439 lines
13 KiB
Mathematica
439 lines
13 KiB
Mathematica
|
function [muo1, mu0]=occultquadVec(p,z,u1,u2,ToPlot,varargin)
|
||
|
% Aviv Comments
|
||
|
% ==================================================
|
||
|
% v.0.32 - vectorize rc,rj,rf
|
||
|
% - Allow correcting behaviour near z==p, z=1-p
|
||
|
% - Added optinal parameter TolFactor for tolerances control
|
||
|
% - Removed all "CloseToOne" and added ToSmooth Parameter
|
||
|
|
||
|
%%%%%%%%%%%%%%%% - Mandel Agol comments
|
||
|
%
|
||
|
% This routine computes the lightcurve for occultation
|
||
|
% of a quadratically limb-darkened source without microlensing.
|
||
|
% Please cite Mandel & Agol (2002) if you make use of this routine
|
||
|
% in your research. Please report errors or bugs to agol@tapir.caltech.edu
|
||
|
% implicit none
|
||
|
% integer i,nz
|
||
|
% double precision z0(nz),u1,u2,p,muo1(nz),mu0(nz),
|
||
|
% & mu(nz),lambdad(nz),etad(nz),lambdae(nz),lam,
|
||
|
% & pi,x1,x2,x3,z,omega,kap0,kap1,q,Kk,Ek,Pk,n,ellec,ellk,rj
|
||
|
%
|
||
|
% Input:
|
||
|
%
|
||
|
% rs radius of the source (set to unity)
|
||
|
% z impact parameter in units of rs
|
||
|
% p occulting star radius in units of rs
|
||
|
% u1 linear limb-darkening coefficient (gamma_1 in paper)
|
||
|
% u2 quadratic limb-darkening coefficient (gamma_2 in paper)
|
||
|
%
|
||
|
% Optional input:
|
||
|
%
|
||
|
% ToPlot: Graphical output [default=false];
|
||
|
% Tols: A factor controling the three "ERRTOL" parameters for the three helper functions. If given, all three default ERRTOLs wil be scaled by it: [Default =1 ]
|
||
|
% ToSmooth: if true, smooths the original Mandel-Agol model around z=p and around abs(z-p)=1 to produce better-behaving derivative. The value themselves are virtually unchanged. [default=true]
|
||
|
%
|
||
|
% Output:
|
||
|
%
|
||
|
% muo1 fraction of flux at each z for a limb-darkened source
|
||
|
% mu0 fraction of flux at each z for a uniform source
|
||
|
%
|
||
|
% Limb darkening has the form:
|
||
|
% I(r)=[1-u1*(1-sqrt(1-(r/rs)^2))-u2*(1-sqrt(1-(r/rs)^2))^2]/(1-u1/3-u2/6)/pi
|
||
|
%
|
||
|
% To use this routine
|
||
|
%
|
||
|
% Now, compute pure occultation curve:
|
||
|
|
||
|
% Setting the extra inputs for the case in which only p,z,u1,u2 are given
|
||
|
if nargin<5
|
||
|
ToPlot=false;
|
||
|
end;
|
||
|
TolFactor=1;
|
||
|
ToSmooth=true;
|
||
|
for i=1:2:numel(varargin)
|
||
|
switch lower(varargin{i})
|
||
|
case 'tolfactor'
|
||
|
TolFactor=varargin{i+1};
|
||
|
case 'tosmooth'
|
||
|
ToSmooth=varargin{i+1};
|
||
|
otherwise
|
||
|
fprintf('WARNING: parameter %s is unknown, and so ignored.\n',varargin{i});
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
%make z a column vector
|
||
|
if size(z,2)>size(z,1) % z is a column vector
|
||
|
z=z.';
|
||
|
end;
|
||
|
|
||
|
%set zeros to lambdad, lambda3, 3tad, kap0, kap1
|
||
|
lambdad=zeros(size(z));
|
||
|
lambdae=lambdad;
|
||
|
etad=lambdad;
|
||
|
kap0=lambdad;
|
||
|
kap1=lambdad;
|
||
|
|
||
|
%if p is close to 0.5, make it 0.5
|
||
|
if abs(p-0.5)<1e-3
|
||
|
p=0.5;
|
||
|
end;
|
||
|
|
||
|
omega=1-u1/3-u2/6;
|
||
|
x1=(p-z).^2;
|
||
|
x2=(p+z).^2;
|
||
|
x3=p.^2-z.^2;
|
||
|
|
||
|
% the source is unocculted:
|
||
|
% Table 3, I.
