yolobs-studio/libobs/obs-audio-controls.c
2020-03-25 09:07:22 +01:00

948 lines
24 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
Copyright (C) 2014 by Leonhard Oelke <leonhard@in-verted.de>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include "util/sse-intrin.h"
#include "util/threading.h"
#include "util/bmem.h"
#include "media-io/audio-math.h"
#include "obs.h"
#include "obs-internal.h"
#include "obs-audio-controls.h"
/* These are pointless warnings generated not by our code, but by a standard
* library macro, INFINITY */
#ifdef _MSC_VER
#pragma warning(disable : 4056)
#pragma warning(disable : 4756)
#endif
#define CLAMP(x, min, max) ((x) < min ? min : ((x) > max ? max : (x)))
typedef float (*obs_fader_conversion_t)(const float val);
struct fader_cb {
obs_fader_changed_t callback;
void *param;
};
struct obs_fader {
pthread_mutex_t mutex;
obs_fader_conversion_t def_to_db;
obs_fader_conversion_t db_to_def;
obs_source_t *source;
enum obs_fader_type type;
float max_db;
float min_db;
float cur_db;
bool ignore_next_signal;
pthread_mutex_t callback_mutex;
DARRAY(struct fader_cb) callbacks;
};
struct meter_cb {
obs_volmeter_updated_t callback;
void *param;
};
struct obs_volmeter {
pthread_mutex_t mutex;
obs_source_t *source;
enum obs_fader_type type;
float cur_db;
pthread_mutex_t callback_mutex;
DARRAY(struct meter_cb) callbacks;
enum obs_peak_meter_type peak_meter_type;
unsigned int update_ms;
float prev_samples[MAX_AUDIO_CHANNELS][4];
float magnitude[MAX_AUDIO_CHANNELS];
float peak[MAX_AUDIO_CHANNELS];
};
static float cubic_def_to_db(const float def)
{
if (def == 1.0f)
return 0.0f;
else if (def <= 0.0f)
return -INFINITY;
return mul_to_db(def * def * def);
}
static float cubic_db_to_def(const float db)
{
if (db == 0.0f)
return 1.0f;
else if (db == -INFINITY)
return 0.0f;
return cbrtf(db_to_mul(db));
}
static float iec_def_to_db(const float def)
{
if (def == 1.0f)
return 0.0f;
else if (def <= 0.0f)
return -INFINITY;
float db;
if (def >= 0.75f)
db = (def - 1.0f) / 0.25f * 9.0f;
else if (def >= 0.5f)
db = (def - 0.75f) / 0.25f * 11.0f - 9.0f;
else if (def >= 0.3f)
db = (def - 0.5f) / 0.2f * 10.0f - 20.0f;
else if (def >= 0.15f)
db = (def - 0.3f) / 0.15f * 10.0f - 30.0f;
else if (def >= 0.075f)
db = (def - 0.15f) / 0.075f * 10.0f - 40.0f;
else if (def >= 0.025f)
db = (def - 0.075f) / 0.05f * 10.0f - 50.0f;
else if (def >= 0.001f)
db = (def - 0.025f) / 0.025f * 90.0f - 60.0f;
else
db = -INFINITY;
return db;
}
static float iec_db_to_def(const float db)
{
if (db == 0.0f)
return 1.0f;
else if (db == -INFINITY)
return 0.0f;
float def;
if (db >= -9.0f)
def = (db + 9.0f) / 9.0f * 0.25f + 0.75f;
else if (db >= -20.0f)
def = (db + 20.0f) / 11.0f * 0.25f + 0.5f;
else if (db >= -30.0f)
def = (db + 30.0f) / 10.0f * 0.2f + 0.3f;
else if (db >= -40.0f)
def = (db + 40.0f) / 10.0f * 0.15f + 0.15f;
else if (db >= -50.0f)
def = (db + 50.0f) / 10.0f * 0.075f + 0.075f;
else if (db >= -60.0f)
def = (db + 60.0f) / 10.0f * 0.05f + 0.025f;
else if (db >= -114.0f)
def = (db + 150.0f) / 90.0f * 0.025f;
else
def = 0.0f;
return def;
}
#define LOG_OFFSET_DB 6.0f
#define LOG_RANGE_DB 96.0f
/* equals -log10f(LOG_OFFSET_DB) */
