTION \
SECTION(".hal.ram.text")
#define HAL_FLASH_TEXT_SECTION \
SECTION(".hal.flash.text")
#define HAL_FLASH_DATA_SECTION \
SECTION(".hal.flash.data")
#define HAL_SDRC_TEXT_SECTION \
SECTION(".hal.sdrc.text")
#define HAL_SDRC_DATA_SECTION \
SECTION(".hal.sdrc.data")
#define HAL_CUT_B_RAM_DATA_SECTION \
SECTION(".cutb.ram.data")
#define HAL_CUT_C_RAM_DATA_SECTION \
SECTION(".cutc.ram.data")
#define HAL_RAM_DATA_SECTION \
SECTION(".hal.ram.data")
#define HAL_RAM_BSS_SECTION \
SECTION(".hal.ram.bss")
#define HAL_ROM_OP_SECTION \
SECTION(".halop.rom.rodata")
#define HAL_GPIO_TEXT_SECTION \
SECTION(".hal.gpio.text")
#define HAL_GPIO_DATA_SECTION \
SECTION(".hal.gpio.data")
#define FWU_DATA_SECTION \
SECTION(".fwu.data")
#define FWU_RODATA_SECTION \
SECTION(".fwu.rodata")
#define FWU_TEXT_SECTION \
SECTION(".fwu.text")
//3 C-Cut ROM Patch/New functions location
#define C_CUT_ROM_TEXT_SECTION \
SECTION(".cutc.rom.text")
#define C_CUT_ROM_RODATA_SECTION \
SECTION(".cutc.rom.rodata")
#define C_CUT_ROM_DATA_SECTION \
SECTION(".cutc.ram.data")
//3 No ROM code changed for D_Cut
//3 E-Cut ROM Patch/New functions location
#define E_CUT_ROM_TEXT_SECTION \
SECTION(".cute.rom.text")
#define E_CUT_ROM_RODATA_SECTION \
SECTION(".cute.rom.rodata")
#define E_CUT_ROM_DATA_SECTION \
SECTION(".cute.ram.data")
//3 Store the Image 1 validate code
#define IMAGE1_VALID_PATTEN_SECTION \
SECTION(".image1.validate.rodata")
#define IMAGE2_VALID_PATTEN_SECTION \
SECTION(".image2.validate.rodata")
//3 Infra Section
#define INFRA_ROM_TEXT_SECTION \
SECTION(".infra.rom.text")
#define INFRA_ROM_DATA_SECTION \
SECTION(".infra.rom.rodata")
#define INFRA_RAM_TEXT_SECTION \
SECTION(".infra.ram.text")
#define INFRA_RAM_DATA_SECTION \
SECTION(".infra.ram.data")
#define INFRA_RAM_BSS_SECTION \
SECTION(".infra.ram.bss")
#define INFRA_START_SECTION \
SECTION(".infra.ram.start")
//3 Pin Mutex Section
#define PINMUX_ROM_TEXT_SECTION \
SECTION(".hal.rom.text")
#define PINMUX_ROM_DATA_SECTION \
SECTION(".hal.rom.rodata")
#define PINMUX_RAM_TEXT_SECTION \
SECTION(".hal.ram.text")
#define PINMUX_RAM_DATA_SECTION \
SECTION(".hal.ram.data")
#define PINMUX_RAM_BSS_SECTION \
SECTION(".hal.ram.bss")
//3 Monitor App Section
#define MON_ROM_TEXT_SECTION \
SECTION(".mon.rom.text")
#define MON_ROM_DATA_SECTION \
SECTION(".mon.rom.rodata")
#define MON_RAM_TEXT_SECTION \
SECTION(".mon.ram.text")
#define MON_RAM_DATA_SECTION \
SECTION(".mon.ram.data")
#define MON_RAM_BSS_SECTION \
SECTION(".mon.ram.bss")
//3 SDIO Section
#define SECTION_SDIO_RAM
#define SECTION_SDIO_ROM
#define SDIO_ROM_BSS_SECTION \
SECTION(".sdio.rom.bss")
#define SDIO_ROM_TEXT_SECTION \
SECTION(".sdio.rom.text")
//3 SRAM Config Section
#define SRAM_BD_DATA_SECTION \
SECTION(".bdsram.data")
#define SRAM_BF_DATA_SECTION \
SECTION(".bfsram.data")
#define START_RAM_FUN_SECTION \
SECTION(".start.ram.data")
#define START_RAM_FUN_A_SECTION \
SECTION(".start.ram.data.a")
#define START_RAM_FUN_B_SECTION \
SECTION(".start.ram.data.b")
#define START_RAM_FUN_C_SECTION \
SECTION(".start.ram.data.c")
#define START_RAM_FUN_D_SECTION \
SECTION(".start.ram.data.d")
#define START_RAM_FUN_E_SECTION \
