/****************************************************************************** Copyright (C) 2013 by Hugh Bailey This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ******************************************************************************/ #include #include "../util/base.h" #include "../util/bmem.h" #include "../util/platform.h" #include "graphics-internal.h" #include "vec2.h" #include "vec3.h" #include "quat.h" #include "axisang.h" #include "effect-parser.h" #include "effect.h" static THREAD_LOCAL graphics_t *thread_graphics = NULL; static inline bool gs_obj_valid(const void *obj, const char *f, const char *name) { if (!obj) { blog(LOG_DEBUG, "%s: Null '%s' parameter", f, name); return false; } return true; } static inline bool gs_valid(const char *f) { if (!thread_graphics) { blog(LOG_DEBUG, "%s: called while not in a graphics context", f); return false; } return true; } #define ptr_valid(ptr, func) gs_obj_valid(ptr, func, #ptr) #define gs_valid_p(func, param1) (gs_valid(func) && ptr_valid(param1, func)) #define gs_valid_p2(func, param1, param2) \ (gs_valid(func) && ptr_valid(param1, func) && ptr_valid(param2, func)) #define gs_valid_p3(func, param1, param2, param3) \ (gs_valid(func) && ptr_valid(param1, func) && \ ptr_valid(param2, func) && ptr_valid(param3, func)) #define IMMEDIATE_COUNT 512 void gs_enum_adapters(bool (*callback)(void *param, const char *name, uint32_t id), void *param) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_enum_adapters", callback)) return; if (graphics->exports.device_enum_adapters) { if (graphics->exports.device_enum_adapters(callback, param)) { return; } } /* If the subsystem does not currently support device enumeration of * adapters or fails to enumerate adapters, just set it to one adapter * named "Default" */ callback(param, "Default", 0); } extern void gs_init_image_deps(void); extern void gs_free_image_deps(void); bool load_graphics_imports(struct gs_exports *exports, void *module, const char *module_name); static bool graphics_init_immediate_vb(struct graphics_subsystem *graphics) { struct gs_vb_data *vbd; vbd = gs_vbdata_create(); vbd->num = IMMEDIATE_COUNT; vbd->points = bmalloc(sizeof(struct vec3) * IMMEDIATE_COUNT); vbd->normals = bmalloc(sizeof(struct vec3) * IMMEDIATE_COUNT); vbd->colors = bmalloc(sizeof(uint32_t) * IMMEDIATE_COUNT); vbd->num_tex = 1; vbd->tvarray = bmalloc(sizeof(struct gs_tvertarray)); vbd->tvarray[0].width = 2; vbd->tvarray[0].array = bmalloc(sizeof(struct vec2) * IMMEDIATE_COUNT); graphics->immediate_vertbuffer = graphics->exports.device_vertexbuffer_create(graphics->device, vbd, GS_DYNAMIC); if (!graphics->immediate_vertbuffer) return false; return true; } static bool graphics_init_sprite_vb(struct graphics_subsystem *graphics) { struct gs_vb_data *vbd; vbd = gs_vbdata_create(); vbd->num = 4; vbd->points = bmalloc(sizeof(struct vec3) * 4); vbd->num_tex = 1; vbd->tvarray = bmalloc(sizeof(struct gs_tvertarray)); vbd->tvarray[0].width = 2; vbd->tvarray[0].array = bmalloc(sizeof(struct vec2) * 4); memset(vbd->points, 0, sizeof(struct vec3) * 4); memset(vbd->tvarray[0].array, 0, sizeof(struct vec2) * 4); graphics->sprite_buffer = graphics->exports.device_vertexbuffer_create( graphics->device, vbd, GS_DYNAMIC); if (!graphics->sprite_buffer) return false; return true; } static bool graphics_init(struct graphics_subsystem *graphics) { struct matrix4 top_mat; matrix4_identity(&top_mat); da_push_back(graphics->matrix_stack, &top_mat); graphics->exports.device_enter_context(graphics->device); if (!graphics_init_immediate_vb(graphics)) return false; if (!graphics_init_sprite_vb(graphics)) return false; if (pthread_mutex_init(&graphics->mutex, NULL) != 0) return false; if (pthread_mutex_init(&graphics->effect_mutex, NULL) != 0) return false; graphics->exports.device_blend_function_separate( graphics->device, GS_BLEND_SRCALPHA, GS_BLEND_INVSRCALPHA, GS_BLEND_ONE, GS_BLEND_INVSRCALPHA); graphics->cur_blend_state.enabled = true; graphics->cur_blend_state.src_c = GS_BLEND_SRCALPHA; graphics->cur_blend_state.dest_c = GS_BLEND_INVSRCALPHA; graphics->cur_blend_state.src_a = GS_BLEND_ONE; graphics->cur_blend_state.dest_a = GS_BLEND_INVSRCALPHA; graphics->exports.device_leave_context(graphics->device); gs_init_image_deps(); return true; } int gs_create(graphics_t **pgraphics, const char *module, uint32_t adapter) { int errcode = GS_ERROR_FAIL; graphics_t *graphics = bzalloc(sizeof(struct graphics_subsystem)); pthread_mutex_init_value(&graphics->mutex); pthread_mutex_init_value(&graphics->effect_mutex); graphics->module = os_dlopen(module); if (!graphics->module) { errcode = GS_ERROR_MODULE_NOT_FOUND; goto error; } if (!load_graphics_imports(&graphics->exports, graphics->module, module)) goto error; errcode = graphics->exports.device_create(&graphics->device, adapter); if (errcode != GS_SUCCESS) goto error; if (!graphics_init(graphics)) { errcode = GS_ERROR_FAIL; goto error; } *pgraphics = graphics; return errcode; error: gs_destroy(graphics); return errcode; } extern void gs_effect_actually_destroy(gs_effect_t *effect); void gs_destroy(graphics_t *graphics) { if (!ptr_valid(graphics, "gs_destroy")) return; while (thread_graphics) gs_leave_context(); if (graphics->device) { struct gs_effect *effect = graphics->first_effect; thread_graphics = graphics; graphics->exports.device_enter_context(graphics->device); while (effect) { struct gs_effect *next = effect->next; gs_effect_actually_destroy(effect); effect = next; } graphics->exports.gs_vertexbuffer_destroy( graphics->sprite_buffer); graphics->exports.gs_vertexbuffer_destroy( graphics->immediate_vertbuffer); graphics->exports.device_destroy(graphics->device); thread_graphics = NULL; } pthread_mutex_destroy(&graphics->mutex); pthread_mutex_destroy(&graphics->effect_mutex); da_free(graphics->matrix_stack); da_free(graphics->viewport_stack); da_free(graphics->blend_state_stack); if (graphics->module) os_dlclose(graphics->module); bfree(graphics); gs_free_image_deps(); } void gs_enter_context(graphics_t *graphics) { if (!ptr_valid(graphics, "gs_enter_context")) return; bool is_current = thread_graphics == graphics; if (thread_graphics && !is_current) { while (thread_graphics) gs_leave_context(); } if (!is_current) { pthread_mutex_lock(&graphics->mutex); graphics->exports.device_enter_context(graphics->device); thread_graphics = graphics; } os_atomic_inc_long(&graphics->ref); } void gs_leave_context(void) { if (gs_valid("gs_leave_context")) { if (!os_atomic_dec_long(&thread_graphics->ref)) { graphics_t *graphics = thread_graphics; graphics->exports.device_leave_context( graphics->device); pthread_mutex_unlock(&graphics->mutex); thread_graphics = NULL; } } } graphics_t *gs_get_context(void) { return thread_graphics; } void *gs_get_device_obj(void) { if (!gs_valid("gs_get_device_obj")) return NULL; return thread_graphics->exports.device_get_device_obj( thread_graphics->device); } const char *gs_get_device_name(void) { return gs_valid("gs_get_device_name") ? thread_graphics->exports.device_get_name() : NULL; } int gs_get_device_type(void) { return gs_valid("gs_get_device_type") ? thread_graphics->exports.device_get_type() : -1; } static inline struct matrix4 *top_matrix(graphics_t *graphics) { return graphics->matrix_stack.array + graphics->cur_matrix; } void gs_matrix_push(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_matrix_push")) return; struct matrix4 mat, *top_mat = top_matrix(graphics); memcpy(&mat, top_mat, sizeof(struct matrix4)); da_push_back(graphics->matrix_stack, &mat); graphics->cur_matrix++; } void gs_matrix_pop(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_matrix_pop")) return; if (graphics->cur_matrix == 0) { blog(LOG_ERROR, "Tried to pop last matrix on stack"); return; } da_erase(graphics->matrix_stack, graphics->cur_matrix); graphics->cur_matrix--; } void gs_matrix_identity(void) { struct matrix4 *top_mat; if (!gs_valid("gs_matrix_identity")) return; top_mat = top_matrix(thread_graphics); if (top_mat) matrix4_identity(top_mat); } void gs_matrix_transpose(void) { struct matrix4 *top_mat; if (!gs_valid("gs_matrix_transpose")) return; top_mat = top_matrix(thread_graphics); if (top_mat) matrix4_transpose(top_mat, top_mat); } void gs_matrix_set(const struct matrix4 *matrix) { struct matrix4 *top_mat; if (!gs_valid("gs_matrix_set")) return; top_mat = top_matrix(thread_graphics); if (top_mat) matrix4_copy(top_mat, matrix); } void gs_matrix_get(struct matrix4 *dst) { struct matrix4 *top_mat; if (!gs_valid("gs_matrix_get")) return; top_mat = top_matrix(thread_graphics); if (top_mat) matrix4_copy(dst, top_mat); } void gs_matrix_mul(const struct matrix4 *matrix) { struct matrix4 *top_mat; if (!gs_valid("gs_matrix_mul")) return; top_mat = top_matrix(thread_graphics); if (top_mat) matrix4_mul(top_mat, matrix, top_mat); } void gs_matrix_rotquat(const struct quat *rot) { struct matrix4 *top_mat; if (!gs_valid("gs_matrix_rotquat")) return; top_mat = top_matrix(thread_graphics); if (top_mat) matrix4_rotate_i(top_mat, rot, top_mat); } void gs_matrix_rotaa(const struct axisang *rot) { struct matrix4 *top_mat; if (!gs_valid("gs_matrix_rotaa")) return; top_mat = top_matrix(thread_graphics); if (top_mat) matrix4_rotate_aa_i(top_mat, rot, top_mat); } void gs_matrix_translate(const struct vec3 *pos) { struct matrix4 *top_mat; if (!gs_valid("gs_matrix_translate")) return; top_mat = top_matrix(thread_graphics); if (top_mat) matrix4_translate3v_i(top_mat, pos, top_mat); } void gs_matrix_scale(const struct vec3 *scale) { struct matrix4 *top_mat; if (!gs_valid("gs_matrix_scale")) return; top_mat = top_matrix(thread_graphics); if (top_mat) matrix4_scale_i(top_mat, scale, top_mat); } void gs_matrix_rotaa4f(float x, float y, float z, float angle) { struct matrix4 *top_mat; struct axisang aa; if (!gs_valid("gs_matrix_rotaa4f")) return; top_mat = top_matrix(thread_graphics); if (top_mat) { axisang_set(&aa, x, y, z, angle); matrix4_rotate_aa_i(top_mat, &aa, top_mat); } } void gs_matrix_translate3f(float x, float y, float z) { struct matrix4 *top_mat; struct vec3 p; if (!gs_valid("gs_matrix_translate3f")) return; top_mat = top_matrix(thread_graphics); if (top_mat) { vec3_set(&p, x, y, z); matrix4_translate3v_i(top_mat, &p, top_mat); } } void gs_matrix_scale3f(float x, float y, float z) { struct matrix4 *top_mat = top_matrix(thread_graphics); struct vec3 p; if (top_mat) { vec3_set(&p, x, y, z); matrix4_scale_i(top_mat, &p, top_mat); } } static inline void reset_immediate_arrays(graphics_t *graphics) { da_init(graphics->verts); da_init(graphics->norms); da_init(graphics->colors); for (size_t i = 0; i < 16; i++) da_init(graphics->texverts[i]); } void gs_render_start(bool b_new) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_render_start")) return; graphics->using_immediate = !b_new; reset_immediate_arrays(graphics); if (b_new) { graphics->vbd = gs_vbdata_create(); } else { graphics->vbd = gs_vertexbuffer_get_data( graphics->immediate_vertbuffer); memset(graphics->vbd->colors, 0xFF, sizeof(uint32_t) * IMMEDIATE_COUNT); graphics->verts.array = graphics->vbd->points; graphics->norms.array = graphics->vbd->normals; graphics->colors.array = graphics->vbd->colors; graphics->texverts[0].array = graphics->vbd->tvarray[0].array; graphics->verts.capacity = IMMEDIATE_COUNT; graphics->norms.capacity = IMMEDIATE_COUNT; graphics->colors.capacity = IMMEDIATE_COUNT; graphics->texverts[0].capacity = IMMEDIATE_COUNT; } } static inline size_t min_size(const size_t a, const size_t b) { return (a < b) ? a : b; } void gs_render_stop(enum gs_draw_mode mode) { graphics_t *graphics = thread_graphics; size_t i, num; if (!gs_valid("gs_render_stop")) return; num = graphics->verts.num; if (!num) { if (!graphics->using_immediate) { da_free(graphics->verts); da_free(graphics->norms); da_free(graphics->colors); for (i = 0; i < 16; i++) da_free(graphics->texverts[i]); gs_vbdata_destroy(graphics->vbd); } return; } if (graphics->norms.num && (graphics->norms.num != graphics->verts.num)) { blog(LOG_ERROR, "gs_render_stop: normal count does " "not match vertex count"); num = min_size(num, graphics->norms.num); } if (graphics->colors.num && (graphics->colors.num != graphics->verts.num)) { blog(LOG_ERROR, "gs_render_stop: color count does " "not match vertex count"); num = min_size(num, graphics->colors.num); } if (graphics->texverts[0].num && (graphics->texverts[0].num != graphics->verts.num)) { blog(LOG_ERROR, "gs_render_stop: texture vertex count does " "not match vertex count"); num = min_size(num, graphics->texverts[0].num); } if (graphics->using_immediate) { gs_vertexbuffer_flush(graphics->immediate_vertbuffer); gs_load_vertexbuffer(graphics->immediate_vertbuffer); gs_load_indexbuffer(NULL); gs_draw(mode, 0, (uint32_t)num); reset_immediate_arrays(graphics); } else { gs_vertbuffer_t *vb = gs_render_save(); gs_load_vertexbuffer(vb); gs_load_indexbuffer(NULL); gs_draw(mode, 0, 0); gs_vertexbuffer_destroy(vb); } graphics->vbd = NULL; } gs_vertbuffer_t *gs_render_save(void) { graphics_t *graphics = thread_graphics; size_t num_tex, i; if (!gs_valid("gs_render_save")) return NULL; if (graphics->using_immediate) return NULL; if (!graphics->verts.num) { gs_vbdata_destroy(graphics->vbd); return NULL; } for (num_tex = 0; num_tex < 16; num_tex++) if (!graphics->texverts[num_tex].num) break; graphics->vbd->points = graphics->verts.array; graphics->vbd->normals = graphics->norms.array; graphics->vbd->colors = graphics->colors.array; graphics->vbd->num = graphics->verts.num; graphics->vbd->num_tex = num_tex; if (graphics->vbd->num_tex) { graphics->vbd->tvarray = bmalloc(sizeof(struct gs_tvertarray) * num_tex); for (i = 0; i < num_tex; i++) { graphics->vbd->tvarray[i].width = 2; graphics->vbd->tvarray[i].array = graphics->texverts[i].array; } } reset_immediate_arrays(graphics); return gs_vertexbuffer_create(graphics->vbd, 0); } void gs_vertex2f(float x, float y) { struct vec3 v3; if (!gs_valid("gs_verte")) return; vec3_set(&v3, x, y, 0.0f); gs_vertex3v(&v3); } void gs_vertex3f(float x, float y, float z) { struct vec3 v3; if (!gs_valid("gs_vertex3f")) return; vec3_set(&v3, x, y, z); gs_vertex3v(&v3); } void gs_normal3f(float x, float y, float z) { struct vec3 v3; if (!gs_valid("gs_normal3f")) return; vec3_set(&v3, x, y, z); gs_normal3v(&v3); } static inline bool validvertsize(graphics_t *graphics, size_t num, const char *name) { if (graphics->using_immediate && num == IMMEDIATE_COUNT) { blog(LOG_ERROR, "%s: tried to use over %u " "for immediate rendering", name, IMMEDIATE_COUNT); return false; } return true; } void gs_color(uint32_t color) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_color")) return; if (!validvertsize(graphics, graphics->colors.num, "gs_color")) return; da_push_back(graphics->colors, &color); } void gs_texcoord(float x, float y, int unit) { struct vec2 v2; if (!gs_valid("gs_texcoord")) return; vec2_set(&v2, x, y); gs_texcoord2v(&v2, unit); } void gs_vertex2v(const struct vec2 *v) { struct vec3 v3; if (!gs_valid("gs_vertex2v")) return; vec3_set(&v3, v->x, v->y, 0.0f); gs_vertex3v(&v3); } void gs_vertex3v(const struct vec3 *v) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_vertex3v")) return; if (!validvertsize(graphics, graphics->verts.num, "gs_vertex")) return; da_push_back(graphics->verts, v); } void gs_normal3v(const struct vec3 *v) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_normal3v")) return; if (!validvertsize(graphics, graphics->norms.num, "gs_normal")) return; da_push_back(graphics->norms, v); } void gs_color4v(const struct vec4 *v) { /* TODO */ UNUSED_PARAMETER(v); } void gs_texcoord2v(const struct vec2 *v, int unit) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_texcoord2v")) return; if (!validvertsize(graphics, graphics->texverts[unit].num, "gs_texcoord")) return; da_push_back(graphics->texverts[unit], v); } input_t *gs_get_input(void) { /* TODO */ return NULL; } gs_effect_t *gs_get_effect(void) { if (!gs_valid("gs_get_effect")) return NULL; return