583 lines
16 KiB
C
583 lines
16 KiB
C
///////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// \file lz_encoder.c
|
|
/// \brief LZ in window
|
|
///
|
|
// Authors: Igor Pavlov
|
|
// Lasse Collin
|
|
//
|
|
// This file has been put into the public domain.
|
|
// You can do whatever you want with this file.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "lz_encoder.h"
|
|
#include "lz_encoder_hash.h"
|
|
|
|
// See lz_encoder_hash.h. This is a bit hackish but avoids making
|
|
// endianness a conditional in makefiles.
|
|
#if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
|
|
# include "lz_encoder_hash_table.h"
|
|
#endif
|
|
|
|
|
|
struct lzma_coder_s {
|
|
/// LZ-based encoder e.g. LZMA
|
|
lzma_lz_encoder lz;
|
|
|
|
/// History buffer and match finder
|
|
lzma_mf mf;
|
|
|
|
/// Next coder in the chain
|
|
lzma_next_coder next;
|
|
};
|
|
|
|
|
|
/// \brief Moves the data in the input window to free space for new data
|
|
///
|
|
/// mf->buffer is a sliding input window, which keeps mf->keep_size_before
|
|
/// bytes of input history available all the time. Now and then we need to
|
|
/// "slide" the buffer to make space for the new data to the end of the
|
|
/// buffer. At the same time, data older than keep_size_before is dropped.
|
|
///
|
|
static void
|
|
move_window(lzma_mf *mf)
|
|
{
|
|
// Align the move to a multiple of 16 bytes. Some LZ-based encoders
|
|
// like LZMA use the lowest bits of mf->read_pos to know the
|
|
// alignment of the uncompressed data. We also get better speed
|
|
// for memmove() with aligned buffers.
|
|
assert(mf->read_pos > mf->keep_size_before);
|
|
const uint32_t move_offset
|
|
= (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
|
|
|
|
assert(mf->write_pos > move_offset);
|
|
const size_t move_size = mf->write_pos - move_offset;
|
|
|
|
assert(move_offset + move_size <= mf->size);
|
|
|
|
memmove(mf->buffer, mf->buffer + move_offset, move_size);
|
|
|
|
mf->offset += move_offset;
|
|
mf->read_pos -= move_offset;
|
|
mf->read_limit -= move_offset;
|
|
mf->write_pos -= move_offset;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/// \brief Tries to fill the input window (mf->buffer)
|
|
///
|
|
/// If we are the last encoder in the chain, our input data is in in[].
|
|
/// Otherwise we call the next filter in the chain to process in[] and
|
|
/// write its output to mf->buffer.
|
|
///
|
|
/// This function must not be called once it has returned LZMA_STREAM_END.
|
|
///
|
|
static lzma_ret
|
|
fill_window(lzma_coder *coder, lzma_allocator *allocator, const uint8_t *in,
|
|
size_t *in_pos, size_t in_size, lzma_action action)
|
|
{
|
|
assert(coder->mf.read_pos <= coder->mf.write_pos);
|
|
|
|
// Move the sliding window if needed.
|
|
if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
|
|
move_window(&coder->mf);
|
|
|
|
// Maybe this is ugly, but lzma_mf uses uint32_t for most things
|
|
// (which I find cleanest), but we need size_t here when filling
|
|
// the history window.
|
|
size_t write_pos = coder->mf.write_pos;
|
|
lzma_ret ret;
|
|
if (coder->next.code == NULL) {
|
|
// Not using a filter, simply memcpy() as much as possible.
|
|
lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
|
|
&write_pos, coder->mf.size);
|
|
|
|
ret = action != LZMA_RUN && *in_pos == in_size
|
|
? LZMA_STREAM_END : LZMA_OK;
|
|
|
|
} else {
|
|
ret = coder->next.code(coder->next.coder, allocator,
|
|
in, in_pos, in_size,
|
|
coder->mf.buffer, &write_pos,
|
|
coder->mf.size, action);
|
|
}
|
|
|
|
coder->mf.write_pos = write_pos;
|
|
|
|
// If end of stream has been reached or flushing completed, we allow
|
|
// the encoder to process all the input (that is, read_pos is allowed
|
|
// to reach write_pos). Otherwise we keep keep_size_after bytes
|
|
// available as prebuffer.
|
|
if (ret == LZMA_STREAM_END) {
|
|
assert(*in_pos == in_size);
|
|
ret = LZMA_OK;
|
|
coder->mf.action = action;
|
|
coder->mf.read_limit = coder->mf.write_pos;
|
|
|
|
} else if (coder->mf.write_pos > coder->mf.keep_size_after) {
|
|
// This needs to be done conditionally, because if we got
|
|
// only little new input, there may be too little input
|
|
// to do any encoding yet.
