#include #include #include #include #include "../../media-io/audio-resampler.h" #include "../../util/circlebuf.h" #include "../../util/threading.h" #include "../../util/platform.h" #include "../../obs-internal.h" #include "../../util/darray.h" #include "mac-helpers.h" struct audio_monitor { obs_source_t *source; AudioQueueRef queue; AudioQueueBufferRef buffers[3]; pthread_mutex_t mutex; struct circlebuf empty_buffers; struct circlebuf new_data; audio_resampler_t *resampler; size_t buffer_size; size_t wait_size; uint32_t channels; volatile bool active; bool paused; bool ignore; }; static inline bool fill_buffer(struct audio_monitor *monitor) { AudioQueueBufferRef buf; OSStatus stat; if (monitor->new_data.size < monitor->buffer_size) { return false; } circlebuf_pop_front(&monitor->empty_buffers, &buf, sizeof(buf)); circlebuf_pop_front(&monitor->new_data, buf->mAudioData, monitor->buffer_size); buf->mAudioDataByteSize = monitor->buffer_size; stat = AudioQueueEnqueueBuffer(monitor->queue, buf, 0, NULL); if (!success(stat, "AudioQueueEnqueueBuffer")) { blog(LOG_WARNING, "%s: %s", __FUNCTION__, "Failed to enqueue buffer"); AudioQueueStop(monitor->queue, false); } return true; } static void on_audio_playback(void *param, obs_source_t *source, const struct audio_data *audio_data, bool muted) { struct audio_monitor *monitor = param; float vol = source->user_volume; uint32_t bytes; UNUSED_PARAMETER(source); if (!os_atomic_load_bool(&monitor->active)) { return; } uint8_t *resample_data[MAX_AV_PLANES]; uint32_t resample_frames; uint64_t ts_offset; bool success; success = audio_resampler_resample(monitor->resampler, resample_data, &resample_frames, &ts_offset, (const uint8_t *const *)audio_data->data, (uint32_t)audio_data->frames); if (!success) { return; } bytes = sizeof(float) * monitor->channels * resample_frames; if (muted) { memset(resample_data[0], 0, bytes); } else { /* apply volume */ if (!close_float(vol, 1.0f, EPSILON)) { register float *cur = (float*)resample_data[0]; register float *end = cur + resample_frames * monitor->channels; while (cur < end) *(cur++) *= vol; } } pthread_mutex_lock(&monitor->mutex); circlebuf_push_back(&monitor->new_data, resample_data[0], bytes); if (monitor->new_data.size >= monitor->wait_size) { monitor->wait_size = 0; while (monitor->empty_buffers.size > 0) { if (!fill_buffer(monitor)) { break; } } if (monitor->paused) { AudioQueueStart(monitor->queue, NULL); monitor->paused = false; } } pthread_mutex_unlock(&monitor->mutex); } static void buffer_audio(void *data, AudioQueueRef aq, AudioQueueBufferRef buf) { struct audio_monitor *monitor = data; pthread_mutex_lock(&monitor->mutex); circlebuf_push_back(&monitor->empty_buffers, &buf, sizeof(buf)); while (monitor->empty_buffers.size > 0) { if (!fill_buffer(monitor)) { break; } } if (monitor->empty_buffers.size == sizeof(buf) * 3) { monitor->paused = true; monitor->wait_size = monitor->buffer_size * 3; AudioQueuePause(monitor->queue); } pthread_mutex_unlock(&monitor->mutex); UNUSED_PARAMETER(aq); } extern bool devices_match(const char *id1, const char *id2); static bool audio_monitor_init(struct audio_monitor *monitor, obs_source_t *source) { const struct audio_output_info *info = audio_output_get_info( obs->audio.audio); uint32_t channels = get_audio_channels(info->speakers); OSStatus stat; AudioStreamBasicDescription desc = { .mSampleRate = (Float64)info->samples_per_sec, .mFormatID = kAudioFormatLinearPCM, .mFormatFlags = kAudioFormatFlagIsFloat | kAudioFormatFlagIsPacked, .mBytesPerPacket = sizeof(float) * channels, .mFramesPerPacket = 1, .mBytesPerFrame = sizeof(float) * channels, .mChannelsPerFrame = channels, .mBitsPerChannel = sizeof(float) * 8 }; monitor->source = source; monitor->channels = channels; monitor->buffer_size = channels * sizeof(float) * info->samples_per_sec / 100 * 3; monitor->wait_size = monitor->buffer_size * 3; pthread_mutex_init_value(&monitor->mutex); const char *uid = obs->audio.monitoring_device_id; if (!uid || !