SECTION(".start.ram.data.e")
#define SRAM_OS_HEAP_SECTION \
SECTION(".ossram.heap")
//Non-Flash Boot Section
#define NON_FLASH_BOOT_DATA_SECTION \
SECTION(".nonflash.data")
#define NON_FLASH_BOOT_HEAP_SECTION \
SECTION(".nonflash.heap")
// USB OTG Section
#define OTG_ROM_BSS_SECTION \
SECTION(".otg.rom.bss")
#define OTG_ROM_TEXT_SECTION \
SECTION(".otg.rom.text")
#define OTG_ROM_DATA_SECTION \
SECTION(".otg.rom.rodata")
#define START_OTG_RAM_FUN_SECTION \
SECTION(".ram.otg.data.a")
#define START_OTG_RAM_DATA_SECTION \
SECTION(".ram.otg.data.b")
#define OTG_RAM_BF_DATA_SECTION \
SECTION(".ram.otg.bfdata")
#define IMAGE2_START_RAM_FUN_SECTION \
SECTION(".image2.ram.data")
// SDRAM Section
#define SDRAM_DATA_SECTION \
SECTION(".sdram.data")
#define SDRAM_OS_HEAP_SECTION \
SECTION(".ossdram.heap")
//3 Wlan Section
#define WLAN_ROM_TEXT_SECTION \
SECTION(".wlan.rom.text")
#define WLAN_ROM_DATA_SECTION \
SECTION(".wlan.rom.rodata")
#define WLAN_RAM_MAP_SECTION \
SECTION(".wlan_ram_map")
//3 Apple Section
#define APPLE_ROM_TEXT_SECTION \
SECTION(".apple.rom.text")
#define APPLE_ROM_DATA_SECTION \
SECTION(".apple.rom.rodata")
//3 Libc Section
#define LIBC_ROM_TEXT_SECTION \
SECTION(".libc.rom.text")
#define LIBC_ROM_DATA_SECTION \
SECTION(".libc.rom.rodata")
#define LIBC_RAM_BSS_SECTION \
SECTION(".libc.ram.bss")
//3 SSL Section
#define SSL_ROM_TEXT_SECTION \
SECTION(".ssl.rom.text")
#define SSL_ROM_DATA_SECTION \
SECTION(".ssl.rom.rodata")
#define SSL_RAM_MAP_SECTION \
SECTION(".ssl_ram_map")
#endif //_SECTION_CONFIG_H_

View file

@ -0,0 +1,213 @@
/*
FreeRTOS V7.3.0 - Copyright (C) 2012 Real Time Engineers Ltd.
FEATURES AND PORTS ARE ADDED TO FREERTOS ALL THE TIME. PLEASE VISIT
http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
***************************************************************************
* *
* Having a problem? Start by reading the FAQ "My application does *
* not run, what could be wrong?" *
* *
* http://www.FreeRTOS.org/FAQHelp.html *
* *
***************************************************************************
http://www.FreeRTOS.org - Documentation, training, latest versions, license
and contact details.
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
including FreeRTOS+Trace - an indispensable productivity tool.
Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell
the code with commercial support, indemnification, and middleware, under
the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also
provide a safety engineered and independently SIL3 certified version under
the SafeRTOS brand: http://www.SafeRTOS.com.
*/
#ifndef FREERTOS_CONFIG_H
#define FREERTOS_CONFIG_H
#if defined(__ICCARM__) || defined(__CC_ARM) || defined(__GNUC__)
#include <stdint.h>
extern uint32_t SystemCoreClock;
#endif
/*-----------------------------------------------------------
* Application specific definitions.
*
* These definitions should be adjusted for your particular hardware and
* application requirements.
*
* THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
* FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
*
* See http://www.freertos.org/a00110.html.