|
|
coder->mf.read_limit = coder->mf.write_pos
|
|
- coder->mf.keep_size_after;
|
|
}
|
|
|
|
// Restart the match finder after finished LZMA_SYNC_FLUSH.
|
|
if (coder->mf.pending > 0
|
|
&& coder->mf.read_pos < coder->mf.read_limit) {
|
|
// Match finder may update coder->pending and expects it to
|
|
// start from zero, so use a temporary variable.
|
|
const size_t pending = coder->mf.pending;
|
|
coder->mf.pending = 0;
|
|
|
|
// Rewind read_pos so that the match finder can hash
|
|
// the pending bytes.
|
|
assert(coder->mf.read_pos >= pending);
|
|
coder->mf.read_pos -= pending;
|
|
|
|
// Call the skip function directly instead of using
|
|
// mf_skip(), since we don't want to touch mf->read_ahead.
|
|
coder->mf.skip(&coder->mf, pending);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
lz_encode(lzma_coder *coder, lzma_allocator *allocator,
|
|
const uint8_t *restrict in, size_t *restrict in_pos,
|
|
size_t in_size,
|
|
uint8_t *restrict out, size_t *restrict out_pos,
|
|
size_t out_size, lzma_action action)
|
|
{
|
|
while (*out_pos < out_size
|
|
&& (*in_pos < in_size || action != LZMA_RUN)) {
|
|
// Read more data to coder->mf.buffer if needed.
|
|
if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
|
|
>= coder->mf.read_limit)
|
|
return_if_error(fill_window(coder, allocator,
|
|
in, in_pos, in_size, action));
|
|
|
|
// Encode
|
|
const lzma_ret ret = coder->lz.code(coder->lz.coder,
|
|
&coder->mf, out, out_pos, out_size);
|
|
if (ret != LZMA_OK) {
|
|
// Setting this to LZMA_RUN for cases when we are
|
|
// flushing. It doesn't matter when finishing or if
|
|
// an error occurred.
|
|
coder->mf.action = LZMA_RUN;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return LZMA_OK;
|
|
}
|
|
|
|
|
|
static bool
|
|
lz_encoder_prepare(lzma_mf *mf, lzma_allocator *allocator,
|
|
const lzma_lz_options *lz_options)
|
|
{
|
|
// For now, the dictionary size is limited to 1.5 GiB. This may grow
|
|
// in the future if needed, but it needs a little more work than just
|
|
// changing this check.
|
|
if (lz_options->dict_size < LZMA_DICT_SIZE_MIN
|
|
|| lz_options->dict_size
|
|
> (UINT32_C(1) << 30) + (UINT32_C(1) << 29)
|
|
|| lz_options->nice_len > lz_options->match_len_max)
|
|
return true;
|
|
|
|
mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
|
|
|
|
mf->keep_size_after = lz_options->after_size
|
|
+ lz_options->match_len_max;
|
|
|
|
// To avoid constant memmove()s, allocate some extra space. Since
|
|
// memmove()s become more expensive when the size of the buffer
|
|
// increases, we reserve more space when a large dictionary is
|
|
// used to make the memmove() calls rarer.
|
|
//
|
|
// This works with dictionaries up to about 3 GiB. If bigger
|
|
// dictionary is wanted, some extra work is needed:
|
|
// - Several variables in lzma_mf have to be changed from uint32_t
|
|
// to size_t.
|
|
// - Memory usage calculation needs something too, e.g. use uint64_t
|
|
// for mf->size.
|
|
uint32_t reserve = lz_options->dict_size / 2;
|
|
if (reserve > (UINT32_C(1) << 30))
|
|
reserve /= 2;
|
|
|
|
reserve += (lz_options->before_size + lz_options->match_len_max
|
|
+ lz_options->after_size) / 2 + (UINT32_C(1) << 19);
|
|
|
|
const uint32_t old_size = mf->size;
|
|
mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
|
|
|
|
// Deallocate the old history buffer if it exists but has different
|
|
// size than what is needed now.
|
|
if (mf->buffer != NULL && old_size != mf->size) {
|
|
lzma_free(mf->buffer, allocator);
|
|
mf->buffer = NULL;
|
|
}
|
|
|
|
// Match finder options
|
|
mf->match_len_max = lz_options->match_len_max;
|
|
mf->nice_len = lz_options->nice_len;
|
|
|
|
// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
|
|
// mean limiting dictionary size to less than 2 GiB. With a match
|
|
// finder that uses multibyte resolution (hashes start at e.g. every
|
|
// fourth byte), cyclic_size would stay below 2 Gi even when
|
|
// dictionary size is greater than 2 GiB.