|
||
|
i=z>=1+p;
|
||
|
if any(i)
|
||
|
lambdad(i)=0;
|
||
|
etad(i)=0;
|
||
|
lambdae(i)=0;
|
||
|
end;
|
||
|
|
||
|
% the source is partly occulted and the occulting object crosses the limb:
|
||
|
% Equation (26):
|
||
|
i=z>=abs(1-p) & z<=1+p;
|
||
|
if any(i)
|
||
|
kap1(i)=acos(min((1-p^2+z(i).^2)/2./z(i),1));
|
||
|
kap0(i)=acos(min((p*p+z(i).^2-1)/2/p./z(i),1));
|
||
|
lambdae(i)=p^2*kap0(i)+kap1(i);
|
||
|
lambdae(i)=(lambdae(i)-0.5*sqrt(max(4*z(i).^2-(1+z(i).^2-p^2).^2,0)))/pi;
|
||
|
end;
|
||
|
|
||
|
% the occulting object transits the source star (but doesn't
|
||
|
% completely cover it):
|
||
|
i=z<=1-p;
|
||
|
if any(i)
|
||
|
lambdae(i)=p^2;
|
||
|
end;
|
||
|
|
||
|
% the edge of the occulting star lies at the origin- special
|
||
|
% expressions in this case:
|
||
|
|
||
|
i=find(abs(z-p)<1e-4*(z+p));
|
||
|
if ~isempty(i)
|
||
|
% Table 3, Case V.:
|
||
|
j=z(i)>=0.5;
|
||
|
if any(j)
|
||
|
%lam=0.5*pi;
|
||
|
q=0.5/p;
|
||
|
Kk=ellkVec(q);
|
||
|
Ek=ellecVec(q);
|
||
|
% Equation 34: lambda_3
|
||
|
lambdad(i(j))=1/3+16*p/9/pi*(2*p^2-1)*Ek-(32*p^4-20*p^2+3)/9/pi/p*Kk;
|
||
|
% Equation 34: eta_1
|
||
|
etad(i(j))=1/2/pi*(kap1(i(j))+p^2*(p^2+2*z(i(j))).*kap0(i(j))-(1+5*p^2+z(i(j)).^2)./4.*sqrt((1-x1(i(j))).*(x2(i(j))-1)));
|
||
|
if p==0.5
|
||
|
% Case VIII: p=1/2, z=1/2
|
||
|
lambdad(i(j))=1/3-4/pi/9;
|
||
|
etad(i(j))=3/32;
|
||
|
end;
|
||
|
end;
|
||
|
j=~j;
|
||
|
if any(j)
|
||
|
% Table 3, Case VI.:
|
||
|
%lam=0.5*pi;
|
||
|
q=2*p;
|
||
|
Kk=ellkVec(q);
|
||
|
Ek=ellecVec(q);
|
||
|
% Equation 34: lambda_4
|
||
|
lambdad(i(j))=1/3+2/9/pi*(4*(2*p^2-1)*Ek+(1-4*p^2)*Kk);
|
||
|
% Equation 34: eta_2
|
||
|
etad(i(j))=p^2/2*(p^2+2*z(i(j)).^2);
|
||
|
end
|
||
|
end
|
||
|
|
||
|
|
||
|
% the occulting star partly occults the source and crosses the limb:
|
||
|
% Table 3, Case III:
|
||
|
i=find(z>=0.5+abs(p-0.5) & z<1+p | (p>0.5 & z>abs(1-p)*(1+10*eps(1)) & z<p));
|
||
|
if any(i)
|
||
|
%lam=0.5*pi;
|
||
|
q=sqrt((1-(p-z(i)).^2)/4./z(i)/p);
|
||
|
Kk=ellkVec(q);
|
||
|
Ek=ellecVec(q);
|
||
|
n=1./x1(i)-1;
|
||
|
Pk=Kk-n/3.*rj(0,1-q.^2,1,1+n,TolFactor);
|
||
|
% Equation 34, lambda_1:
|
||
|