*----------------------------------------------------------*/
#define configUSE_PREEMPTION 1
#define configUSE_IDLE_HOOK 1
#define configUSE_TICK_HOOK 0
#define configCPU_CLOCK_HZ ( SystemCoreClock )
#define configTICK_RATE_HZ ( ( uint32_t ) 1000 )
#define configMINIMAL_STACK_SIZE ( ( unsigned short ) 70 )
#ifdef CONFIG_UVC
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 110 * 1024 ) ) // use HEAP5
#else
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 60 * 1024 ) ) // use HEAP5
#endif
#ifdef ARDUINO_SDK
#undef configTOTAL_HEAP_SIZE
#define configTOTAL_HEAP_SIZE ( ( size_t ) ( 2 * 1024 ) ) // use HEAP5
#define configTOTAL_SDRHEAP_SIZE ( ( size_t ) ( 200 * 1024 ) ) // use HEAP5
#define configENLARGE_HEAP_SIZE ( 1 )
#endif
#define configMAX_TASK_NAME_LEN ( 10 )
#define configUSE_TRACE_FACILITY 0
#define configUSE_16_BIT_TICKS 0
#define configIDLE_SHOULD_YIELD 0
#define configUSE_CO_ROUTINES 1
#define configUSE_MUTEXES 1
#define configUSE_TIMERS 1
#define configMAX_PRIORITIES ( 11 )
#define PRIORITIE_OFFSET ( 4 )
#define configMAX_CO_ROUTINE_PRIORITIES ( 2 )
#define configUSE_COUNTING_SEMAPHORES 1
#define configUSE_ALTERNATIVE_API 0
#define configCHECK_FOR_STACK_OVERFLOW 2
#define configUSE_RECURSIVE_MUTEXES 1
#define configQUEUE_REGISTRY_SIZE 0
#define configGENERATE_RUN_TIME_STATS 0
#if configGENERATE_RUN_TIME_STATS
#define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() //( ulHighFrequencyTimerTicks = 0UL )
#define portGET_RUN_TIME_COUNTER_VALUE() xTickCount //ulHighFrequencyTimerTicks
#undef configUSE_TRACE_FACILITY
#define configUSE_TRACE_FACILITY 1
#define portCONFIGURE_STATS_PEROID_VALUE 1000 //unit Ticks
#endif
#define configTIMER_TASK_PRIORITY ( 1 )
#define configTIMER_QUEUE_LENGTH ( 10 )
#define configTIMER_TASK_STACK_DEPTH ( 512 ) // 512*4=2K
#if (__IASMARM__ != 1)
extern void freertos_pre_sleep_processing(unsigned int *expected_idle_time);
extern void freertos_post_sleep_processing(unsigned int *expected_idle_time);
extern int freertos_ready_to_sleep();
/* Enable tickless power saving. */
#define configUSE_TICKLESS_IDLE 1
/* In wlan usage, this value is suggested to use value less than 80 milliseconds */
#define configEXPECTED_IDLE_TIME_BEFORE_SLEEP 2
/* It's magic trick that let us can use our own sleep function */
#define configPRE_SLEEP_PROCESSING( x ) ( freertos_pre_sleep_processing(&x) )
#define configPOST_SLEEP_PROCESSING( x ) ( freertos_post_sleep_processing(&x) )
/* It's magic trick that let us can enable/disable tickless dynamically */
#define traceLOW_POWER_IDLE_BEGIN(); do { \
if (!freertos_ready_to_sleep()) { \
mtCOVERAGE_TEST_MARKER(); \
break; \
}
// portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
#define traceLOW_POWER_IDLE_END(); } while (0);
/* It's FreeRTOS related feature but it's not included in FreeRTOS design. */
#define configUSE_WAKELOCK_PMU 1
#endif // #if (__IASMARM__ != 1)
/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */
#define INCLUDE_vTaskPrioritySet 1
#define INCLUDE_uxTaskPriorityGet 1
#define INCLUDE_vTaskDelete 1
#define INCLUDE_vTaskCleanUpResources 0
#define INCLUDE_vTaskSuspend 1
#define INCLUDE_vTaskDelayUntil 1
#define INCLUDE_vTaskDelay 1
#define INCLUDE_pcTaskGetTaskName 1
#define INCLUDE_xTimerPendFunctionCall 1
/* Cortex-M specific definitions. */
#ifdef __NVIC_PRIO_BITS
/* __BVIC_PRIO_BITS will be specified when CMSIS is being used. */
#define configPRIO_BITS __NVIC_PRIO_BITS
#else
#define configPRIO_BITS 4 /* 15 priority levels */
#endif
/* The lowest interrupt priority that can be used in a call to a "set priority"
function. */
#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 0x0f
/* The highest interrupt priority that can be used by any interrupt service
routine that makes calls to interrupt safe FreeRTOS API functions. DO NOT CALL
INTERRUPT SAFE FREERTOS API FUNCTIONS FROM ANY INTERRUPT THAT HAS A HIGHER
PRIORITY THAN THIS! (higher priorities are lower numeric values. */
#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5
/* Interrupt priorities used by the kernel port layer itself. These are generic
to all Cortex-M ports, and do not rely on any particular library functions. */
#define configKERNEL_INTERRUPT_PRIORITY ( configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
/* !!!! configMAX_SYSCALL_INTERRUPT_PRIORITY must not be set to zero !!!!