thread_graphics ? thread_graphics->cur_effect : NULL; } static inline struct gs_effect *find_cached_effect(const char *filename) { struct gs_effect *effect = thread_graphics->first_effect; while (effect) { if (strcmp(effect->effect_path, filename) == 0) break; effect = effect->next; } return effect; } gs_effect_t *gs_effect_create_from_file(const char *file, char **error_string) { char *file_string; gs_effect_t *effect = NULL; if (!gs_valid_p("gs_effect_create_from_file", file)) return NULL; effect = find_cached_effect(file); if (effect) return effect; file_string = os_quick_read_utf8_file(file); if (!file_string) { blog(LOG_ERROR, "Could not load effect file '%s'", file); return NULL; } effect = gs_effect_create(file_string, file, error_string); bfree(file_string); return effect; } gs_effect_t *gs_effect_create(const char *effect_string, const char *filename, char **error_string) { if (!gs_valid_p("gs_effect_create", effect_string)) return NULL; struct gs_effect *effect = bzalloc(sizeof(struct gs_effect)); struct effect_parser parser; bool success; effect->graphics = thread_graphics; effect->effect_path = bstrdup(filename); ep_init(&parser); success = ep_parse(&parser, effect, effect_string, filename); if (!success) { if (error_string) *error_string = error_data_buildstring(&parser.cfp.error_list); gs_effect_destroy(effect); effect = NULL; } if (effect) { pthread_mutex_lock(&thread_graphics->effect_mutex); if (effect->effect_path) { effect->cached = true; effect->next = thread_graphics->first_effect; thread_graphics->first_effect = effect; } pthread_mutex_unlock(&thread_graphics->effect_mutex); } ep_free(&parser); return effect; } gs_shader_t *gs_vertexshader_create_from_file(const char *file, char **error_string) { if (!gs_valid_p("gs_vertexshader_create_from_file", file)) return NULL; char *file_string; gs_shader_t *shader = NULL; file_string = os_quick_read_utf8_file(file); if (!file_string) { blog(LOG_ERROR, "Could not load vertex shader file '%s'", file); return NULL; } shader = gs_vertexshader_create(file_string, file, error_string); bfree(file_string); return shader; } gs_shader_t *gs_pixelshader_create_from_file(const char *file, char **error_string) { char *file_string; gs_shader_t *shader = NULL; if (!gs_valid_p("gs_pixelshader_create_from_file", file)) return NULL; file_string = os_quick_read_utf8_file(file); if (!file_string) { blog(LOG_ERROR, "Could not load pixel shader file '%s'", file); return NULL; } shader = gs_pixelshader_create(file_string, file, error_string); bfree(file_string); return shader; } gs_texture_t *gs_texture_create_from_file(const char *file) { enum gs_color_format format; uint32_t cx; uint32_t cy; uint8_t *data = gs_create_texture_file_data(file, &format, &cx, &cy); gs_texture_t *tex = NULL; if (data) { tex = gs_texture_create(cx, cy, format, 1, (const uint8_t **)&data, 0); bfree(data); } return tex; } static inline void assign_sprite_rect(float *start, float *end, float size, bool flip) { if (!flip) { *start = 0.0f; *end = size; } else { *start = size; *end = 0.0f; } } static inline void assign_sprite_uv(float *start, float *end, bool flip) { if (!flip) { *start = 0.0f; *end = 1.0f; } else { *start = 1.0f; *end = 0.0f; } } static void build_sprite(struct gs_vb_data *data, float fcx, float fcy, float start_u, float end_u, float start_v, float end_v) { struct vec2 *tvarray = data->tvarray[0].array; vec3_zero(data->points); vec3_set(data->points + 1, fcx, 0.0f, 0.0f); vec3_set(data->points + 2, 0.0f, fcy, 0.0f); vec3_set(data->points + 3, fcx, fcy, 0.0f); vec2_set(tvarray, start_u, start_v); vec2_set(tvarray + 1, end_u, start_v); vec2_set(tvarray + 2, start_u, end_v); vec2_set(tvarray + 3, end_u, end_v); } static inline void build_sprite_norm(struct gs_vb_data *data, float fcx, float fcy, uint32_t flip) { float start_u, end_u; float start_v, end_v; assign_sprite_uv(&start_u, &end_u, (flip & GS_FLIP_U) != 0); assign_sprite_uv(&start_v, &end_v, (flip & GS_FLIP_V) != 0); build_sprite(data, fcx, fcy, start_u, end_u, start_v, end_v); } static inline void build_subsprite_norm(struct gs_vb_data *data, float fsub_x, float fsub_y, float fsub_cx, float fsub_cy, float fcx, float fcy, uint32_t flip) { float start_u, end_u; float start_v, end_v; if ((flip & GS_FLIP_U) == 0) { start_u = fsub_x / fcx; end_u = (fsub_x + fsub_cx) / fcx; } else { start_u = (fsub_x + fsub_cx) / fcx; end_u = fsub_x / fcx; } if ((flip & GS_FLIP_V) == 0) { start_v = fsub_y / fcy; end_v = (fsub_y + fsub_cy) / fcy; } else { start_v = (fsub_y + fsub_cy) / fcy; end_v = fsub_y / fcy; } build_sprite(data, fsub_cx, fsub_cy, start_u, end_u, start_v, end_v); } static inline void build_sprite_rect(struct gs_vb_data *data, gs_texture_t *tex, float fcx, float fcy, uint32_t flip) { float start_u, end_u; float start_v, end_v; float width = (float)gs_texture_get_width(tex); float height = (float)gs_texture_get_height(tex); assign_sprite_rect(&start_u, &end_u, width, (flip & GS_FLIP_U) != 0); assign_sprite_rect(&start_v, &end_v, height, (flip & GS_FLIP_V) != 0); build_sprite(data, fcx, fcy, start_u, end_u, start_v, end_v); } void gs_draw_sprite(gs_texture_t *tex, uint32_t flip, uint32_t width, uint32_t height) { graphics_t *graphics = thread_graphics; float fcx, fcy; struct gs_vb_data *data; if (tex) { if (gs_get_texture_type(tex) != GS_TEXTURE_2D) { blog(LOG_ERROR, "A sprite must be a 2D texture"); return; } } else { if (!width || !height) { blog(LOG_ERROR, "A sprite cannot be drawn without " "a width/height"); return; } } fcx = width ? (float)width : (float)gs_texture_get_width(tex); fcy = height ? (float)height : (float)gs_texture_get_height(tex); data = gs_vertexbuffer_get_data(graphics->sprite_buffer); if (tex && gs_texture_is_rect(tex)) build_sprite_rect(data, tex, fcx, fcy, flip); else build_sprite_norm(data, fcx, fcy, flip); gs_vertexbuffer_flush(graphics->sprite_buffer); gs_load_vertexbuffer(graphics->sprite_buffer); gs_load_indexbuffer(NULL); gs_draw(GS_TRISTRIP, 0, 0); } void gs_draw_sprite_subregion(gs_texture_t *tex, uint32_t flip, uint32_t sub_x, uint32_t sub_y, uint32_t sub_cx, uint32_t sub_cy) { graphics_t *graphics = thread_graphics; float fcx, fcy; struct gs_vb_data *data; if (tex) { if (gs_get_texture_type(tex) != GS_TEXTURE_2D) { blog(LOG_ERROR, "A sprite must be a 2D texture"); return; } } fcx = (float)gs_texture_get_width(tex); fcy = (float)gs_texture_get_height(tex); data = gs_vertexbuffer_get_data(graphics->sprite_buffer); build_subsprite_norm(data, (float)sub_x, (float)sub_y, (float)sub_cx, (float)sub_cy, fcx, fcy, flip); gs_vertexbuffer_flush(graphics->sprite_buffer); gs_load_vertexbuffer(graphics->sprite_buffer); gs_load_indexbuffer(NULL); gs_draw(GS_TRISTRIP, 0, 0); } void gs_draw_cube_backdrop(gs_texture_t *cubetex, const struct quat *rot, float left, float right, float top, float bottom, float znear) { /* TODO */ UNUSED_PARAMETER(cubetex); UNUSED_PARAMETER(rot); UNUSED_PARAMETER(left); UNUSED_PARAMETER(right); UNUSED_PARAMETER(top); UNUSED_PARAMETER(bottom); UNUSED_PARAMETER(znear); } void gs_reset_viewport(void) { uint32_t cx, cy; if (!gs_valid("gs_reset_viewport")) return; gs_get_size(&cx, &cy); gs_set_viewport(0, 0, (int)cx, (int)cy); } void gs_set_2d_mode(void) { uint32_t cx, cy; if (!gs_valid("gs_set_2d_mode")) return; gs_get_size(&cx, &cy); gs_ortho(0.0f, (float)cx, 0.0f, (float)cy, -1.0, -1024.0f); } void gs_set_3d_mode(double fovy, double znear, double zvar) { /* TODO */ UNUSED_PARAMETER(fovy); UNUSED_PARAMETER(znear); UNUSED_PARAMETER(zvar); } void gs_viewport_push(void) { if (!gs_valid("gs_viewport_push")) return; struct gs_rect *rect = da_push_back_new(thread_graphics->viewport_stack); gs_get_viewport(rect); } void gs_viewport_pop(void) { struct gs_rect *rect; if (!gs_valid("gs_viewport_pop")) return; if (!thread_graphics->viewport_stack.num) return; rect = da_end(thread_graphics->viewport_stack); gs_set_viewport(rect->x, rect->y, rect->cx, rect->cy); da_pop_back(thread_graphics->viewport_stack); } void