yolobs-studio/libobs/util/simde/sse.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2592 lines
58 KiB
C
Raw Normal View History

2020-03-25 08:07:22 +00:00
/* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Copyright:
* 2017 Evan Nemerson <evan@nemerson.com>
* 2015-2017 John W. Ratcliff <jratcliffscarab@gmail.com>
* 2015 Brandon Rowlett <browlett@nvidia.com>
* 2015 Ken Fast <kfast@gdeb.com>
*/
#if !defined(SIMDE__SSE_H)
#if !defined(SIMDE__SSE_H)
#define SIMDE__SSE_H
#endif
#include "mmx.h"
#if defined(SIMDE_SSE_NATIVE)
#undef SIMDE_SSE_NATIVE
#endif
#if defined(SIMDE_SSE_FORCE_NATIVE)
#define SIMDE_SSE_NATIVE
#elif defined(__SSE__) && !defined(SIMDE_SSE_NO_NATIVE) && \
!defined(SIMDE_NO_NATIVE)
#define SIMDE_SSE_NATIVE
#elif defined(__ARM_NEON) && !defined(SIMDE_SSE_NO_NEON) && \
!defined(SIMDE_NO_NEON)
#define SIMDE_SSE_NEON
#endif
#if defined(SIMDE_SSE_NATIVE) && !defined(SIMDE_MMX_NATIVE)
#if defined(SIMDE_SSE_FORCE_NATIVE)
#error Native SSE support requires native MMX support
#else
#warning Native SSE support requires native MMX support, disabling
#undef SIMDE_SSE_NATIVE
#endif
#elif defined(SIMDE_SSE_NEON) && !defined(SIMDE_MMX_NEON)
#warning SSE3 NEON support requires MMX NEON support, disabling
#undef SIMDE_SSE3_NEON
#endif
#if defined(SIMDE_SSE_NATIVE)
#include <xmmintrin.h>
#else
#if defined(SIMDE_SSE_NEON)
#include <arm_neon.h>
#endif
#if !defined(__INTEL_COMPILER) && defined(__STDC_VERSION__) && \
(__STDC_VERSION__ >= 201112L) && !defined(__STDC_NO_ATOMICS__)
#include <stdatomic.h>
#elif defined(_WIN32)
#include <Windows.h>
#endif
#endif
#include <math.h>
#include <fenv.h>
#define SIMDE_ALIGN(alignment) __attribute__((aligned(alignment)))
SIMDE__BEGIN_DECLS
typedef SIMDE_ALIGN(16) union {
#if defined(SIMDE__ENABLE_GCC_VEC_EXT)
int8_t i8 __attribute__((__vector_size__(16), __may_alias__));
int16_t i16 __attribute__((__vector_size__(16), __may_alias__));
int32_t i32 __attribute__((__vector_size__(16), __may_alias__));
int64_t i64 __attribute__((__vector_size__(16), __may_alias__));
uint8_t u8 __attribute__((__vector_size__(16), __may_alias__));
uint16_t u16 __attribute__((__vector_size__(16), __may_alias__));
uint32_t u32 __attribute__((__vector_size__(16), __may_alias__));
uint64_t u64 __attribute__((__vector_size__(16), __may_alias__));
#if defined(SIMDE__HAVE_INT128)
simde_int128 i128 __attribute__((__vector_size__(16), __may_alias__));
simde_uint128 u128 __attribute__((__vector_size__(16), __may_alias__));
#endif
simde_float32 f32 __attribute__((__vector_size__(16), __may_alias__));
#else
int8_t i8[16];
int16_t i16[8];
int32_t i32[4];
int64_t i64[2];
uint8_t u8[16];
uint16_t u16[8];
uint32_t u32[4];
uint64_t u64[2];
#if defined(SIMDE__HAVE_INT128)
simde_int128 i128[1];
simde_uint128 u128[1];
#endif
simde_float32 f32[4];
#endif
#if defined(SIMDE_SSE_NATIVE)
__m128 n;
#elif defined(SIMDE_SSE_NEON)
int8x16_t neon_i8;
int16x8_t neon_i16;
int32x4_t neon_i32;
int64x2_t neon_i64;
uint8x16_t neon_u8;
uint16x8_t neon_u16;
uint32x4_t neon_u32;
uint64x2_t neon_u64;
float32x4_t neon_f32;
#endif
} simde__m128;
#if defined(SIMDE_SSE_NATIVE)
HEDLEY_STATIC_ASSERT(sizeof(__m128) == sizeof(simde__m128),
"__m128 size doesn't match simde__m128 size");
SIMDE__FUNCTION_ATTRIBUTES simde__m128 SIMDE__M128_C(__m128 v)
{
simde__m128 r;
r.n = v;
return r;
}
#elif defined(SIMDE_SSE_NEON)
#define SIMDE__M128_NEON_C(T, expr) \
(simde__m128) { .neon_##T = expr }
#endif
HEDLEY_STATIC_ASSERT(16 == sizeof(simde__m128), "simde__m128 size incorrect");
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_add_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_add_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vaddq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = a.f32[i] + b.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_add_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_add_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32_t b0 = vgetq_lane_f32(b.neon_f32, 0);
float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
/* the upper values in the result must be the remnants of <a>. */
r.neon_f32 = vaddq_f32(a.neon_f32, value);
#elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32, simde_mm_add_ps(a, b).f32,
4, 1, 2, 3);
#else
r.f32[0] = a.f32[0] + b.f32[0];
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_and_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_and_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_i32 = vandq_s32(a.neon_i32, b.neon_i32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
r.i32[i] = a.i32[i] & b.i32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_andnot_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_andnot_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_i32 = vbicq_s32(b.neon_i32, a.neon_i32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
r.i32[i] = ~(a.i32[i]) & b.i32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_avg_pu16(simde__m64 a, simde__m64 b)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_avg_pu16(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u16 = vrhadd_u16(b.neon_u16, a.neon_u16);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < 4; i++) {
r.u16[i] = (a.u16[i] + b.u16[i] + 1) >> 1;
}
#endif
return r;
}
#define simde_m_pavgw(a, b) simde_mm_avg_pu16(a, b)
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_avg_pu8(simde__m64 a, simde__m64 b)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_avg_pu8(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u8 = vrhadd_u8(b.neon_u8, a.neon_u8);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < 8; i++) {
r.u8[i] = (a.u8[i] + b.u8[i] + 1) >> 1;
}
#endif
return r;
}
#define simde_m_pavgb(a, b) simde_mm_avg_pu8(a, b)
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpeq_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpeq_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vceqq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = (a.f32[i] == b.f32[i]) ? 0xffffffff : 0;
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpeq_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpeq_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t s =
vreinterpretq_f32_u32(vceqq_f32(a.neon_f32, b.neon_f32));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
simde_mm_cmpeq_ps(a, b).f32, 4, 1, 2, 3);