#define LOG_OFFSET_VAL -0.77815125038364363f
/* equals -log10f(-LOG_RANGE_DB + LOG_OFFSET_DB) */
#define LOG_RANGE_VAL -2.00860017176191756f
static float log_def_to_db(const float def)
{
if (def >= 1.0f)
return 0.0f;
else if (def <= 0.0f)
return -INFINITY;
return -(LOG_RANGE_DB + LOG_OFFSET_DB) *
powf((LOG_RANGE_DB + LOG_OFFSET_DB) / LOG_OFFSET_DB,
-def) +
LOG_OFFSET_DB;
}
static float log_db_to_def(const float db)
{
if (db >= 0.0f)
return 1.0f;
else if (db <= -96.0f)
return 0.0f;
return (-log10f(-db + LOG_OFFSET_DB) - LOG_RANGE_VAL) /
(LOG_OFFSET_VAL - LOG_RANGE_VAL);
}
static void signal_volume_changed(struct obs_fader *fader, const float db)
{
pthread_mutex_lock(&fader->callback_mutex);
for (size_t i = fader->callbacks.num; i > 0; i--) {
struct fader_cb cb = fader->callbacks.array[i - 1];
cb.callback(cb.param, db);
}
pthread_mutex_unlock(&fader->callback_mutex);
}
static void signal_levels_updated(struct obs_volmeter *volmeter,
const float magnitude[MAX_AUDIO_CHANNELS],
const float peak[MAX_AUDIO_CHANNELS],
const float input_peak[MAX_AUDIO_CHANNELS])
{
pthread_mutex_lock(&volmeter->callback_mutex);
for (size_t i = volmeter->callbacks.num; i > 0; i--) {
struct meter_cb cb = volmeter->callbacks.array[i - 1];
cb.callback(cb.param, magnitude, peak, input_peak);
}
pthread_mutex_unlock(&volmeter->callback_mutex);
}
static void fader_source_volume_changed(void *vptr, calldata_t *calldata)
{
struct obs_fader *fader = (struct obs_fader *)vptr;
pthread_mutex_lock(&fader->mutex);
if (fader->ignore_next_signal) {
fader->ignore_next_signal = false;
pthread_mutex_unlock(&fader->mutex);
return;
}
const float mul = (float)calldata_float(calldata, "volume");
const float db = mul_to_db(mul);
fader->cur_db = db;
pthread_mutex_unlock(&fader->mutex);
signal_volume_changed(fader, db);
}
static void volmeter_source_volume_changed(void *vptr, calldata_t *calldata)
{
struct obs_volmeter *volmeter = (struct obs_volmeter *)vptr;
pthread_mutex_lock(&volmeter->mutex);
float mul = (float)calldata_float(calldata, "volume");
volmeter->cur_db = mul_to_db(mul);
pthread_mutex_unlock(&volmeter->mutex);
}
static void fader_source_destroyed(void *vptr, calldata_t *calldata)
{
UNUSED_PARAMETER(calldata);
struct obs_fader *fader = (struct obs_fader *)vptr;
obs_fader_detach_source(fader);
}
static void volmeter_source_destroyed(void *vptr, calldata_t *calldata)
{
UNUSED_PARAMETER(calldata);
struct obs_volmeter *volmeter = (struct obs_volmeter *)vptr;
obs_volmeter_detach_source(volmeter);
}
static int get_nr_channels_from_audio_data(const struct audio_data *data)
{
int nr_channels = 0;
for (int i = 0; i < MAX_AV_PLANES; i++) {
if (data->data[i])
nr_channels++;
}
return CLAMP(nr_channels, 0, MAX_AUDIO_CHANNELS);
}
/* msb(h, g, f, e) lsb(d, c, b, a) --> msb(h, h, g, f) lsb(e, d, c, b)
*/
#define SHIFT_RIGHT_2PS(msb, lsb) \
{ \
__m128 tmp = \
_mm_shuffle_ps(lsb, msb, _MM_SHUFFLE(0, 0, 3, 3)); \
lsb = _mm_shuffle_ps(lsb, tmp, _MM_SHUFFLE(2, 1, 2, 1)); \
msb = _mm_shuffle_ps(msb, msb, _MM_SHUFFLE(3, 3, 2, 1)); \
}
/* x(d, c, b, a) --> (|d|, |c|, |b|, |a|)
*/
#define abs_ps(v) _mm_andnot_ps(_mm_set1_ps(-0.f), v)
/* Take cross product of a vector with a matrix resulting in vector.