gs_texture_set_image(gs_texture_t *tex, const uint8_t *data, uint32_t linesize, bool flip) { uint8_t *ptr; uint32_t linesize_out; uint32_t row_copy; int32_t height; int32_t y; if (!gs_valid_p2("gs_texture_set_image", tex, data)) return; height = (int32_t)gs_texture_get_height(tex); if (!gs_texture_map(tex, &ptr, &linesize_out)) return; row_copy = (linesize < linesize_out) ? linesize : linesize_out; if (flip) { for (y = height - 1; y >= 0; y--) memcpy(ptr + (uint32_t)y * linesize_out, data + (uint32_t)(height - y - 1) * linesize, row_copy); } else if (linesize == linesize_out) { memcpy(ptr, data, row_copy * height); } else { for (y = 0; y < height; y++) memcpy(ptr + (uint32_t)y * linesize_out, data + (uint32_t)y * linesize, row_copy); } gs_texture_unmap(tex); } void gs_cubetexture_set_image(gs_texture_t *cubetex, uint32_t side, const void *data, uint32_t linesize, bool invert) { /* TODO */ UNUSED_PARAMETER(cubetex); UNUSED_PARAMETER(side); UNUSED_PARAMETER(data); UNUSED_PARAMETER(linesize); UNUSED_PARAMETER(invert); } void gs_perspective(float angle, float aspect, float near, float far) { graphics_t *graphics = thread_graphics; float xmin, xmax, ymin, ymax; if (!gs_valid("gs_perspective")) return; ymax = near * tanf(RAD(angle) * 0.5f); ymin = -ymax; xmin = ymin * aspect; xmax = ymax * aspect; graphics->exports.device_frustum(graphics->device, xmin, xmax, ymin, ymax, near, far); } void gs_blend_state_push(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_blend_state_push")) return; da_push_back(graphics->blend_state_stack, &graphics->cur_blend_state); } void gs_blend_state_pop(void) { graphics_t *graphics = thread_graphics; struct blend_state *state; if (!gs_valid("gs_blend_state_pop")) return; state = da_end(graphics->blend_state_stack); if (!state) return; gs_enable_blending(state->enabled); gs_blend_function_separate(state->src_c, state->dest_c, state->src_a, state->dest_a); da_pop_back(graphics->blend_state_stack); } void gs_reset_blend_state(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_preprocessor_name")) return; if (!graphics->cur_blend_state.enabled) gs_enable_blending(true); if (graphics->cur_blend_state.src_c != GS_BLEND_SRCALPHA || graphics->cur_blend_state.dest_c != GS_BLEND_INVSRCALPHA || graphics->cur_blend_state.src_a != GS_BLEND_ONE || graphics->cur_blend_state.dest_a != GS_BLEND_INVSRCALPHA) gs_blend_function_separate(GS_BLEND_SRCALPHA, GS_BLEND_INVSRCALPHA, GS_BLEND_ONE, GS_BLEND_INVSRCALPHA); } /* ------------------------------------------------------------------------- */ const char *gs_preprocessor_name(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_preprocessor_name")) return NULL; return graphics->exports.device_preprocessor_name(); } gs_swapchain_t *gs_swapchain_create(const struct gs_init_data *data) { struct gs_init_data new_data = *data; graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_swapchain_create", data)) return NULL; if (new_data.num_backbuffers == 0) new_data.num_backbuffers = 1; return graphics->exports.device_swapchain_create(graphics->device, &new_data); } void gs_resize(uint32_t x, uint32_t y) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_resize")) return; graphics->exports.device_resize(graphics->device, x, y); } void gs_get_size(uint32_t *x, uint32_t *y) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_get_size")) return; graphics->exports.device_get_size(graphics->device, x, y); } uint32_t gs_get_width(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_get_width")) return 0; return graphics->exports.device_get_width(graphics->device); } uint32_t gs_get_height(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_get_height")) return 0; return graphics->exports.device_get_height(graphics->device); } static inline bool is_pow2(uint32_t size) { return size >= 2 && (size & (size - 1)) == 0; } gs_texture_t *gs_texture_create(uint32_t width, uint32_t height, enum gs_color_format color_format, uint32_t levels, const uint8_t **data, uint32_t flags) { graphics_t *graphics = thread_graphics; bool pow2tex = is_pow2(width) && is_pow2(height); bool uses_mipmaps = (flags & GS_BUILD_MIPMAPS || levels != 1); if (!gs_valid("gs_texture_create")) return NULL; if (uses_mipmaps && !pow2tex) { blog(LOG_WARNING, "Cannot use mipmaps with a " "non-power-of-two texture. Disabling " "mipmaps for this texture."); uses_mipmaps = false; flags &= ~GS_BUILD_MIPMAPS; levels = 1; } if (uses_mipmaps && flags & GS_RENDER_TARGET) { blog(LOG_WARNING, "Cannot use mipmaps with render targets. " "Disabling mipmaps for this texture."); flags &= ~GS_BUILD_MIPMAPS; levels = 1; } return graphics->exports.device_texture_create(graphics->device, width, height, color_format, levels, data, flags); } gs_texture_t *gs_cubetexture_create(uint32_t size, enum gs_color_format color_format, uint32_t levels, const uint8_t **data, uint32_t flags) { graphics_t *graphics = thread_graphics; bool pow2tex = is_pow2(size); bool uses_mipmaps = (flags & GS_BUILD_MIPMAPS || levels != 1); if (!gs_valid("gs_cubetexture_create")) return NULL; if (uses_mipmaps && !pow2tex) { blog(LOG_WARNING, "Cannot use mipmaps with a " "non-power-of-two texture. Disabling " "mipmaps for this texture."); uses_mipmaps = false; flags &= ~GS_BUILD_MIPMAPS; levels = 1; } if (uses_mipmaps && flags & GS_RENDER_TARGET) { blog(LOG_WARNING, "Cannot use mipmaps with render targets. " "Disabling mipmaps for this texture."); flags &= ~GS_BUILD_MIPMAPS; levels = 1; data = NULL; } return graphics->exports.device_cubetexture_create( graphics->device, size, color_format, levels, data, flags); } gs_texture_t *gs_voltexture_create(uint32_t width, uint32_t height, uint32_t depth, enum gs_color_format color_format, uint32_t levels, const uint8_t **data, uint32_t flags) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_voltexture_create")) return NULL; return graphics->exports.device_voltexture_create(graphics->device, width, height, depth, color_format, levels, data, flags); } gs_zstencil_t *gs_zstencil_create(uint32_t width, uint32_t height, enum gs_zstencil_format format) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_zstencil_create")) return NULL; return graphics->exports.device_zstencil_create(graphics->device, width, height, format); } gs_stagesurf_t *gs_stagesurface_create(uint32_t width, uint32_t height, enum gs_color_format color_format) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_stagesurface_create")) return NULL; return graphics->exports.device_stagesurface_create( graphics->device, width, height, color_format); } gs_samplerstate_t *gs_samplerstate_create(const struct gs_sampler_info *info) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_samplerstate_create", info)) return NULL; return graphics->exports.device_samplerstate_create(graphics->device, info); } gs_shader_t *gs_vertexshader_create(const char *shader, const char *file, char **error_string) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_vertexshader_create", shader)) return NULL; return graphics->exports.device_vertexshader_create( graphics->device, shader, file, error_string); } gs_shader_t *gs_pixelshader_create(const char *shader, const char *file, char **error_string) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_pixelshader_create", shader)) return NULL; return graphics->exports.device_pixelshader_create( graphics->device, shader, file, error_string); } gs_vertbuffer_t *gs_vertexbuffer_create(struct gs_vb_data *data, uint32_t flags) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_vertexbuffer_create")) return NULL; if (data && data->num && (flags & GS_DUP_BUFFER) != 0) { struct gs_vb_data *new_data = gs_vbdata_create(); new_data->num = data->num; #define DUP_VAL(val) \ do { \ if (data->val) \ new_data->val = bmemdup( \ data->val, sizeof(*data->val) * data->num); \ } while (false) DUP_VAL(points); DUP_VAL(normals); DUP_VAL(tangents); DUP_VAL(colors); #undef DUP_VAL if (data->tvarray && data->num_tex) { new_data->num_tex = data->num_tex; new_data->tvarray = bzalloc( sizeof(struct gs_tvertarray) * data->num_tex); for (size_t i = 0; i < data->num_tex; i++) { struct gs_tvertarray *tv = &data->tvarray[i]; struct gs_tvertarray *new_tv = &new_data->tvarray[i]; size_t size = tv->width * sizeof(float); new_tv->width = tv->width; new_tv->array = bmemdup(tv->array, size * data->num); } } data = new_data; } return graphics->exports.device_vertexbuffer_create(graphics->device, data, flags); } gs_indexbuffer_t *gs_indexbuffer_create(enum gs_index_type type, void *indices, size_t num, uint32_t flags) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_indexbuffer_create")) return NULL; if (indices && num && (flags & GS_DUP_BUFFER) != 0) { size_t size = type == GS_UNSIGNED_SHORT ? 