200 lines
4.7 KiB
C
200 lines
4.7 KiB
C
|
/*
|
||
|
* rwlock7.c
|
||
|
*
|
||
|
* Hammer on a bunch of rwlocks to test robustness and fairness.
|
||
|
* Printed stats should be roughly even for each thread.
|
||
|
*/
|
||
|
|
||
|
#include "test.h"
|
||
|
#include <sys/timeb.h>
|
||
|
|
||
|
#ifdef __GNUC__
|
||
|
#include <stdlib.h>
|
||
|
#endif
|
||
|
|
||
|
#define THREADS 5
|
||
|
#define DATASIZE 7
|
||
|
#define ITERATIONS 1000000
|
||
|
|
||
|
/*
|
||
|
* Keep statistics for each thread.
|
||
|
*/
|
||
|
typedef struct thread_tag {
|
||
|
int thread_num;
|
||
|
pthread_t thread_id;
|
||
|
int updates;
|
||
|
int reads;
|
||
|
int changed;
|
||
|
int seed;
|
||
|
} thread_t;
|
||
|
|
||
|
/*
|
||
|
* Read-write lock and shared data
|
||
|
*/
|
||
|
typedef struct data_tag {
|
||
|
pthread_rwlock_t lock;
|
||
|
int data;
|
||
|
int updates;
|
||
|
} data_t;
|
||
|
|
||
|
static thread_t threads[THREADS];
|
||
|
static data_t data[DATASIZE];
|
||
|
|
||
|
/*
|
||
|
* Thread start routine that uses read-write locks
|
||
|
*/
|
||
|
void *thread_routine (void *arg)
|
||
|
{
|
||
|
thread_t *self = (thread_t*)arg;
|
||
|
int iteration;
|
||
|
int element = 0;
|
||
|
int seed = self->seed;
|
||
|
int interval = 1 + rand_r (&seed) % 71;
|
||
|
|
||
|
self->changed = 0;
|
||
|
|
||
|
for (iteration = 0; iteration < ITERATIONS; iteration++)
|
||
|
{
|
||
|
if (iteration % (ITERATIONS / 10) == 0)
|
||
|
{
|
||
|
putchar('.');
|
||
|
fflush(stdout);
|
||
|
}
|
||
|
/*
|
||
|
* Each "self->interval" iterations, perform an
|
||
|
* update operation (write lock instead of read
|
||
|
* lock).
|
||
|
*/
|
||
|
if ((iteration % interval) == 0)
|
||
|
{
|
||
|
assert(pthread_rwlock_wrlock (&data[element].lock) == 0);
|
||
|
data[element].data = self->thread_num;
|
||
|
data[element].updates++;
|
||
|
self->updates++;
|
||
|
interval = 1 + rand_r (&seed) % 71;
|
||
|
assert(pthread_rwlock_unlock (&data[element].lock) == 0);
|
||
|
} else {
|
||
|
/*
|
||
|
* Look at the current data element to see whether
|
||
|
* the current thread last updated it. Count the
|
||
|
* times, to report later.
|
||
|
*/
|
||
|
assert(pthread_rwlock_rdlock (&data[element].lock) == 0);
|
||
|
|
||
|
self->reads++;
|
||
|
|
||
|
if (data[element].data != self->thread_num)
|
||
|
{
|
||
|
self->changed++;
|
||
|
interval = 1 + self->changed % 71;
|
||
|
}
|
||
|
|
||
|
assert(pthread_rwlock_unlock (&data[element].lock) == 0);
|
||
|
}
|
||
|
|
||
|
element = (element + 1) % DATASIZE;
|
||
|
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
int
|
||
|
main (int argc, char *argv[])
|
||
|
{
|
||
|
int count;
|
||
|
int data_count;
|
||
|
int thread_updates = 0;
|
||
|
int data_updates = 0;
|
||
|
int seed = 1;
|
||
|
|
||
|
PTW32_STRUCT_TIMEB currSysTime1;
|
||
|
PTW32_STRUCT_TIMEB currSysTime2;
|
||
|
|
||
|
/*
|
||
|
* Initialize the shared data.
|
||
|
*/
|
||
|
for (data_count = 0; data_count < DATASIZE; data_count++)
|
||
|
{
|
||
|
data[data_count].data = 0;
|
||
|
data[data_count].updates = 0;
|
||
|
|
||
|
assert(pthread_rwlock_init (&data[data_count].lock, NULL) == 0);
|
||
|
}
|
||
|
|
||
|
PTW32_FTIME(&currSysTime1);
|
||
|
|
||
|
/*
|
||
|
* Create THREADS threads to access shared data.
|
||
|
*/
|
||
|
for (count = 0; count < THREADS; count++)
|
||
|
{
|
||
|
threads[count].thread_num = count;
|
||
|
threads[count].updates = 0;
|
||
|
threads[count].reads = 0;
|
||
|
threads[count].seed = 1 + rand_r (&seed) % 71;
|
||
|
|
||
|
assert(pthread_create (&threads[count].thread_id,
|
||
|
NULL, thread_routine, (void*)(size_t)&threads[count]) == 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Wait for all threads to complete, and collect
|
||
|
* statistics.
|
||
|
*/
|
||
|
for (count = 0; count < THREADS; count++)
|
||
|
{
|
||
|
assert(pthread_join (threads[count].thread_id, NULL) == 0);
|
||
|
}
|
||
|
|
||
|
putchar('\n');
|
||
|
fflush(stdout);
|
||
|
|
||
|
for (count = 0; count < THREADS; count++)
|
||
|
{
|
||
|
if (threads[count].changed > 0)
|
||
|
{
|
||
|
printf ("Thread %d found changed elements %d times\n",
|
||
|
count, threads[count].changed);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
putchar('\n');
|
||
|
fflush(stdout);
|
||
|
|
||
|
for (count = 0; count < THREADS; count++)
|
||
|
{
|
||
|
thread_updates += threads[count].updates;
|
||
|
printf ("%02d: seed %d, updates %d, reads %d\n",
|
||
|
count, threads[count].seed,
|
||
|
threads[count].updates, threads[count].reads);
|
||
|
}
|
||
|
|
||
|
putchar('\n');
|
||
|
fflush(stdout);
|
||
|
|
||
|
/*
|
||
|
* Collect statistics for the data.
|
||
|
*/
|
||
|
for (data_count = 0; data_count < DATASIZE; data_count++)
|
||
|
{
|
||
|
data_updates += data[data_count].updates;
|
||
|
printf ("data %02d: value %d, %d updates\n",
|
||
|
data_count, data[data_count].data, data[data_count].updates);
|
||
|
assert(pthread_rwlock_destroy (&data[data_count].lock) == 0);
|
||
|
}
|
||
|
|
||
|
printf ("%d thread updates, %d data updates\n",
|
||
|
thread_updates, data_updates);
|
||
|
|
||
|
PTW32_FTIME(&currSysTime2);
|
||
|
|
||
|
printf( "\nstart: %ld/%d, stop: %ld/%d, duration:%ld\n",
|
||
|
(long)currSysTime1.time,currSysTime1.millitm,
|
||
|
(long)currSysTime2.time,currSysTime2.millitm,
|
||
|
((long)((currSysTime2.time*1000+currSysTime2.millitm) -
|
||
|
(currSysTime1.time*1000+currSysTime1.millitm))));
|
||
|
|
||
|
return 0;
|
||
|
}
|