lambdad(i)=1/9/pi./sqrt(p*z(i)).*(((1-x2(i)).*(2*x2(i)+x1(i)-3)-3*x3(i).*(x2(i)-2)).*Kk+4*p*z(i).*(z(i).^2+7*p^2-4).*Ek-3*x3(i)./x1(i).*Pk);
|
||
|
j=z(i)<p;
|
||
|
if any(j)
|
||
|
lambdad(i(j))=lambdad(i(j))+2/3;
|
||
|
end;
|
||
|
% Equation 34, eta_1:
|
||
|
etad(i)=1/2/pi*(kap1(i)+p^2*(p^2+2*z(i).^2).*kap0(i)-(1+5*p^2+z(i).^2)/4.*sqrt((1-x1(i)).*(x2(i)-1)));
|
||
|
end
|
||
|
|
||
|
% the occulting star transits the source:
|
||
|
% Table 3, Case IV.:
|
||
|
%i=find(p<=1 & z<=(1-p)*1.0001);
|
||
|
i=find(p<=1 & z<=(1-p)*1.0001 & abs(z-p)>10*eps);
|
||
|
if any(i)
|
||
|
%lam=0.5*pi;
|
||
|
q=sqrt((x2(i)-x1(i))./(1-x1(i)));
|
||
|
Kk=ellkVec(q);
|
||
|
Ek=ellecVec(q);
|
||
|
n=x2(i)./x1(i)-1;
|
||
|
Pk=Kk-n/3.*rj(0,1-q.^2,1,1+n,TolFactor);
|
||
|
% Equation 34, lambda_2:
|
||
|
lambdad(i)=2/9/pi./sqrt(1-x1(i)).*((1-5*z(i).^2+p^2+x3(i).^2).*Kk+(1-x1(i)).*(z(i).^2+7*p^2-4).*Ek-3*x3(i)./x1(i).*Pk);
|
||
|
j=z(i)<p;
|
||
|
if any(j)
|
||
|
lambdad(i(j))=lambdad(i(j))+2/3;
|
||
|
end
|
||
|
j=abs(p+z(i)-1)<=1e-8;
|
||
|
if any(j)
|
||
|
lambdad(i(j))=2/3/pi*acos(1-2*p)-4/9/pi*sqrt(p*(1-p))*(3+2*p-8*p*p);
|
||
|
end
|
||
|
% Equation 34, eta_2:
|
||
|
etad(i)=p^2/2.*(p^2+2*z(i).^2);
|
||
|
end
|
||
|
|
||
|
% Now, using equation (33):
|
||
|
muo1=1-((1-u1-2*u2)*lambdae+(u1+2*u2)*lambdad+u2.*etad)/omega;
|
||
|
% Equation 25:
|
||
|
mu0=1-lambdae;
|
||
|
|
||
|
% the source is completely occulted:
|
||
|
% Table 3, II.
|
||
|
if p>=1
|
||
|
i=z<=p-1;
|
||
|
if any(i)
|
||
|
%lambdad(i)=1;
|
||
|
%etad(i)=1;
|
||
|
%lambdae(i)=1;
|
||
|
muo1(i)=0;
|
||
|
mu0(i)=0;
|
||
|
end;
|
||
|
end
|
||
|
|
||
|
if ToSmooth>0
|
||
|
deg=2;
|
||
|
CorrectionRange=2e-4;
|
||
|
FitRange=5*CorrectionRange;
|
||
|
% i=find(z>=1-p-CorrectionRange & z<=1-p+CorrectionRange); % inner than II/III contact
|
||
|
% if ~isempty(i)
|
||
|
% if p<1
|
||
|
% tmpz=1-p+[linspace(-FitRange,-CorrectionRange,deg*10).'; linspace(CorrectionRange,FitRange,deg*10).'];
|
||
|
% else
|
||
|
% tmpz=p-1+[linspace(-FitRange,-CorrectionRange,deg*10).'; linspace(CorrectionRange,FitRange,deg*10).'];
|
||
|
% end
|
||
|
% tmpz(tmpz<0)=[];
|
||
|
% tmp_muo1=occultquadVec(p,tmpz,u1,u2,0,'ToSmooth',false);
|
||
|
% if ~isempty(tmpz)
|
||
|
% pol=IterativePolyfit(tmpz,tmp_muo1,deg,3);