2 : 4; indices = bmemdup(indices, size * num); } return graphics->exports.device_indexbuffer_create( graphics->device, type, indices, num, flags); } gs_timer_t *gs_timer_create() { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_timer_create")) return NULL; return graphics->exports.device_timer_create(graphics->device); } gs_timer_range_t *gs_timer_range_create() { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_timer_range_create")) return NULL; return graphics->exports.device_timer_range_create(graphics->device); } enum gs_texture_type gs_get_texture_type(const gs_texture_t *texture) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_get_texture_type", texture)) return GS_TEXTURE_2D; return graphics->exports.device_get_texture_type(texture); } void gs_load_vertexbuffer(gs_vertbuffer_t *vertbuffer) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_load_vertexbuffer")) return; graphics->exports.device_load_vertexbuffer(graphics->device, vertbuffer); } void gs_load_indexbuffer(gs_indexbuffer_t *indexbuffer) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_load_indexbuffer")) return; graphics->exports.device_load_indexbuffer(graphics->device, indexbuffer); } void gs_load_texture(gs_texture_t *tex, int unit) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_load_texture")) return; graphics->exports.device_load_texture(graphics->device, tex, unit); } void gs_load_samplerstate(gs_samplerstate_t *samplerstate, int unit) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_load_samplerstate")) return; graphics->exports.device_load_samplerstate(graphics->device, samplerstate, unit); } void gs_load_vertexshader(gs_shader_t *vertshader) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_load_vertexshader")) return; graphics->exports.device_load_vertexshader(graphics->device, vertshader); } void gs_load_pixelshader(gs_shader_t *pixelshader) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_load_pixelshader")) return; graphics->exports.device_load_pixelshader(graphics->device, pixelshader); } void gs_load_default_samplerstate(bool b_3d, int unit) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_load_default_samplerstate")) return; graphics->exports.device_load_default_samplerstate(graphics->device, b_3d, unit); } gs_shader_t *gs_get_vertex_shader(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_get_vertex_shader")) return NULL; return graphics->exports.device_get_vertex_shader(graphics->device); } gs_shader_t *gs_get_pixel_shader(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_get_pixel_shader")) return NULL; return graphics->exports.device_get_pixel_shader(graphics->device); } gs_texture_t *gs_get_render_target(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_get_render_target")) return NULL; return graphics->exports.device_get_render_target(graphics->device); } gs_zstencil_t *gs_get_zstencil_target(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_get_zstencil_target")) return NULL; return graphics->exports.device_get_zstencil_target(graphics->device); } void gs_set_render_target(gs_texture_t *tex, gs_zstencil_t *zstencil) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_set_render_target")) return; graphics->exports.device_set_render_target(graphics->device, tex, zstencil); } void gs_set_cube_render_target(gs_texture_t *cubetex, int side, gs_zstencil_t *zstencil) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_set_cube_render_target")) return; graphics->exports.device_set_cube_render_target( graphics->device, cubetex, side, zstencil); } void gs_copy_texture(gs_texture_t *dst, gs_texture_t *src) { graphics_t *graphics = thread_graphics; if (!gs_valid_p2("gs_copy_texture", dst, src)) return; graphics->exports.device_copy_texture(graphics->device, dst, src); } void gs_copy_texture_region(gs_texture_t *dst, uint32_t dst_x, uint32_t dst_y, gs_texture_t *src, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_copy_texture_region", dst)) return; graphics->exports.device_copy_texture_region(graphics->device, dst, dst_x, dst_y, src, src_x, src_y, src_w, src_h); } void gs_stage_texture(gs_stagesurf_t *dst, gs_texture_t *src) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_stage_texture")) return; graphics->exports.device_stage_texture(graphics->device, dst, src); } void gs_begin_frame(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_begin_frame")) return; graphics->exports.device_begin_frame(graphics->device); } void gs_begin_scene(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_begin_scene")) return; graphics->exports.device_begin_scene(graphics->device); } void gs_draw(enum gs_draw_mode draw_mode, uint32_t start_vert, uint32_t num_verts) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_draw")) return; graphics->exports.device_draw(graphics->device, draw_mode, start_vert, num_verts); } void gs_end_scene(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_end_scene")) return; graphics->exports.device_end_scene(graphics->device); } void gs_load_swapchain(gs_swapchain_t *swapchain) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_load_swapchain")) return; graphics->exports.device_load_swapchain(graphics->device, swapchain); } void gs_clear(uint32_t clear_flags, const struct vec4 *color, float depth, uint8_t stencil) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_clear")) return; graphics->exports.device_clear(graphics->device, clear_flags, color, depth, stencil); } void gs_present(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_present")) return; graphics->exports.device_present(graphics->device); } void gs_flush(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_flush")) return; graphics->exports.device_flush(graphics->device); } void gs_set_cull_mode(enum gs_cull_mode mode) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_set_cull_mode")) return; graphics->exports.device_set_cull_mode(graphics->device, mode); } enum gs_cull_mode gs_get_cull_mode(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_get_cull_mode")) return GS_NEITHER; return graphics->exports.device_get_cull_mode(graphics->device); } void gs_enable_blending(bool enable) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_enable_blending")) return; graphics->cur_blend_state.enabled = enable; graphics->exports.device_enable_blending(graphics->device, enable); } void gs_enable_depth_test(bool enable) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_enable_depth_test")) return; graphics->exports.device_enable_depth_test(graphics->device, enable); } void gs_enable_stencil_test(bool enable) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_enable_stencil_test")) return; graphics->exports.device_enable_stencil_test(graphics->device, enable); } void gs_enable_stencil_write(bool enable) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_enable_stencil_write")) return; graphics->exports.device_enable_stencil_write(graphics->device, enable); } void gs_enable_color(bool red, bool green, bool blue, bool alpha) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_enable_color")) return; graphics->exports.device_enable_color(graphics->device, red, green, blue, alpha); } void gs_blend_function(enum gs_blend_type src, enum gs_blend_type