See http://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html. */
#define configMAX_SYSCALL_INTERRUPT_PRIORITY ( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )
//#define RTK_MODE_TIMER
#endif /* FREERTOS_CONFIG_H */

View file

@ -0,0 +1,6 @@
#define UTS_VERSION "2015/11/16-12:38:57"
#define RTL8195AFW_COMPILE_TIME "2015/11/16-12:38:57"
#define RTL8195AFW_COMPILE_BY "NA"
#define RTL8195AFW_COMPILE_HOST "NA"
#define RTL8195AFW_COMPILE_DOMAIN
#define RTL195AFW_COMPILER "NA"

View file

@ -0,0 +1,182 @@
/*
* Automatically generated by make menuconfig: don't edit
*/
#define AUTOCONF_INCLUDED
/*
* Target Platform Selection
*/
#define CONFIG_WITHOUT_MONITOR 1
#define CONFIG_BOOT_TO_UPGRADE_IMG2 1
#define CONFIG_RTL8195A 1
#undef CONFIG_FPGA
#undef CONFIG_RTL_SIM
#undef CONFIG_POST_SIM
#undef CONFIG_MP
#define RTL8195A 1
#define CONFIG_CPU_CLK 1
#define CONFIG_CPU_166_6MHZ 1
#undef CONFIG_CPU_83_3MHZ
#undef CONFIG_CPU_41_6MHZ
#undef CONFIG_CPU_20_8MHZ
#undef CONFIG_CPU_10_4MHZ
#undef CONFIG_CPU_4MHZ
#undef CONFIG_FPGA_CLK
#define PLATFORM_CLOCK (166666666)
#define CPU_CLOCK_SEL_VALUE (0)
#define CONFIG_SDR_CLK 1
#define CONFIG_SDR_100MHZ 1
#undef CONFIG_SDR_50MHZ
#undef CONFIG_SDR_25MHZ
#undef CONFIG_SDR_12_5MHZ
#define SDR_CLOCK_SEL_VALUE (0)
#define CONFIG_BOOT_PROCEDURE 1
#define CONFIG_BOOT_FROM_JTAG 1
#undef CONFIG_ALIGNMENT_EXCEPTION_ENABLE
#define CONFIG_KERNEL 1
#define PLATFORM_FREERTOS 1
#undef PLATFORM_UCOSII
#undef PLATFORM_ECOS
#undef CONFIG_TASK_SCHEDUL_DIS
#define TASK_SCHEDULER_DISABLED (0)
#define CONFIG_NORMALL_MODE 1
#undef CONFIG_MEMORY_VERIFY_MODE
#define CONFIG_TIMER_EN 1
#define CONFIG_TIMER_NORMAL 1
#undef CONFIG_TIMER_TEST
#define CONFIG_TIMER_MODULE 1
#define CONFIG_WDG 1
#undef CONFIG_WDG_NON
#define CONFIG_WDG_NORMAL 1
#define CONFIG_GDMA_EN 1
#define CONFIG_GDMA_NORMAL 1
#undef CONFIG_GDMA_TEST
#define CONFIG_GDMA_MODULE 1
#define CONFIG_WIFI_EN 1
#define CONFIG_WIFI_NORMAL 1
#undef CONFIG_WIFI_TEST
#define CONFIG_WIFI_MODULE 1
#define CONFIG_GPIO_EN 1
#define CONFIG_GPIO_NORMAL 1
#undef CONFIG_GPIO_TEST
#define CONFIG_GPIO_MODULE 1
#undef CONFIG_SDIO_DEVICE_EN
#undef CONFIG_SDIO_HOST_EN
#define CONFIG_USB_EN 1
#undef CONFIG_USB_NORMAL
#define CONFIG_USB_TEST 1
#define CONFIG_USB_MODULE 1
#define CONFIG_USB_VERIFY 1
//#define CONFIG_USB_DBGINFO_EN 1
#undef DWC_DEVICE_ONLY
#define DWC_HOST_ONLY 1
#define CONFIG_USB_HOST_ONLY 1
#define CONFIG_SPI_COM_EN 1
#define CONFIG_SPI_COM_NORMAL 1