*/
#define VECTOR_MATRIX_CROSS_PS(out, v, m0, m1, m2, m3) \
{ \
out = _mm_mul_ps(v, m0); \
__m128 mul1 = _mm_mul_ps(v, m1); \
__m128 mul2 = _mm_mul_ps(v, m2); \
__m128 mul3 = _mm_mul_ps(v, m3); \
\
_MM_TRANSPOSE4_PS(out, mul1, mul2, mul3); \
\
out = _mm_add_ps(out, mul1); \
out = _mm_add_ps(out, mul2); \
out = _mm_add_ps(out, mul3); \
}
/* x4(d, c, b, a) --> max(a, b, c, d)
*/
#define hmax_ps(r, x4) \
do { \
float x4_mem[4]; \
_mm_storeu_ps(x4_mem, x4); \
r = x4_mem[0]; \
r = fmaxf(r, x4_mem[1]); \
r = fmaxf(r, x4_mem[2]); \
r = fmaxf(r, x4_mem[3]); \
} while (false)
/* Calculate the true peak over a set of samples.
* The algorithm implements 5x oversampling by using WhittakerShannon
* interpolation over four samples.
*
* The four samples have location t=-1.5, -0.5, +0.5, +1.5
* The oversamples are taken at locations t=-0.3, -0.1, +0.1, +0.3
*
* @param previous_samples Last 4 samples from the previous iteration.
* @param samples The samples to find the peak in.
* @param nr_samples Number of sets of 4 samples.
* @returns 5 times oversampled true-peak from the set of samples.
*/
static float get_true_peak(__m128 previous_samples, const float *samples,
size_t nr_samples)
{
/* These are normalized-sinc parameters for interpolating over sample
* points which are located at x-coords: -1.5, -0.5, +0.5, +1.5.
* And oversample points at x-coords: -0.3, -0.1, 0.1, 0.3. */
const __m128 m3 =
_mm_set_ps(-0.155915f, 0.935489f, 0.233872f, -0.103943f);
const __m128 m1 =
_mm_set_ps(-0.216236f, 0.756827f, 0.504551f, -0.189207f);
const __m128 p1 =
_mm_set_ps(-0.189207f, 0.504551f, 0.756827f, -0.216236f);
const __m128 p3 =
_mm_set_ps(-0.103943f, 0.233872f, 0.935489f, -0.155915f);
__m128 work = previous_samples;
__m128 peak = previous_samples;
for (size_t i = 0; (i + 3) < nr_samples; i += 4) {
__m128 new_work = _mm_load_ps(&samples[i]);
__m128 intrp_samples;
/* Include the actual sample values in the peak. */
__m128 abs_new_work = abs_ps(new_work);
peak = _mm_max_ps(peak, abs_new_work);
/* Shift in the next point. */
SHIFT_RIGHT_2PS(new_work, work);
VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3);
peak = _mm_max_ps(peak, abs_ps(intrp_samples));
SHIFT_RIGHT_2PS(new_work, work);
VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3);
peak = _mm_max_ps(peak, abs_ps(intrp_samples));
SHIFT_RIGHT_2PS(new_work, work);
VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3);
peak = _mm_max_ps(peak, abs_ps(intrp_samples));
SHIFT_RIGHT_2PS(new_work, work);
VECTOR_MATRIX_CROSS_PS(intrp_samples, work, m3, m1, p1, p3);
peak = _mm_max_ps(peak, abs_ps(intrp_samples));
}
float r;
hmax_ps(r, peak);
return r;
}
/* points contain the first four samples to calculate the sinc interpolation
* over. They will have come from a previous iteration.
