/****************************************************************************** Copyright (C) 2013 by Hugh Bailey This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . ******************************************************************************/ #include "../util/bmem.h" #include "audio-resampler.h" #include "audio-io.h" #include #include #include struct audio_resampler { struct SwrContext *context; bool opened; uint32_t input_freq; uint64_t input_layout; enum AVSampleFormat input_format; uint8_t *output_buffer[MAX_AV_PLANES]; uint64_t output_layout; enum AVSampleFormat output_format; int output_size; uint32_t output_ch; uint32_t output_freq; uint32_t output_planes; }; static inline enum AVSampleFormat convert_audio_format(enum audio_format format) { switch (format) { case AUDIO_FORMAT_UNKNOWN: return AV_SAMPLE_FMT_S16; case AUDIO_FORMAT_U8BIT: return AV_SAMPLE_FMT_U8; case AUDIO_FORMAT_16BIT: return AV_SAMPLE_FMT_S16; case AUDIO_FORMAT_32BIT: return AV_SAMPLE_FMT_S32; case AUDIO_FORMAT_FLOAT: return AV_SAMPLE_FMT_FLT; case AUDIO_FORMAT_U8BIT_PLANAR: return AV_SAMPLE_FMT_U8P; case AUDIO_FORMAT_16BIT_PLANAR: return AV_SAMPLE_FMT_S16P; case AUDIO_FORMAT_32BIT_PLANAR: return AV_SAMPLE_FMT_S32P; case AUDIO_FORMAT_FLOAT_PLANAR: return AV_SAMPLE_FMT_FLTP; } /* shouldn't get here */ return AV_SAMPLE_FMT_S16; } static inline uint64_t convert_speaker_layout(enum speaker_layout layout) { switch (layout) { case SPEAKERS_UNKNOWN: return 0; case SPEAKERS_MONO: return AV_CH_LAYOUT_MONO; case SPEAKERS_STEREO: return AV_CH_LAYOUT_STEREO; case SPEAKERS_2POINT1: return AV_CH_LAYOUT_SURROUND; case SPEAKERS_4POINT0: return AV_CH_LAYOUT_4POINT0; case SPEAKERS_4POINT1: return AV_CH_LAYOUT_4POINT1; case SPEAKERS_5POINT1: return AV_CH_LAYOUT_5POINT1_BACK; case SPEAKERS_7POINT1: return AV_CH_LAYOUT_7POINT1; } /* shouldn't get here */ return 0; } audio_resampler_t *audio_resampler_create(const struct resample_info *dst, const struct resample_info *src) { struct audio_resampler *rs = bzalloc(sizeof(struct audio_resampler)); int errcode; rs->opened = false; rs->input_freq = src->samples_per_sec; rs->input_layout = convert_speaker_layout(src->speakers); rs->input_format = convert_audio_format(src->format); rs->output_size = 0; rs->output_ch = get_audio_channels(dst->speakers); rs->output_freq = dst->samples_per_sec; rs->output_layout = convert_speaker_layout(dst->speakers); rs->output_format = convert_audio_format(dst->format); rs->output_planes = is_audio_planar(dst->format) ? rs->output_ch : 1; rs->context = swr_alloc_set_opts(NULL, rs->output_layout, rs->output_format, dst->samples_per_sec, rs->input_layout, rs->input_format, src->samples_per_sec, 0, NULL); if (!rs->context) { blog(LOG_ERROR, "swr_alloc_set_opts failed"); audio_resampler_destroy(rs); return NULL; } if (rs->input_layout == AV_CH_LAYOUT_MONO && rs->output_ch > 1) { const double matrix[MAX_AUDIO_CHANNELS][MAX_AUDIO_CHANNELS] = { {1}, {1, 1}, {1, 1, 0}, {1, 1, 1, 1}, {1, 1, 1, 0, 1}, {1, 1, 1, 1, 1, 1}, {1, 1, 1, 0, 1, 1, 1}, {1, 1, 1, 0, 1, 1, 1, 1}, }; if (swr_set_matrix(rs->context, matrix[rs->output_ch - 1], 1) < 0) blog(LOG_DEBUG, "swr_set_matrix failed for mono upmix\n"); } errcode = swr_init(rs->context); if (errcode != 0) { blog(LOG_ERROR, "avresample_open failed: error code %d", errcode); audio_resampler_destroy(rs); return NULL; } return rs; } void audio_resampler_destroy(audio_resampler_t *rs) { if (rs) { if (rs->context) swr_free(&rs->context); if (rs->output_buffer[0]) av_freep(&rs->output_buffer[0]); bfree(rs); } } bool audio_resampler_resample(audio_resampler_t *rs, uint8_t *output[], uint32_t *out_frames, uint64_t *ts_offset, const uint8_t *const input[], uint32_t in_frames) { if (!rs) return false; struct SwrContext *context = rs->context; int ret; int64_t delay = swr_get_delay(context, rs->input_freq); int estimated = (int)av_rescale_rnd(delay + (int64_t)in_frames, (int64_t)rs->output_freq, (int64_t)rs->input_freq, AV_ROUND_UP); *ts_offset = (uint64_t)swr_get_delay(context, 1000000000); /* resize the buffer if bigger */ if (estimated > rs->output_size) { if (rs->output_buffer[0]) av_freep(&rs->output_buffer[0]); av_samples_alloc(rs->output_buffer, NULL, rs->output_ch, estimated, rs->output_format, 0); rs->output_size = estimated; } ret = swr_convert(context, rs->output_buffer, rs->output_size, (const uint8_t **)input, in_frames); if (ret < 0) { blog(LOG_ERROR, "swr_convert failed: %d", ret); return false; } for (uint32_t i = 0; i < rs->output_planes; i++) output[i] = rs->output_buffer[i]; *out_frames = (uint32_t)ret; return true; }