*uid) { return false; } if (source->info.output_flags & OBS_SOURCE_DO_NOT_SELF_MONITOR) { obs_data_t *s = obs_source_get_settings(source); const char *s_dev_id = obs_data_get_string(s, "device_id"); bool match = devices_match(s_dev_id, uid); obs_data_release(s); if (match) { monitor->ignore = true; return true; } } stat = AudioQueueNewOutput(&desc, buffer_audio, monitor, NULL, NULL, 0, &monitor->queue); if (!success(stat, "AudioStreamBasicDescription")) { return false; } if (strcmp(uid, "default") != 0) { CFStringRef cf_uid = CFStringCreateWithBytes(NULL, (const UInt8*)uid, strlen(uid), kCFStringEncodingUTF8, false); stat = AudioQueueSetProperty(monitor->queue, kAudioQueueProperty_CurrentDevice, &cf_uid, sizeof(cf_uid)); CFRelease(cf_uid); if (!success(stat, "set current device")) { return false; } } stat = AudioQueueSetParameter(monitor->queue, kAudioQueueParam_Volume, 1.0); if (!success(stat, "set volume")) { return false; } for (size_t i = 0; i < 3; i++) { stat = AudioQueueAllocateBuffer(monitor->queue, monitor->buffer_size, &monitor->buffers[i]); if (!success(stat, "allocation of buffer")) { return false; } circlebuf_push_back(&monitor->empty_buffers, &monitor->buffers[i], sizeof(monitor->buffers[i])); } if (pthread_mutex_init(&monitor->mutex, NULL) != 0) { blog(LOG_WARNING, "%s: %s", __FUNCTION__, "Failed to init mutex"); return false; } struct resample_info from = { .samples_per_sec = info->samples_per_sec, .speakers = info->speakers, .format = AUDIO_FORMAT_FLOAT_PLANAR }; struct resample_info to = { .samples_per_sec = info->samples_per_sec, .speakers = info->speakers, .format = AUDIO_FORMAT_FLOAT }; monitor->resampler = audio_resampler_create(&to, &from); if (!monitor->resampler) { blog(LOG_WARNING, "%s: %s", __FUNCTION__, "Failed to create resampler"); return false; } stat = AudioQueueStart(monitor->queue, NULL); if (!success(stat, "start")) { return false; } monitor->active = true; return true; } static void audio_monitor_free(struct audio_monitor *monitor) { if (monitor->source) { obs_source_remove_audio_capture_callback( monitor->source, on_audio_playback, monitor); } if (monitor->active) { AudioQueueStop(monitor->queue, true); } for (size_t i = 0; i < 3; i++) { if (monitor->buffers[i]) { AudioQueueFreeBuffer(monitor->queue, monitor->buffers[i]); } } if (monitor->queue) { AudioQueueDispose(monitor->queue, true); } audio_resampler_destroy(monitor->resampler); circlebuf_free(&monitor->empty_buffers); circlebuf_free(&monitor->new_data); pthread_mutex_destroy(&monitor->mutex); } static void audio_monitor_init_final(struct audio_monitor *monitor) { if (monitor->ignore) return; obs_source_add_audio_capture_callback(monitor->source, on_audio_playback, monitor); } struct audio_monitor *audio_monitor_create(obs_source_t *source) { struct audio_monitor *monitor = bzalloc(sizeof(*monitor)); if (!audio_monitor_init(monitor, source)) { goto fail; } pthread_mutex_lock(&obs->audio.monitoring_mutex); da_push_back(obs->audio.monitors, &monitor); pthread_mutex_unlock(&obs->audio.monitoring_mutex); audio_monitor_init_final(monitor); return monitor; fail: audio_monitor_free(monitor); bfree(monitor); return NULL; } void audio_monitor_reset(struct audio_monitor *monitor) { bool success; obs_source_t *source = monitor->source; audio_monitor_free(monitor); memset(monitor, 0, sizeof(*monitor)); success = audio_monitor_init(monitor, source); if (success) audio_monitor_init_final(monitor); } void audio_monitor_destroy(struct audio_monitor *monitor) { if (monitor) { audio_monitor_free(monitor); pthread_mutex_lock(&obs->audio.monitoring_mutex); da_erase_item(obs->audio.monitors, &monitor); pthread_mutex_unlock(&obs->audio.monitoring_mutex); bfree(monitor); } }