|
||
|
% muo1(i)=polyval(pol,z(i));
|
||
|
% end
|
||
|
% end;
|
||
|
|
||
|
% inner than II/III contact
|
||
|
i=z>=1-p-CorrectionRange & z<=1-p;
|
||
|
if ~isempty(i)
|
||
|
%if p<1
|
||
|
% tmpz=1-p+linspace(-FitRange,-CorrectionRange,deg*10).';
|
||
|
%else
|
||
|
% tmpz=p-1+linspace(-FitRange,-CorrectionRange,deg*10).';
|
||
|
%end
|
||
|
tmpz=abs(1-p)+linspace(-FitRange,-CorrectionRange,deg*10).';
|
||
|
tmpz(tmpz<0)=[];
|
||
|
tmp_muo1=occultquadVec(p,tmpz,u1,u2,0,'ToSmooth',false);
|
||
|
if ~isempty(tmpz)
|
||
|
pol=polyfit(tmpz,tmp_muo1,deg);
|
||
|
muo1(i)=polyval(pol,z(i));
|
||
|
end
|
||
|
end;
|
||
|
|
||
|
% outer than II/III contact
|
||
|
j=z>=1-p & z<=1-p+CorrectionRange;
|
||
|
if ~isempty(j)
|
||
|
%if p<1
|
||
|
% tmpz=1-p+linspace(CorrectionRange,FitRange,deg*10).';
|
||
|
%else
|
||
|
% tmpz=p-1+linspace(CorrectionRange,FitRange,deg*10).';
|
||
|
%end
|
||
|
tmpz=abs(1-p)+linspace(CorrectionRange,FitRange,deg*10).';
|
||
|
tmpz(tmpz<0)=[];
|
||
|
tmp_muo1=occultquadVec(p,tmpz,u1,u2,0,'ToSmooth',false);
|
||
|
if ~isempty(tmpz)
|
||
|
pol=polyfit(tmpz,tmp_muo1,deg);
|
||
|
muo1(j)=polyval(pol,z(j));
|
||
|
end
|
||
|
end;
|
||
|
|
||
|
% close to z=p
|
||
|
if p>0.5
|
||
|
deg=3;
|
||
|
end;
|
||
|
CorrectionRange=1e-2;
|
||
|
FitRange=5*CorrectionRange;
|
||
|
if p<0.5
|
||
|
i=find(z-p>-CorrectionRange & z-p<min(CorrectionRange,1-2*p)); % near z~p
|
||
|
else
|
||
|
i=find(z-p>max(-CorrectionRange,1-2*p) & z-p<CorrectionRange); % near z~p
|
||
|
end
|
||
|
if ~isempty(i)
|
||
|
if p<0.5
|
||
|
tmpz=p+linspace(-FitRange,min(FitRange,1-2*p),deg*10).';
|
||
|
else
|
||
|
tmpz=p+linspace(max(-FitRange,1-2*p),FitRange,deg*10).';
|
||
|
end
|
||
|
tmpz(abs(tmpz-p)<CorrectionRange | tmpz<0)=[];
|
||
|
tmp_muo1=occultquadVec(p,tmpz,u1,u2,0,'ToSmooth',false);
|
||
|
if ~isempty(tmpz)
|
||
|
pol=polyfit(tmpz,tmp_muo1,deg);
|
||
|
muo1(i)=polyval(pol,z(i));
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
end
|
||
|
|
||
|
|
||
|
if ToPlot
|
||
|
plot([flipud(-z); z],[flipud(mu0); mu0],'.',[flipud(-z); z],[flipud(muo1); muo1],'.r');
|
||
|
a=axis;
|
||
|
axis([a(1) a(2) a(3) 1+(1-a(3))*0.1]);
|
||
|