|
|
//
|
|
// It would be possible to allow cyclic_size >= 2 Gi, but then we
|
|
// would need to be careful to use 64-bit types in various places
|
|
// (size_t could do since we would need bigger than 32-bit address
|
|
// space anyway). It would also require either zeroing a multigigabyte
|
|
// buffer at initialization (waste of time and RAM) or allow
|
|
// normalization in lz_encoder_mf.c to access uninitialized
|
|
// memory to keep the code simpler. The current way is simple and
|
|
// still allows pretty big dictionaries, so I don't expect these
|
|
// limits to change.
|
|
mf->cyclic_size = lz_options->dict_size + 1;
|
|
|
|
// Validate the match finder ID and setup the function pointers.
|
|
switch (lz_options->match_finder) {
|
|
#ifdef HAVE_MF_HC3
|
|
case LZMA_MF_HC3:
|
|
mf->find = &lzma_mf_hc3_find;
|
|
mf->skip = &lzma_mf_hc3_skip;
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_MF_HC4
|
|
case LZMA_MF_HC4:
|
|
mf->find = &lzma_mf_hc4_find;
|
|
mf->skip = &lzma_mf_hc4_skip;
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_MF_BT2
|
|
case LZMA_MF_BT2:
|
|
mf->find = &lzma_mf_bt2_find;
|
|
mf->skip = &lzma_mf_bt2_skip;
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_MF_BT3
|
|
case LZMA_MF_BT3:
|
|
mf->find = &lzma_mf_bt3_find;
|
|
mf->skip = &lzma_mf_bt3_skip;
|
|
break;
|
|
#endif
|
|
#ifdef HAVE_MF_BT4
|
|
case LZMA_MF_BT4:
|
|
mf->find = &lzma_mf_bt4_find;
|
|
mf->skip = &lzma_mf_bt4_skip;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
return true;
|
|
}
|
|
|
|
// Calculate the sizes of mf->hash and mf->son and check that
|
|
// nice_len is big enough for the selected match finder.
|
|
const uint32_t hash_bytes = lz_options->match_finder & 0x0F;
|
|
if (hash_bytes > mf->nice_len)
|
|
return true;
|
|
|
|
const bool is_bt = (lz_options->match_finder & 0x10) != 0;
|
|
uint32_t hs;
|
|
|
|
if (hash_bytes == 2) {
|
|
hs = 0xFFFF;
|
|
} else {
|
|
// Round dictionary size up to the next 2^n - 1 so it can
|
|
// be used as a hash mask.
|
|
hs = lz_options->dict_size - 1;
|
|
hs |= hs >> 1;
|
|
hs |= hs >> 2;
|
|
hs |= hs >> 4;
|
|
hs |= hs >> 8;
|
|
hs >>= 1;
|
|
hs |= 0xFFFF;
|
|
|
|
if (hs > (UINT32_C(1) << 24)) {
|
|
if (hash_bytes == 3)
|
|
hs = (UINT32_C(1) << 24) - 1;
|
|
else
|
|
hs >>= 1;
|
|
}
|
|
}
|
|
|
|
mf->hash_mask = hs;
|
|
|
|
++hs;
|
|
if (hash_bytes > 2)
|
|
hs += HASH_2_SIZE;
|
|
if (hash_bytes > 3)
|
|
hs += HASH_3_SIZE;
|
|
/*
|
|
No match finder uses this at the moment.
|
|
if (mf->hash_bytes > 4)
|
|
hs += HASH_4_SIZE;
|
|
*/
|
|
|
|
// If the above code calculating hs is modified, make sure that
|
|
// this assertion stays valid (UINT32_MAX / 5 is not strictly the
|
|
// exact limit). If it doesn't, you need to calculate that
|
|
// hash_size_sum + sons_count cannot overflow.
|
|
assert(hs < UINT32_MAX / 5);
|
|
|
|
const uint32_t old_count = mf->hash_size_sum + mf->sons_count;
|
|
mf->hash_size_sum = hs;
|
|
mf->sons_count = mf->cyclic_size;
|
|
if (is_bt)
|
|
mf->sons_count *= 2;
|
|
|
|
const uint32_t new_count = mf->hash_size_sum + mf->sons_count;
|
|
|
|
// Deallocate the old hash array if it exists and has different size
|
|
// than what is needed now.