*/
static float get_sample_peak(__m128 previous_samples, const float *samples,
size_t nr_samples)
{
__m128 peak = previous_samples;
for (size_t i = 0; (i + 3) < nr_samples; i += 4) {
__m128 new_work = _mm_load_ps(&samples[i]);
peak = _mm_max_ps(peak, abs_ps(new_work));
}
float r;
hmax_ps(r, peak);
return r;
}
static void volmeter_process_peak_last_samples(obs_volmeter_t *volmeter,
int channel_nr, float *samples,
size_t nr_samples)
{
/* Take the last 4 samples that need to be used for the next peak
* calculation. If there are less than 4 samples in total the new
* samples shift out the old samples. */
switch (nr_samples) {
case 0:
break;
case 1:
volmeter->prev_samples[channel_nr][0] =
volmeter->prev_samples[channel_nr][1];
volmeter->prev_samples[channel_nr][1] =
volmeter->prev_samples[channel_nr][2];
volmeter->prev_samples[channel_nr][2] =
volmeter->prev_samples[channel_nr][3];
volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1];
break;
case 2:
volmeter->prev_samples[channel_nr][0] =
volmeter->prev_samples[channel_nr][2];
volmeter->prev_samples[channel_nr][1] =
volmeter->prev_samples[channel_nr][3];
volmeter->prev_samples[channel_nr][2] = samples[nr_samples - 2];
volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1];
break;
case 3:
volmeter->prev_samples[channel_nr][0] =
volmeter->prev_samples[channel_nr][3];
volmeter->prev_samples[channel_nr][1] = samples[nr_samples - 3];
volmeter->prev_samples[channel_nr][2] = samples[nr_samples - 2];
volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1];
break;
default:
volmeter->prev_samples[channel_nr][0] = samples[nr_samples - 4];
volmeter->prev_samples[channel_nr][1] = samples[nr_samples - 3];
volmeter->prev_samples[channel_nr][2] = samples[nr_samples - 2];
volmeter->prev_samples[channel_nr][3] = samples[nr_samples - 1];
}
}
static void volmeter_process_peak(obs_volmeter_t *volmeter,
const struct audio_data *data,
int nr_channels)
{
int nr_samples = data->frames;
int channel_nr = 0;
for (int plane_nr = 0; channel_nr < nr_channels; plane_nr++) {
float *samples = (float *)data->data[plane_nr];
if (!samples) {
continue;
}
if (((uintptr_t)samples & 0xf) > 0) {
printf("Audio plane %i is not aligned %p skipping "
"peak volume measurement.\n",
plane_nr, samples);
volmeter->peak[channel_nr] = 1.0;
channel_nr++;
continue;
}
/* volmeter->prev_samples may not be aligned to 16 bytes;
* use unaligned load. */
__m128 previous_samples =
_mm_loadu_ps(volmeter->prev_samples[channel_nr]);
float peak;
switch (volmeter->peak_meter_type) {
case TRUE_PEAK_METER:
peak = get_true_peak(previous_samples, samples,
nr_samples);
break;
case SAMPLE_PEAK_METER:
default:
peak = get_sample_peak(previous_samples, samples,
nr_samples);
break;
}
volmeter_process_peak_last_samples(volmeter, channel_nr,
samples, nr_samples);
volmeter->peak[channel_nr] = peak;
channel_nr++;
}
/* Clear the peak of the channels that have not been handled. */
for (; channel_nr < MAX_AUDIO_CHANNELS; channel_nr++) {
volmeter->peak[channel_nr] = 0.0;
}
}
static void volmeter_process_magnitude(obs_volmeter_t *volmeter,
const struct audio_data *data,
int nr_channels)
{
size_t nr_samples = data->frames;
int channel_nr = 0;
for (int plane_nr = 0; channel_nr < nr_channels; plane_nr++) {
float *samples = (float *)data->data[plane_nr];
if (!samples) {
continue;
}
float sum = 0.0;
for (size_t i = 0; i < nr_samples; i++) {
float sample = samples[i];
sum += sample * sample;
}
volmeter->magnitude[channel_nr] = sqrtf(sum / nr_samples);
channel_nr++;
}
}
static void volmeter_process_audio_data(obs_volmeter_t *volmeter,
const struct audio_data *data)
{
int nr_channels = get_nr_channels_from_audio_data(data);
volmeter_process_peak(volmeter, data, nr_channels);
volmeter_process_magnitude(volmeter, data, nr_channels);
}
static void volmeter_source_data_received(void *vptr, obs_source_t *source,
const struct audio_data *data,
bool muted)
{
struct obs_volmeter *volmeter = (struct obs_volmeter *)vptr;
float mul;
float magnitude[MAX_AUDIO_CHANNELS];
float peak[MAX_AUDIO_CHANNELS];
float input_peak[MAX_AUDIO_CHANNELS];
pthread_mutex_lock(&volmeter->mutex);
volmeter_process_audio_data(volmeter, data);
// Adjust magnitude/peak based on the volume level set by the user.