dest) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_blend_function")) return; graphics->cur_blend_state.src_c = src; graphics->cur_blend_state.dest_c = dest; graphics->cur_blend_state.src_a = src; graphics->cur_blend_state.dest_a = dest; graphics->exports.device_blend_function(graphics->device, src, dest); } void gs_blend_function_separate(enum gs_blend_type src_c, enum gs_blend_type dest_c, enum gs_blend_type src_a, enum gs_blend_type dest_a) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_blend_function_separate")) return; graphics->cur_blend_state.src_c = src_c; graphics->cur_blend_state.dest_c = dest_c; graphics->cur_blend_state.src_a = src_a; graphics->cur_blend_state.dest_a = dest_a; graphics->exports.device_blend_function_separate( graphics->device, src_c, dest_c, src_a, dest_a); } void gs_depth_function(enum gs_depth_test test) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_depth_function")) return; graphics->exports.device_depth_function(graphics->device, test); } void gs_stencil_function(enum gs_stencil_side side, enum gs_depth_test test) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_stencil_function")) return; graphics->exports.device_stencil_function(graphics->device, side, test); } void gs_stencil_op(enum gs_stencil_side side, enum gs_stencil_op_type fail, enum gs_stencil_op_type zfail, enum gs_stencil_op_type zpass) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_stencil_op")) return; graphics->exports.device_stencil_op(graphics->device, side, fail, zfail, zpass); } void gs_set_viewport(int x, int y, int width, int height) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_set_viewport")) return; graphics->exports.device_set_viewport(graphics->device, x, y, width, height); } void gs_get_viewport(struct gs_rect *rect) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_get_viewport", rect)) return; graphics->exports.device_get_viewport(graphics->device, rect); } void gs_set_scissor_rect(const struct gs_rect *rect) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_set_scissor_rect")) return; graphics->exports.device_set_scissor_rect(graphics->device, rect); } void gs_ortho(float left, float right, float top, float bottom, float znear, float zfar) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_ortho")) return; graphics->exports.device_ortho(graphics->device, left, right, top, bottom, znear, zfar); } void gs_frustum(float left, float right, float top, float bottom, float znear, float zfar) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_frustum")) return; graphics->exports.device_frustum(graphics->device, left, right, top, bottom, znear, zfar); } void gs_projection_push(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_projection_push")) return; graphics->exports.device_projection_push(graphics->device); } void gs_projection_pop(void) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_projection_pop")) return; graphics->exports.device_projection_pop(graphics->device); } void gs_swapchain_destroy(gs_swapchain_t *swapchain) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_swapchain_destroy")) return; if (!swapchain) return; graphics->exports.gs_swapchain_destroy(swapchain); } void gs_shader_destroy(gs_shader_t *shader) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_shader_destroy")) return; if (!shader) return; graphics->exports.gs_shader_destroy(shader); } int gs_shader_get_num_params(const gs_shader_t *shader) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_get_num_params", shader)) return 0; return graphics->exports.gs_shader_get_num_params(shader); } gs_sparam_t *gs_shader_get_param_by_idx(gs_shader_t *shader, uint32_t param) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_get_param_by_idx", shader)) return NULL; return graphics->exports.gs_shader_get_param_by_idx(shader, param); } gs_sparam_t *gs_shader_get_param_by_name(gs_shader_t *shader, const char *name) { graphics_t *graphics = thread_graphics; if (!gs_valid_p2("gs_shader_get_param_by_name", shader, name)) return NULL; return graphics->exports.gs_shader_get_param_by_name(shader, name); } gs_sparam_t *gs_shader_get_viewproj_matrix(const gs_shader_t *shader) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_get_viewproj_matrix", shader)) return NULL; return graphics->exports.gs_shader_get_viewproj_matrix(shader); } gs_sparam_t *gs_shader_get_world_matrix(const gs_shader_t *shader) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_get_world_matrix", shader)) return NULL; return graphics->exports.gs_shader_get_world_matrix(shader); } void gs_shader_get_param_info(const gs_sparam_t *param, struct gs_shader_param_info *info) { graphics_t *graphics = thread_graphics; if (!gs_valid_p2("gs_shader_get_param_info", param, info)) return; graphics->exports.gs_shader_get_param_info(param, info); } void gs_shader_set_bool(gs_sparam_t *param, bool val) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_set_bool", param)) return; graphics->exports.gs_shader_set_bool(param, val); } void gs_shader_set_float(gs_sparam_t *param, float val) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_set_float", param)) return; graphics->exports.gs_shader_set_float(param, val); } void gs_shader_set_int(gs_sparam_t *param, int val) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_set_int", param)) return; graphics->exports.gs_shader_set_int(param, val); } void gs_shader_set_matrix3(gs_sparam_t *param, const struct matrix3 *val) { graphics_t *graphics = thread_graphics; if (!gs_valid_p2("gs_shader_set_matrix3", param, val)) return; graphics->exports.gs_shader_set_matrix3(param, val); } void gs_shader_set_matrix4(gs_sparam_t *param, const struct matrix4 *val) { graphics_t *graphics = thread_graphics; if (!gs_valid_p2("gs_shader_set_matrix4", param, val)) return; graphics->exports.gs_shader_set_matrix4(param, val); } void gs_shader_set_vec2(gs_sparam_t *param, const struct vec2 *val) { graphics_t *graphics = thread_graphics; if (!gs_valid_p2("gs_shader_set_vec2", param, val)) return; graphics->exports.gs_shader_set_vec2(param, val); } void gs_shader_set_vec3(gs_sparam_t *param, const struct vec3 *val) { graphics_t *graphics = thread_graphics; if (!gs_valid_p2("gs_shader_set_vec3", param, val)) return; graphics->exports.gs_shader_set_vec3(param, val); } void gs_shader_set_vec4(gs_sparam_t *param, const struct vec4 *val) { graphics_t *graphics = thread_graphics; if (!gs_valid_p2("gs_shader_set_vec4", param, val)) return; graphics->exports.gs_shader_set_vec4(param, val); } void gs_shader_set_texture(gs_sparam_t *param, gs_texture_t *val) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_set_texture", param)) return; graphics->exports.gs_shader_set_texture(param, val); } void gs_shader_set_val(gs_sparam_t *param, const void *val, size_t size) { graphics_t *graphics = thread_graphics; if (!gs_valid_p2("gs_shader_set_val", param, val)) return; graphics->exports.gs_shader_set_val(param, val, size); } void gs_shader_set_default(gs_sparam_t *param) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_set_default", param)) return; graphics->exports.gs_shader_set_default(param); } void gs_shader_set_next_sampler(gs_sparam_t *param, gs_samplerstate_t *sampler) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_shader_set_next_sampler", param)) return; graphics->exports.gs_shader_set_next_sampler(param, sampler); } void gs_texture_destroy(gs_texture_t *tex) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_texture_destroy")) return; if (!tex) return; graphics->exports.gs_texture_destroy(tex); } uint32_t gs_texture_get_width(const gs_texture_t *tex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_texture_get_width", tex)) return 0; return graphics->exports.gs_texture_get_width(tex); } uint32_t gs_texture_get_height(const gs_texture_t *tex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_texture_get_height", tex)) return 0; return graphics->exports.gs_texture_get_height(tex); } enum gs_color_format gs_texture_get_color_format(const gs_texture_t *tex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_texture_get_color_format", tex)) return GS_UNKNOWN; return graphics->exports.gs_texture_get_color_format(tex); } bool gs_texture_map(gs_texture_t *tex, uint8_t **ptr, uint32_t *linesize) { graphics_t *graphics = thread_graphics; if (!gs_valid_p3("gs_texture_map", tex, ptr, linesize)) return false; return graphics->exports.gs_texture_map(tex, ptr, linesize); } void gs_texture_unmap(gs_texture_t *tex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_texture_unmap", tex)) return; graphics->exports.gs_texture_unmap(tex); } bool gs_texture_is_rect(const gs_texture_t *tex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_texture_is_rect", tex)) return false; if (graphics->exports.gs_texture_is_rect) return graphics->exports.gs_texture_is_rect(tex); else return false; } void *gs_texture_get_obj(gs_texture_t *tex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_texture_get_obj", tex)) return NULL; return graphics->exports.gs_texture_get_obj(tex); } void gs_cubetexture_destroy(gs_texture_t *cubetex) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_cubetexture_destroy")) return; if (!cubetex) return; graphics->exports.gs_cubetexture_destroy(cubetex); } uint32_t gs_cubetexture_get_size(const gs_texture_t *cubetex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_cubetexture_get_size", cubetex)) return 0; return graphics->exports.gs_cubetexture_get_size(cubetex); } enum gs_color_format gs_cubetexture_get_color_format(const gs_texture_t *cubetex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_cubetexture_get_color_format", cubetex)) return GS_UNKNOWN; return graphics->exports.gs_cubetexture_get_color_format(cubetex); } void gs_voltexture_destroy(gs_texture_t *voltex) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_voltexture_destroy")) return; if (!voltex) return; graphics->exports.gs_voltexture_destroy(voltex); } uint32_t gs_voltexture_get_width(const gs_texture_t *voltex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_voltexture_get_width", voltex)) return 0; return graphics->exports.gs_voltexture_get_width(voltex); } uint32_t gs_voltexture_get_height(const gs_texture_t *voltex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_voltexture_get_height", voltex)) return 0; return graphics->exports.gs_voltexture_get_height(voltex); } uint32_t gs_voltexture_get_depth(const gs_texture_t *voltex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_voltexture_get_depth", voltex)) return 0; return graphics->exports.gs_voltexture_get_depth(voltex); } enum gs_color_format gs_voltexture_get_color_format(const gs_texture_t *voltex) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_voltexture_get_color_format", voltex)) return GS_UNKNOWN; return graphics->exports.gs_voltexture_get_color_format(voltex); } void gs_stagesurface_destroy(gs_stagesurf_t *stagesurf) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_stagesurface_destroy")) return; if (!stagesurf) return; graphics->exports.gs_stagesurface_destroy(stagesurf); } uint32_t gs_stagesurface_get_width(const gs_stagesurf_t *stagesurf) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_stagesurface_get_width", stagesurf)) return 0; return graphics->exports.gs_stagesurface_get_width(stagesurf); } uint32_t gs_stagesurface_get_height(const gs_stagesurf_t *stagesurf) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_stagesurface_get_height", stagesurf)) return 0; return graphics->exports.gs_stagesurface_get_height(stagesurf); } enum gs_color_format gs_stagesurface_get_color_format(const gs_stagesurf_t *stagesurf) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_stagesurface_get_color_format", stagesurf)) return GS_UNKNOWN; return graphics->exports.gs_stagesurface_get_color_format(stagesurf); } bool gs_stagesurface_map(gs_stagesurf_t *stagesurf, uint8_t **data, uint32_t *linesize) { graphics_t *graphics = thread_graphics; if (!gs_valid_p3("gs_stagesurface_map", stagesurf, data, linesize)) return 0; return graphics->exports.gs_stagesurface_map(stagesurf, data, linesize); } void gs_stagesurface_unmap(gs_stagesurf_t *stagesurf) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_stagesurface_unmap", stagesurf)) return; graphics->exports.gs_stagesurface_unmap(stagesurf); } void gs_zstencil_destroy(gs_zstencil_t *zstencil) { if (!gs_valid("gs_zstencil_destroy")) return; if (!zstencil) return; thread_graphics->exports.gs_zstencil_destroy(zstencil); } void gs_samplerstate_destroy(gs_samplerstate_t *samplerstate) { if (!gs_valid("gs_samplerstate_destroy")) return; if (!samplerstate) return; thread_graphics->exports.gs_samplerstate_destroy(samplerstate); } void gs_vertexbuffer_destroy(gs_vertbuffer_t *vertbuffer) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_vertexbuffer_destroy")) return; if (!vertbuffer) return; graphics->exports.gs_vertexbuffer_destroy(vertbuffer); } void gs_vertexbuffer_flush(gs_vertbuffer_t *vertbuffer) { if (!gs_valid_p("gs_vertexbuffer_flush", vertbuffer)) return; thread_graphics->exports.gs_vertexbuffer_flush(vertbuffer); } void gs_vertexbuffer_flush_direct(gs_vertbuffer_t *vertbuffer, const struct gs_vb_data *data) { if (!gs_valid_p2("gs_vertexbuffer_flush_direct", vertbuffer, data)) return; thread_graphics->exports.gs_vertexbuffer_flush_direct(vertbuffer, data); } struct gs_vb_data *gs_vertexbuffer_get_data(const gs_vertbuffer_t *vertbuffer) { if (!gs_valid_p("gs_vertexbuffer_get_data", vertbuffer)) return NULL; return thread_graphics->exports.gs_vertexbuffer_get_data(vertbuffer); } void gs_indexbuffer_destroy(gs_indexbuffer_t *indexbuffer) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_indexbuffer_destroy")) return; if (!indexbuffer) return; graphics->exports.gs_indexbuffer_destroy(indexbuffer); } void gs_indexbuffer_flush(gs_indexbuffer_t *indexbuffer) { if (!gs_valid_p("gs_indexbuffer_flush", indexbuffer)) return; thread_graphics->exports.gs_indexbuffer_flush(indexbuffer); } void gs_indexbuffer_flush_direct(gs_indexbuffer_t *indexbuffer, const void *data) { if (!gs_valid_p2("gs_indexbuffer_flush_direct", indexbuffer, data)) return; thread_graphics->exports.gs_indexbuffer_flush_direct(indexbuffer, data); } void *gs_indexbuffer_get_data(const gs_indexbuffer_t *indexbuffer) { if (!gs_valid_p("gs_indexbuffer_get_data", indexbuffer)) return NULL; return thread_graphics->exports.gs_indexbuffer_get_data(indexbuffer); } size_t gs_indexbuffer_get_num_indices(const gs_indexbuffer_t *indexbuffer) { if (!gs_valid_p("gs_indexbuffer_get_num_indices", indexbuffer)) return 0; return thread_graphics->exports.gs_indexbuffer_get_num_indices( indexbuffer); } enum gs_index_type gs_indexbuffer_get_type(const gs_indexbuffer_t *indexbuffer) { if (!gs_valid_p("gs_indexbuffer_get_type", indexbuffer)) return (enum gs_index_type)0; return thread_graphics->exports.gs_indexbuffer_get_type(indexbuffer); } void gs_timer_destroy(gs_timer_t *timer) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_timer_destroy")) return; if (!timer) return; graphics->exports.gs_timer_destroy(timer); } void gs_timer_begin(gs_timer_t *timer) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_timer_begin")) return; if (!timer) return; graphics->exports.gs_timer_begin(timer); } void gs_timer_end(gs_timer_t *timer) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_timer_end")) return; if (!timer) return; graphics->exports.gs_timer_end(timer); } bool gs_timer_get_data(gs_timer_t *timer, uint64_t *ticks) { if (!gs_valid_p2("gs_timer_get_data", timer, ticks)) return false; return thread_graphics->exports.gs_timer_get_data(timer, ticks); } void gs_timer_range_destroy(gs_timer_range_t *range) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_timer_range_destroy")) return; if (!range) return; graphics->exports.gs_timer_range_destroy(range); } void gs_timer_range_begin(gs_timer_range_t *range) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_timer_range_begin")) return; if (!range) return; graphics->exports.gs_timer_range_begin(range); } void