|
|
if (old_count != new_count) {
|
|
lzma_free(mf->hash, allocator);
|
|
mf->hash = NULL;
|
|
}
|
|
|
|
// Maximum number of match finder cycles
|
|
mf->depth = lz_options->depth;
|
|
if (mf->depth == 0) {
|
|
if (is_bt)
|
|
mf->depth = 16 + mf->nice_len / 2;
|
|
else
|
|
mf->depth = 4 + mf->nice_len / 4;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
static bool
|
|
lz_encoder_init(lzma_mf *mf, lzma_allocator *allocator,
|
|
const lzma_lz_options *lz_options)
|
|
{
|
|
// Allocate the history buffer.
|
|
if (mf->buffer == NULL) {
|
|
mf->buffer = lzma_alloc(mf->size, allocator);
|
|
if (mf->buffer == NULL)
|
|
return true;
|
|
}
|
|
|
|
// Use cyclic_size as initial mf->offset. This allows
|
|
// avoiding a few branches in the match finders. The downside is
|
|
// that match finder needs to be normalized more often, which may
|
|
// hurt performance with huge dictionaries.
|
|
mf->offset = mf->cyclic_size;
|
|
mf->read_pos = 0;
|
|
mf->read_ahead = 0;
|
|
mf->read_limit = 0;
|
|
mf->write_pos = 0;
|
|
mf->pending = 0;
|
|
|
|
// Allocate match finder's hash array.
|
|
const size_t alloc_count = mf->hash_size_sum + mf->sons_count;
|
|
|
|
#if UINT32_MAX >= SIZE_MAX / 4
|
|
// Check for integer overflow. (Huge dictionaries are not
|
|
// possible on 32-bit CPU.)
|
|
if (alloc_count > SIZE_MAX / sizeof(uint32_t))
|
|
return true;
|
|
#endif
|
|
|
|
if (mf->hash == NULL) {
|
|
mf->hash = lzma_alloc(alloc_count * sizeof(uint32_t),
|
|
allocator);
|
|
if (mf->hash == NULL)
|
|
return true;
|
|
}
|
|
|
|
mf->son = mf->hash + mf->hash_size_sum;
|
|
mf->cyclic_pos = 0;
|
|
|
|
// Initialize the hash table. Since EMPTY_HASH_VALUE is zero, we
|
|
// can use memset().
|
|
/*
|
|
for (uint32_t i = 0; i < hash_size_sum; ++i)
|
|
mf->hash[i] = EMPTY_HASH_VALUE;
|
|
*/
|
|
memzero(mf->hash, (size_t)(mf->hash_size_sum) * sizeof(uint32_t));
|
|
|
|
// We don't need to initialize mf->son, but not doing that will
|
|
// make Valgrind complain in normalization (see normalize() in
|
|
// lz_encoder_mf.c).
|
|
//
|
|
// Skipping this initialization is *very* good when big dictionary is
|
|
// used but only small amount of data gets actually compressed: most
|
|
// of the mf->hash won't get actually allocated by the kernel, so
|
|
// we avoid wasting RAM and improve initialization speed a lot.
|
|
//memzero(mf->son, (size_t)(mf->sons_count) * sizeof(uint32_t));
|
|
|
|
// Handle preset dictionary.
|
|
if (lz_options->preset_dict != NULL
|
|
&& lz_options->preset_dict_size > 0) {
|
|
// If the preset dictionary is bigger than the actual
|
|
// dictionary, use only the tail.
|
|
mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
|
|
memcpy(mf->buffer, lz_options->preset_dict
|
|
+ lz_options->preset_dict_size - mf->write_pos,
|
|
mf->write_pos);
|
|
mf->action = LZMA_SYNC_FLUSH;
|
|
mf->skip(mf, mf->write_pos);
|
|
}
|
|
|
|
mf->action = LZMA_RUN;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
extern uint64_t
|
|
lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
|
|
{
|
|
// Old buffers must not exist when calling lz_encoder_prepare().
|
|
lzma_mf mf = {
|
|
.buffer = NULL,
|
|
.hash = NULL,
|
|
.hash_size_sum = 0,
|
|
.sons_count = 0,
|
|
};
|
|
|
|
// Setup the size information into mf.
|
|
if (lz_encoder_prepare(&mf, NULL, lz_options))
|
|
return UINT64_MAX;
|
|
|
|
// Calculate the memory usage.