// And convert to dB.
mul = muted ? 0.0f : db_to_mul(volmeter->cur_db);
for (int channel_nr = 0; channel_nr < MAX_AUDIO_CHANNELS;
channel_nr++) {
magnitude[channel_nr] =
mul_to_db(volmeter->magnitude[channel_nr] * mul);
peak[channel_nr] = mul_to_db(volmeter->peak[channel_nr] * mul);
/* The input-peak is NOT adjusted with volume, so that the user
* can check the input-gain. */
input_peak[channel_nr] = mul_to_db(volmeter->peak[channel_nr]);
}
pthread_mutex_unlock(&volmeter->mutex);
signal_levels_updated(volmeter, magnitude, peak, input_peak);
UNUSED_PARAMETER(source);
}
obs_fader_t *obs_fader_create(enum obs_fader_type type)
{
struct obs_fader *fader = bzalloc(sizeof(struct obs_fader));
if (!fader)
return NULL;
pthread_mutex_init_value(&fader->mutex);
pthread_mutex_init_value(&fader->callback_mutex);
if (pthread_mutex_init(&fader->mutex, NULL) != 0)
goto fail;
if (pthread_mutex_init(&fader->callback_mutex, NULL) != 0)
goto fail;
switch (type) {
case OBS_FADER_CUBIC:
fader->def_to_db = cubic_def_to_db;
fader->db_to_def = cubic_db_to_def;
fader->max_db = 0.0f;
fader->min_db = -INFINITY;
break;
case OBS_FADER_IEC:
fader->def_to_db = iec_def_to_db;
fader->db_to_def = iec_db_to_def;
fader->max_db = 0.0f;
fader->min_db = -INFINITY;
break;
case OBS_FADER_LOG:
fader->def_to_db = log_def_to_db;
fader->db_to_def = log_db_to_def;
fader->max_db = 0.0f;
fader->min_db = -96.0f;
break;
default:
goto fail;
break;
}
fader->type = type;
return fader;
fail:
obs_fader_destroy(fader);
return NULL;
}
void obs_fader_destroy(obs_fader_t *fader)
{
if (!fader)
return;
obs_fader_detach_source(fader);
da_free(fader->callbacks);
pthread_mutex_destroy(&fader->callback_mutex);
pthread_mutex_destroy(&fader->mutex);
bfree(fader);
}
bool obs_fader_set_db(obs_fader_t *fader, const float db)
{
if (!fader)
return false;
pthread_mutex_lock(&fader->mutex);
bool clamped = false;
fader->cur_db = db;
if (fader->cur_db > fader->max_db) {
fader->cur_db = fader->max_db;
clamped = true;
}
if (fader->cur_db < fader->min_db) {
fader->cur_db = -INFINITY;
clamped = true;
}
fader->ignore_next_signal = true;
obs_source_t *src = fader->source;
const float mul = db_to_mul(fader->cur_db);
pthread_mutex_unlock(&fader->mutex);
if (src)
obs_source_set_volume(src, mul);
return !clamped;
}
float obs_fader_get_db(obs_fader_t *fader)
{
if (!fader)
return 0.0f;
pthread_mutex_lock(&fader->mutex);
const float db = fader->cur_db;
pthread_mutex_unlock(&fader->mutex);
return db;
}
bool obs_fader_set_deflection(obs_fader_t *fader, const float def)
{
if (!fader)
return false;
return obs_fader_set_db(fader, fader->def_to_db(def));
}
float obs_fader_get_deflection(obs_fader_t *fader)
{
if (!fader)
return 0.0f;
pthread_mutex_lock(&fader->mutex);
const float def = fader->db_to_def(fader->cur_db);
pthread_mutex_unlock(&fader->mutex);
return def;
}
bool obs_fader_set_mul(obs_fader_t *fader, const float mul)
{
if (!fader)
return false;
return obs_fader_set_db(fader, mul_to_db(mul));
}