#undef CONFIG_SPI_COM_TEST
#define CONFIG_SPI_COM_MODULE 1
#define CONFIG_UART_EN 1
#define CONFIG_UART_NORMAL 1
#undef CONFIG_UART_TEST
#define CONFIG_UART_MODULE 1
#define CONFIG_I2C_EN 1
#define CONFIG_I2C_NORMAL 1
#undef CONFIG_I2C_TEST
#define CONFIG_I2C_MODULE 1
#undef CONFIG_DEBUG_LOG_I2C_HAL
#undef CONFIG_PCM_EN
#define CONFIG_I2S_EN 1
#define CONFIG_I2S_NORMAL 1
#undef CONFIG_I2S_TEST
#define CONFIG_I2S_MODULE 1
#undef CONFIG_DEBUG_LOG_I2S_HAL
#define CONFIG_NFC_EN 1
#define CONFIG_NFC_NORMAL 1
#undef CONFIG_NFC_TEST
#define CONFIG_NFC_MODULE 1
#define CONFIG_SOC_PS_EN 1
#define CONFIG_SOC_PS_NORMAL 1
#undef CONFIG_SOC_PS_TEST
#define CONFIG_SOC_PS_MODULE 1
#define CONFIG_CRYPTO_EN 1
#define CONFIG_CRYPTO_NORMAL 1
#undef CONFIG_CRYPTO_TEST
#define CONFIG_CRYPTO_MODULE 1
#undef CONFIG_MII_EN
#define CONFIG_PWM_EN 1
#define CONFIG_PWM_NORMAL 1
#undef CONFIG_PWM_TEST
#define CONFIG_PWM_MODULE 1
#define CONFIG_EFUSE_EN 1
#define CONFIG_EFUSE_NORMAL 1
#undef CONFIG_EFUSE_TEST
#define CONFIG_EFUSE_MODULE 1
#define CONFIG_SDR_EN 1
#define CONFIG_SDR_NORMAL 1
#undef CONFIG_SDR_TEST
#define CONFIG_SDR_MODULE 1
#define CONFIG_SPIC_EN 1
#define CONFIG_SPIC_NORMAL 1
#undef CONFIG_SPIC_TEST
#define CONFIG_SPIC_MODULE 1
#define CONFIG_ADC_EN 1
#define CONFIG_DAC_EN 1
#define CONFIG_NOR_FLASH 1
#undef CONFIG_SPI_FLASH
#undef CONFIG_NAND_FLASH
#undef CONFIG_NONE_FLASH
/*
* Engineer Mode Config
*/
#undef CONFIG_JTAG
#undef CONFIG_COMPILE_FLASH_DOWNLOAD_CODE
#undef CONIFG_COMPILE_EXTERNAL_SRAM_CALIBRATE
#undef CONFIG_CMSIS_MATH_LIB_EN
/*
* < Application Config
*/
#define CONFIG_NETWORK 1
#define CONFIG_RTLIB_EN 1
#define CONFIG_RTLIB_NORMAL 1
#undef CONFIG_RTLIB_TEST
#define CONFIG_RTLIB_MODULE 1
/*
* < System Debug Message Config
*/
#define CONFIG_UART_LOG_HISTORY 1
#undef CONFIG_CONSOLE_NORMALL_MODE
#define CONFIG_CONSOLE_VERIFY_MODE 1
#define CONFIG_DEBUG_LOG 1
#define CONFIG_DEBUG_ERR_MSG 1
#undef CONFIG_DEBUG_WARN_MSG
#undef CONFIG_DEBUG_INFO_MSG
/*
* < SDK Option Config
*/
#undef CONFIG_MBED_ENABLED
#undef CONFIG_APP_DEMO
/*
* < Select Chip Version
*/
#undef CONFIG_CHIP_A_CUT
#define CONFIG_CHIP_B_CUT 1
#undef CONFIG_CHIP_C_CUT
/*
* < Build Option
*/
#define CONFIG_LINK_ROM_LIB 1
#undef CONFIG_LINK_ROM_SYMB
#undef CONFIG_NORMAL_BUILD
#undef CONFIG_RELEASE_BUILD
#undef CONFIG_RELEASE_BUILD_LIBRARIES
#undef CONFIG_LIB_BUILD_RAM
#define CONFIG_RELEASE_BUILD_RAM_ALL 1
#undef CONFIG_IMAGE_ALL
#define CONFIG_IMAGE_SEPARATE 1