title({'Uniform source (blue) and quadratic model for the limb darkening (red)';sprintf('p=%g, u1=%g, u2=%g',p,u1,u2)});
|
||
|
end;
|
||
|
|
||
|
|
||
|
function rc=rc(x,y,ERRTOL)
|
||
|
xt=zeros(size(x)); yt=xt;
|
||
|
w=xt; s=xt;
|
||
|
alamb=xt; ave=xt;
|
||
|
|
||
|
ERRTOL=.04*ERRTOL;
|
||
|
THIRD=1/3;
|
||
|
C1=.3;
|
||
|
C2=1/7;
|
||
|
C3=.375;
|
||
|
C4=9/22;
|
||
|
i=y>0;
|
||
|
if any(i)
|
||
|
xt(i)=x(i);
|
||
|
yt(i)=y(i);
|
||
|
w(i)=1;
|
||
|
end;
|
||
|
i=~i;
|
||
|
if any(i)
|
||
|
xt(i)=x(i)-y(i);
|
||
|
yt(i)=-y(i);
|
||
|
w(i)=sqrt(x(i))./sqrt(xt(i));
|
||
|
end
|
||
|
i=true(size(x));
|
||
|
while any(i)
|
||
|
alamb(i)=2*sqrt(xt(i)).*sqrt(yt(i))+yt(i);
|
||
|
xt(i)=.25*(xt(i)+alamb(i));
|
||
|
yt(i)=.25*(yt(i)+alamb(i));
|
||
|
ave(i)=THIRD*(xt(i)+yt(i)+yt(i));
|
||
|
s(i)=(yt(i)-ave(i))./ave(i);
|
||
|
i(i)=abs(s(i))>ERRTOL;
|
||
|
end;
|
||
|
rc=w.*(1+s.^2.*(C1+s.*(C2+s.*(C3+s.*C4))))./sqrt(ave);
|
||
|
% (C) Copr. 1986-92 Numerical Recipes Software
|
||
|
|
||
|
function rj=rj(x,y,z,p,ERRTOL)
|
||
|
% built for x,z scalars and y,p vectors
|
||
|
fac=ones(size(y));
|
||
|
x=x*fac; z=z*fac; rj=0*fac;
|
||
|
xt=rj; yt=rj; zt=rj; pt=rj; a=rj; b=rj; rho=rj; tau=rj; rcx=rj;
|
||
|
sqrtx=rj; sqrty=rj; sqrtz=rj; alamb=rj; alpha=rj; beta=rj; Sum=rj; ave=rj;
|
||
|
ave4=ave*ones(1,4);
|
||
|
|
||
|
ERRTOL=.05*ERRTOL;
|
||
|
C1=3/14;
|
||
|
C2=1/3;
|
||
|
C3=3/22;
|
||
|
C4=3/26;
|
||
|
C5=.75*C3;
|
||
|
C6=1.5*C4;
|
||
|
C7=.5*C2;
|
||
|
C8=C3+C3;
|
||
|
i=p>0;
|
||
|
if any(i)
|
||
|
xt(i)=x(i);
|
||
|
yt(i)=y(i);
|
||
|
zt(i)=z(i);
|
||
|
pt(i)=p(i);
|
||
|
end;
|
||
|
i=~i;
|
||
|
if any(i)
|
||
|
xt(i)=min([x(i),y(i),z(i)],[],2);
|
||
|
zt(i)=max([x(i),y(i),z(i)],[],2);
|
||
|
yt(i)=x(i)+y(i)+z(i)-xt(i)-zt(i);
|
||
|
a(i)=1./(yt(i)-p(i));
|
||
|
b(i)=a(i).*(zt(i)-yt(i)).*(yt(i)-xt(i));
|
||
|
pt(i)=yt(i)+b(i);
|
||
|
rho(i)=xt(i).*zt(i)./yt(i);
|
||
|
tau(i)=p(i).*pt(i)./yt(i);
|
||
|
rcx(i)=rc(rho(i),tau(i),ERRTOL);
|
||
|
end
|
||
|
%continue % ************** 1 ***************
|
||
|
i=true(size(y));
|
||
|
while any(i)
|
||
|
sqrtx(i)=sqrt(xt(i));
|
||
|
sqrty(i)=sqrt(yt(i));
|
||
|
sqrtz(i)=sqrt(zt(i));
|
||
|
alamb(i)=sqrtx(i).*(sqrty(i)+sqrtz(i))+sqrty(i).*sqrtz(i);
|