float obs_fader_get_mul(obs_fader_t *fader)
{
if (!fader)
return 0.0f;
pthread_mutex_lock(&fader->mutex);
const float mul = db_to_mul(fader->cur_db);
pthread_mutex_unlock(&fader->mutex);
return mul;
}
bool obs_fader_attach_source(obs_fader_t *fader, obs_source_t *source)
{
signal_handler_t *sh;
float vol;
if (!fader || !source)
return false;
obs_fader_detach_source(fader);
sh = obs_source_get_signal_handler(source);
signal_handler_connect(sh, "volume", fader_source_volume_changed,
fader);
signal_handler_connect(sh, "destroy", fader_source_destroyed, fader);
vol = obs_source_get_volume(source);
pthread_mutex_lock(&fader->mutex);
fader->source = source;
fader->cur_db = mul_to_db(vol);
pthread_mutex_unlock(&fader->mutex);
return true;
}
void obs_fader_detach_source(obs_fader_t *fader)
{
signal_handler_t *sh;
obs_source_t *source;
if (!fader)
return;
pthread_mutex_lock(&fader->mutex);
source = fader->source;
fader->source = NULL;
pthread_mutex_unlock(&fader->mutex);
if (!source)
return;
sh = obs_source_get_signal_handler(source);
signal_handler_disconnect(sh, "volume", fader_source_volume_changed,
fader);
signal_handler_disconnect(sh, "destroy", fader_source_destroyed, fader);
}
void obs_fader_add_callback(obs_fader_t *fader, obs_fader_changed_t callback,
void *param)
{
struct fader_cb cb = {callback, param};
if (!obs_ptr_valid(fader, "obs_fader_add_callback"))
return;
pthread_mutex_lock(&fader->callback_mutex);
da_push_back(fader->callbacks, &cb);
pthread_mutex_unlock(&fader->callback_mutex);
}
void obs_fader_remove_callback(obs_fader_t *fader, obs_fader_changed_t callback,
void *param)
{
struct fader_cb cb = {callback, param};
if (!obs_ptr_valid(fader, "obs_fader_remove_callback"))
return;
pthread_mutex_lock(&fader->callback_mutex);
da_erase_item(fader->callbacks, &cb);
pthread_mutex_unlock(&fader->callback_mutex);
}
obs_volmeter_t *obs_volmeter_create(enum obs_fader_type type)
{
struct obs_volmeter *volmeter = bzalloc(sizeof(struct obs_volmeter));
if (!volmeter)
return NULL;
pthread_mutex_init_value(&volmeter->mutex);
pthread_mutex_init_value(&volmeter->callback_mutex);
if (pthread_mutex_init(&volmeter->mutex, NULL) != 0)
goto fail;
if (pthread_mutex_init(&volmeter->callback_mutex, NULL) != 0)
goto fail;
volmeter->type = type;
obs_volmeter_set_update_interval(volmeter, 50);
return volmeter;
fail:
obs_volmeter_destroy(volmeter);
return NULL;
}
void obs_volmeter_destroy(obs_volmeter_t *volmeter)
{
if (!volmeter)
return;
obs_volmeter_detach_source(volmeter);
da_free(volmeter->callbacks);
pthread_mutex_destroy(&volmeter->callback_mutex);
pthread_mutex_destroy(&volmeter->mutex);
bfree(volmeter);
}
bool obs_volmeter_attach_source(obs_volmeter_t *volmeter, obs_source_t *source)
{
signal_handler_t *sh;
float vol;
if (!volmeter || !source)
return false;
obs_volmeter_detach_source(volmeter);
sh = obs_source_get_signal_handler(source);
signal_handler_connect(sh, "volume", volmeter_source_volume_changed,
volmeter);