|
|
return (uint64_t)(mf.hash_size_sum + mf.sons_count)
|
|
* sizeof(uint32_t)
|
|
+ (uint64_t)(mf.size) + sizeof(lzma_coder);
|
|
}
|
|
|
|
|
|
static void
|
|
lz_encoder_end(lzma_coder *coder, lzma_allocator *allocator)
|
|
{
|
|
lzma_next_end(&coder->next, allocator);
|
|
|
|
lzma_free(coder->mf.hash, allocator);
|
|
lzma_free(coder->mf.buffer, allocator);
|
|
|
|
if (coder->lz.end != NULL)
|
|
coder->lz.end(coder->lz.coder, allocator);
|
|
else
|
|
lzma_free(coder->lz.coder, allocator);
|
|
|
|
lzma_free(coder, allocator);
|
|
return;
|
|
}
|
|
|
|
|
|
static lzma_ret
|
|
lz_encoder_update(lzma_coder *coder, lzma_allocator *allocator,
|
|
const lzma_filter *filters_null lzma_attribute((__unused__)),
|
|
const lzma_filter *reversed_filters)
|
|
{
|
|
if (coder->lz.options_update == NULL)
|
|
return LZMA_PROG_ERROR;
|
|
|
|
return_if_error(coder->lz.options_update(
|
|
coder->lz.coder, reversed_filters));
|
|
|
|
return lzma_next_filter_update(
|
|
&coder->next, allocator, reversed_filters + 1);
|
|
}
|
|
|
|
|
|
extern lzma_ret
|
|
lzma_lz_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
|
|
const lzma_filter_info *filters,
|
|
lzma_ret (*lz_init)(lzma_lz_encoder *lz,
|
|
lzma_allocator *allocator, const void *options,
|
|
lzma_lz_options *lz_options))
|
|
{
|
|
#ifdef HAVE_SMALL
|
|
// We need that the CRC32 table has been initialized.
|
|
lzma_crc32_init();
|
|
#endif
|
|
|
|
// Allocate and initialize the base data structure.
|
|
if (next->coder == NULL) {
|
|
next->coder = lzma_alloc(sizeof(lzma_coder), allocator);
|
|
if (next->coder == NULL)
|
|
return LZMA_MEM_ERROR;
|
|
|
|
next->code = &lz_encode;
|
|
next->end = &lz_encoder_end;
|
|
next->update = &lz_encoder_update;
|
|
|
|
next->coder->lz.coder = NULL;
|
|
next->coder->lz.code = NULL;
|
|
next->coder->lz.end = NULL;
|
|
|
|
next->coder->mf.buffer = NULL;
|
|
next->coder->mf.hash = NULL;
|
|
next->coder->mf.hash_size_sum = 0;
|
|
next->coder->mf.sons_count = 0;
|
|
|
|
next->coder->next = LZMA_NEXT_CODER_INIT;
|
|
}
|
|
|
|
// Initialize the LZ-based encoder.
|
|
lzma_lz_options lz_options;
|
|
return_if_error(lz_init(&next->coder->lz, allocator,
|
|
filters[0].options, &lz_options));
|
|
|
|
// Setup the size information into next->coder->mf and deallocate
|
|
// old buffers if they have wrong size.
|
|
if (lz_encoder_prepare(&next->coder->mf, allocator, &lz_options))
|
|
return LZMA_OPTIONS_ERROR;
|
|
|
|
// Allocate new buffers if needed, and do the rest of
|
|
// the initialization.
|
|
if (lz_encoder_init(&next->coder->mf, allocator, &lz_options))
|
|
return LZMA_MEM_ERROR;
|
|
|
|
// Initialize the next filter in the chain, if any.
|
|
return lzma_next_filter_init(&next->coder->next, allocator,
|
|
filters + 1);
|
|
}
|
|
|
|
|
|
extern LZMA_API(lzma_bool)
|
|
lzma_mf_is_supported(lzma_match_finder mf)
|
|
{
|
|
bool ret = false;
|
|
|
|
#ifdef HAVE_MF_HC3
|
|
if (mf == LZMA_MF_HC3)
|
|
ret = true;
|
|
#endif
|
|
|
|
#ifdef HAVE_MF_HC4
|
|
if (mf == LZMA_MF_HC4)
|
|
ret = true;
|
|
#endif
|
|
|
|
#ifdef HAVE_MF_BT2
|
|
if (mf == LZMA_MF_BT2)
|
|
ret = true;
|
|
#endif
|
|
|
|
#ifdef HAVE_MF_BT3
|
|
if (mf == LZMA_MF_BT3)
|
|
ret = true;
|
|
#endif
|
|
|
|
#ifdef HAVE_MF_BT4
|
|
if (mf == LZMA_MF_BT4)
|
|
ret = true;
|
|
#endif
|
|
|
|
return ret;
|
|
}
|