||
|
alpha(i)=(pt(i).*(sqrtx(i)+sqrty(i)+sqrtz(i))+sqrtx(i).*sqrty(i).*sqrtz(i)).^2;
|
||
|
beta(i)=pt(i).*(pt(i)+alamb(i)).^2;
|
||
|
Sum(i)=Sum(i)+fac(i).*rc(alpha(i),beta(i),ERRTOL);
|
||
|
fac(i)=.25*fac(i);
|
||
|
xt(i)=.25*(xt(i)+alamb(i));
|
||
|
yt(i)=.25*(yt(i)+alamb(i));
|
||
|
zt(i)=.25*(zt(i)+alamb(i));
|
||
|
pt(i)=.25*(pt(i)+alamb(i));
|
||
|
ave(i)=.2*(xt(i)+yt(i)+zt(i)+pt(i)+pt(i));
|
||
|
ave4(i,:)=ave(i)*ones(1,4);
|
||
|
%delx=(ave-xt)/ave;
|
||
|
%dely=(ave-yt)/ave;
|
||
|
%delz=(ave-zt)/ave;
|
||
|
%delp=(ave-pt)/ave;
|
||
|
del4=(ave4-[xt yt zt pt])./ave4;
|
||
|
i=max(abs(del4),[],2)>ERRTOL;
|
||
|
end;
|
||
|
ea=del4(:,1).*(del4(:,2)+del4(:,3))+del4(:,2).*del4(:,3);
|
||
|
eb=del4(:,1).*del4(:,2).*del4(:,3);
|
||
|
ec=del4(:,4).^2;
|
||
|
ed=ea-3*ec;
|
||
|
ee=eb+2*del4(:,4).*(ea-ec);
|
||
|
rj=3*Sum+fac.*(1+ed.*(-C1+C5*ed-C6*ee)+eb.*(C7+del4(:,4).*(-C8+del4(:,4).*C4))+del4(:,4).*ea.*(C2-del4(:,4)*C3)-C2*del4(:,4).*ec)./(ave.*sqrt(ave));
|
||
|
i=p<=0;
|
||
|
if any(i)
|
||
|
rj(i)=a.*(b.*rj(i)+3*(rcx(i)-rf(xt(i),yt(i),zt(i),ERRTOL)));
|
||
|
end;
|
||
|
% (C) Copr. 1986-92 Numerical Recipes Software
|
||
|
|
||
|
function rf=rf(x,y,z,ERRTOL)
|
||
|
xyz=[x y z];
|
||
|
sqrtxyz=zeros(size(xyz));
|
||
|
alamb=sqrtxyz;
|
||
|
ave=sqrtxyz;
|
||
|
ave3=sqrtxyz;
|
||
|
del3=sqrtxyz;
|
||
|
|
||
|
ERRTOL=.08*ERRTOL;
|
||
|
THIRD=1/3;
|
||
|
C1=1/24;
|
||
|
C2=.1;
|
||
|
C3=3/44;
|
||
|
C4=1/14;
|
||
|
xyzt=xyz;
|
||
|
%continue % **************** 1 *****************
|
||
|
i=true(size(x));
|
||
|
while any(i)
|
||
|
sqrtxyz(i,:)=sqrt(xyz(i,:));
|
||
|
%alamb(i,:)=sqrtxyz(i,1).*(sqrtxyz(i,2)+sqrtxy(i,3))+sqrtxyz(i,2).*sqrtxyz(i,3);
|
||
|
alamb(i,:)=sqrtxyz(i,1).*(sqrtxyz(i,2)+sqrtxyz(i,3))+sqrtxyz(i,2).*sqrtxyz(i,3);
|
||
|
xyzt(i,:)=.25*(xyzt(i,:)+alamb(i,:)*ones(1,3));
|
||
|
ave(i)=THIRD*(sum(xyzt(i,:),2));
|
||
|
ave3(i,:)=ave(i)*ones(1,3);
|
||
|
del3(i,:)=(ave3(i,:)-xyzt(i,:))./ave3(i,:);
|
||
|
i(i)=max(abs(del3(i,:)),[],2)>ERRTOL;
|
||
|
end;
|
||
|
e2=del3(:,1).*del3(:,2)-del3(:,3)^2;
|
||
|
e3=del3(:,1).*del3(:,2).*del3(:,3);
|
||
|
rf=(1+(C1*e2-C2-C3*e3).*e2+C4*e3)./sqrt(ave);
|
||
|
% (C) Copr. 1986-92 Numerical Recipes Software 0NL&WR2.
|