signal_handler_connect(sh, "destroy", volmeter_source_destroyed,
volmeter);
obs_source_add_audio_capture_callback(
source, volmeter_source_data_received, volmeter);
vol = obs_source_get_volume(source);
pthread_mutex_lock(&volmeter->mutex);
volmeter->source = source;
volmeter->cur_db = mul_to_db(vol);
pthread_mutex_unlock(&volmeter->mutex);
return true;
}
void obs_volmeter_detach_source(obs_volmeter_t *volmeter)
{
signal_handler_t *sh;
obs_source_t *source;
if (!volmeter)
return;
pthread_mutex_lock(&volmeter->mutex);
source = volmeter->source;
volmeter->source = NULL;
pthread_mutex_unlock(&volmeter->mutex);
if (!source)
return;
sh = obs_source_get_signal_handler(source);
signal_handler_disconnect(sh, "volume", volmeter_source_volume_changed,
volmeter);
signal_handler_disconnect(sh, "destroy", volmeter_source_destroyed,
volmeter);
obs_source_remove_audio_capture_callback(
source, volmeter_source_data_received, volmeter);
}
void obs_volmeter_set_peak_meter_type(obs_volmeter_t *volmeter,
enum obs_peak_meter_type peak_meter_type)
{
pthread_mutex_lock(&volmeter->mutex);
volmeter->peak_meter_type = peak_meter_type;
pthread_mutex_unlock(&volmeter->mutex);
}
void obs_volmeter_set_update_interval(obs_volmeter_t *volmeter,
const unsigned int ms)
{
if (!volmeter || !ms)
return;
pthread_mutex_lock(&volmeter->mutex);
volmeter->update_ms = ms;
pthread_mutex_unlock(&volmeter->mutex);
}
unsigned int obs_volmeter_get_update_interval(obs_volmeter_t *volmeter)
{
if (!volmeter)
return 0;
pthread_mutex_lock(&volmeter->mutex);
const unsigned int interval = volmeter->update_ms;
pthread_mutex_unlock(&volmeter->mutex);
return interval;
}
int obs_volmeter_get_nr_channels(obs_volmeter_t *volmeter)
{
int source_nr_audio_channels;
int obs_nr_audio_channels;
if (volmeter->source) {
source_nr_audio_channels = get_audio_channels(
volmeter->source->sample_info.speakers);
} else {
source_nr_audio_channels = 1;
}
struct obs_audio_info audio_info;
if (obs_get_audio_info(&audio_info)) {
obs_nr_audio_channels = get_audio_channels(audio_info.speakers);
} else {
obs_nr_audio_channels = 2;
}
return CLAMP(source_nr_audio_channels, 1, obs_nr_audio_channels);
}
void obs_volmeter_add_callback(obs_volmeter_t *volmeter,
obs_volmeter_updated_t callback, void *param)
{
struct meter_cb cb = {callback, param};
if (!obs_ptr_valid(volmeter, "obs_volmeter_add_callback"))
return;
pthread_mutex_lock(&volmeter->callback_mutex);
da_push_back(volmeter->callbacks, &cb);
pthread_mutex_unlock(&volmeter->callback_mutex);
}
void obs_volmeter_remove_callback(obs_volmeter_t *volmeter,
obs_volmeter_updated_t callback, void *param)
{
struct meter_cb cb = {callback, param};
if (!obs_ptr_valid(volmeter, "obs_volmeter_remove_callback"))
return;
pthread_mutex_lock(&volmeter->callback_mutex);
da_erase_item(volmeter->callbacks, &cb);
pthread_mutex_unlock(&volmeter->callback_mutex);
}
float obs_mul_to_db(float mul)
{
return mul_to_db(mul);
}
float obs_db_to_mul(float db)
{
return db_to_mul(db);
}