gs_timer_range_end(gs_timer_range_t *range) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_timer_range_end")) return; if (!range) return; graphics->exports.gs_timer_range_end(range); } bool gs_timer_range_get_data(gs_timer_range_t *range, bool *disjoint, uint64_t *frequency) { if (!gs_valid_p2("gs_timer_range_get_data", disjoint, frequency)) return false; return thread_graphics->exports.gs_timer_range_get_data(range, disjoint, frequency); } bool gs_nv12_available(void) { if (!gs_valid("gs_nv12_available")) return false; if (!thread_graphics->exports.device_nv12_available) return false; return thread_graphics->exports.device_nv12_available( thread_graphics->device); } void gs_debug_marker_begin(const float color[4], const char *markername) { if (!gs_valid("gs_debug_marker_begin")) return; if (!markername) markername = "(null)"; thread_graphics->exports.device_debug_marker_begin( thread_graphics->device, markername, color); } void gs_debug_marker_begin_format(const float color[4], const char *format, ...) { if (!gs_valid("gs_debug_marker_begin")) return; if (format) { char markername[64]; va_list args; va_start(args, format); vsnprintf(markername, sizeof(markername), format, args); va_end(args); thread_graphics->exports.device_debug_marker_begin( thread_graphics->device, markername, color); } else { gs_debug_marker_begin(color, NULL); } } void gs_debug_marker_end(void) { if (!gs_valid("gs_debug_marker_end")) return; thread_graphics->exports.device_debug_marker_end( thread_graphics->device); } #ifdef __APPLE__ /** Platform specific functions */ gs_texture_t *gs_texture_create_from_iosurface(void *iosurf) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_texture_create_from_iosurface", iosurf)) return NULL; if (!graphics->exports.device_texture_create_from_iosurface) return NULL; return graphics->exports.device_texture_create_from_iosurface( graphics->device, iosurf); } bool gs_texture_rebind_iosurface(gs_texture_t *texture, void *iosurf) { graphics_t *graphics = thread_graphics; if (!gs_valid_p("gs_texture_rebind_iosurface", texture)) return false; if (!graphics->exports.gs_texture_rebind_iosurface) return false; return graphics->exports.gs_texture_rebind_iosurface(texture, iosurf); } #elif _WIN32 bool gs_gdi_texture_available(void) { if (!gs_valid("gs_gdi_texture_available")) return false; return thread_graphics->exports.device_gdi_texture_available(); } bool gs_shared_texture_available(void) { if (!gs_valid("gs_shared_texture_available")) return false; return thread_graphics->exports.device_shared_texture_available(); } bool gs_get_duplicator_monitor_info(int monitor_idx, struct gs_monitor_info *monitor_info) { if (!gs_valid_p("gs_get_duplicator_monitor_info", monitor_info)) return false; if (!thread_graphics->exports.device_get_duplicator_monitor_info) return false; return thread_graphics->exports.device_get_duplicator_monitor_info( thread_graphics->device, monitor_idx, monitor_info); } gs_duplicator_t *gs_duplicator_create(int monitor_idx) { if (!gs_valid("gs_duplicator_create")) return NULL; if (!thread_graphics->exports.device_duplicator_create) return NULL; return thread_graphics->exports.device_duplicator_create( thread_graphics->device, monitor_idx); } void gs_duplicator_destroy(gs_duplicator_t *duplicator) { if (!gs_valid("gs_duplicator_destroy")) return; if (!duplicator) return; if (!thread_graphics->exports.gs_duplicator_destroy) return; thread_graphics->exports.gs_duplicator_destroy(duplicator); } bool gs_duplicator_update_frame(gs_duplicator_t *duplicator) { if (!gs_valid_p("gs_duplicator_update_frame", duplicator)) return false; if (!thread_graphics->exports.gs_duplicator_get_texture) return false; return thread_graphics->exports.gs_duplicator_update_frame(duplicator); } gs_texture_t *gs_duplicator_get_texture(gs_duplicator_t *duplicator) { if (!gs_valid_p("gs_duplicator_get_texture", duplicator)) return NULL; if (!thread_graphics->exports.gs_duplicator_get_texture) return NULL; return thread_graphics->exports.gs_duplicator_get_texture(duplicator); } /** creates a windows GDI-lockable texture */ gs_texture_t *gs_texture_create_gdi(uint32_t width, uint32_t height) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_texture_create_gdi")) return NULL; if (graphics->exports.device_texture_create_gdi) return graphics->exports.device_texture_create_gdi( graphics->device, width, height); return NULL; } void *gs_texture_get_dc(gs_texture_t *gdi_tex) { if (!gs_valid_p("gs_texture_release_dc", gdi_tex)) return NULL; if (thread_graphics->exports.gs_texture_get_dc) return thread_graphics->exports.gs_texture_get_dc(gdi_tex); return NULL; } void gs_texture_release_dc(gs_texture_t *gdi_tex) { if (!gs_valid_p("gs_texture_release_dc", gdi_tex)) return; if (thread_graphics->exports.gs_texture_release_dc) thread_graphics->exports.gs_texture_release_dc(gdi_tex); } gs_texture_t *gs_texture_open_shared(uint32_t handle) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_texture_open_shared")) return NULL; if (graphics->exports.device_texture_open_shared) return graphics->exports.device_texture_open_shared( graphics->device, handle); return NULL; } uint32_t gs_texture_get_shared_handle(gs_texture_t *tex) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_texture_get_shared_handle")) return GS_INVALID_HANDLE; if (graphics->exports.device_texture_get_shared_handle) return graphics->exports.device_texture_get_shared_handle(tex); return GS_INVALID_HANDLE; } int gs_texture_acquire_sync(gs_texture_t *tex, uint64_t key, uint32_t ms) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_texture_acquire_sync")) return -1; if (graphics->exports.device_texture_acquire_sync) return graphics->exports.device_texture_acquire_sync(tex, key, ms); return -1; } int gs_texture_release_sync(gs_texture_t *tex, uint64_t key) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_texture_release_sync")) return -1; if (graphics->exports.device_texture_release_sync) return graphics->exports.device_texture_release_sync(tex, key); return -1; } bool gs_texture_create_nv12(gs_texture_t **tex_y, gs_texture_t **tex_uv, uint32_t width, uint32_t height, uint32_t flags) { graphics_t *graphics = thread_graphics; bool success = false; if (!gs_valid("gs_texture_create_nv12")) return false; if ((width & 1) == 1 || (height & 1) == 1) { blog(LOG_ERROR, "NV12 textures must have dimensions " "divisible by 2."); return false; } if (graphics->exports.device_texture_create_nv12) { success = graphics->exports.device_texture_create_nv12( graphics->device, tex_y, tex_uv, width, height, flags); if (success) return true; } *tex_y = gs_texture_create(width, height, GS_R8, 1, NULL, flags); *tex_uv = gs_texture_create(width / 2, height / 2, GS_R8G8, 1, NULL, flags); if (!*tex_y || !*tex_uv) { if (*tex_y) gs_texture_destroy(*tex_y); if (*tex_uv) gs_texture_destroy(*tex_uv); *tex_y = NULL; *tex_uv = NULL; return false; } return true; } gs_stagesurf_t *gs_stagesurface_create_nv12(uint32_t width, uint32_t height) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_stagesurface_create_nv12")) return NULL; if ((width & 1) == 1 || (height & 1) == 1) { blog(LOG_ERROR, "NV12 textures must have dimensions " "divisible by 2."); return NULL; } if (graphics->exports.device_stagesurface_create_nv12) return graphics->exports.device_stagesurface_create_nv12( graphics->device, width, height); return NULL; } void gs_register_loss_callbacks(const struct gs_device_loss *callbacks) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_register_loss_callbacks")) return; if (graphics->exports.device_register_loss_callbacks) graphics->exports.device_register_loss_callbacks( graphics->device, callbacks); } void gs_unregister_loss_callbacks(void *data) { graphics_t *graphics = thread_graphics; if (!gs_valid("gs_unregister_loss_callbacks")) return; if (graphics->exports.device_unregister_loss_callbacks) graphics->exports.device_unregister_loss_callbacks( graphics->device, data); } #endif