#else
r.u32[0] = (a.f32[0] == b.f32[0]) ? 0xffffffff : 0;
SIMDE__VECTORIZE
for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = a.u32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpge_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpge_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vcgeq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = (a.f32[i] >= b.f32[i]) ? 0xffffffff : 0;
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpge_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
r.n = _mm_cmpge_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t s =
vreinterpretq_f32_u32(vcgeq_f32(a.neon_f32, b.neon_f32));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
simde_mm_cmpge_ps(a, b).f32, 4, 1, 2, 3);
#else
r.u32[0] = (a.f32[0] >= b.f32[0]) ? 0xffffffff : 0;
SIMDE__VECTORIZE
for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = a.u32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpgt_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpgt_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vcgtq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = (a.f32[i] > b.f32[i]) ? 0xffffffff : 0;
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpgt_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
r.n = _mm_cmpgt_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t s =
vreinterpretq_f32_u32(vcgtq_f32(a.neon_f32, b.neon_f32));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
simde_mm_cmpgt_ps(a, b).f32, 4, 1, 2, 3);
#else
r.u32[0] = (a.f32[0] > b.f32[0]) ? 0xffffffff : 0;
SIMDE__VECTORIZE
for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = a.u32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmple_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmple_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vcleq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = (a.f32[i] <= b.f32[i]) ? 0xffffffff : 0;
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmple_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmple_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t s =
vreinterpretq_f32_u32(vcleq_f32(a.neon_f32, b.neon_f32));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
simde_mm_cmple_ps(a, b).f32, 4, 1, 2, 3);
#else
r.u32[0] = (a.f32[0] <= b.f32[0]) ? 0xffffffff : 0;
SIMDE__VECTORIZE
for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = a.u32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmplt_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmplt_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vcltq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = (a.f32[i] < b.f32[i]) ? 0xffffffff : 0;
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmplt_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmplt_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t s =
vreinterpretq_f32_u32(vcltq_f32(a.neon_f32, b.neon_f32));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
simde_mm_cmplt_ps(a, b).f32, 4, 1, 2, 3);
#else
r.u32[0] = (a.f32[0] < b.f32[0]) ? 0xffffffff : 0;
SIMDE__VECTORIZE
for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = a.u32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpneq_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpneq_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vmvnq_u32(vceqq_f32(a.neon_f32, b.neon_f32));
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = (a.f32[i] != b.f32[i]) ? 0xffffffff : 0;
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpneq_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpneq_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t e =
vreinterpretq_f32_u32(vceqq_f32(a.neon_f32, b.neon_f32));
float32x4_t s =
vreinterpretq_f32_u32(vmvnq_u32(vreinterpretq_u32_f32(e)));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
simde_mm_cmpneq_ps(a, b).f32, 4, 1, 2, 3);
#else
r.u32[0] = (a.f32[0] != b.f32[0]) ? 0xffffffff : 0;
SIMDE__VECTORIZE
for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = a.u32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnge_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpnge_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vcltq_f32(a.neon_f32, b.neon_f32);
#else
r = simde_mm_cmplt_ps(a, b);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnge_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
r.n = _mm_cmpnge_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t s =
vreinterpretq_f32_u32(vcltq_f32(a.neon_f32, b.neon_f32));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#else
r = simde_mm_cmplt_ss(a, b);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpngt_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpngt_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vcleq_f32(a.neon_f32, b.neon_f32);
#else
r = simde_mm_cmple_ps(a, b);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpngt_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
r.n = _mm_cmpngt_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t s =
vreinterpretq_f32_u32(vcleq_f32(a.neon_f32, b.neon_f32));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#else
r = simde_mm_cmple_ss(a, b);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnle_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpnle_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vcgtq_f32(a.neon_f32, b.neon_f32);
#else
r = simde_mm_cmpgt_ps(a, b);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnle_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpnle_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t s =
vreinterpretq_f32_u32(vcgtq_f32(a.neon_f32, b.neon_f32));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#else
r = simde_mm_cmpgt_ss(a, b);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnlt_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpnlt_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_u32 = vcgeq_f32(a.neon_f32, b.neon_f32);
#else
r = simde_mm_cmpge_ps(a, b);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpnlt_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpnlt_ss(a.n, b.n);
#else
r = simde_mm_cmpge_ss(a, b);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpord_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpord_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
/* Note: NEON does not have ordered compare builtin
Need to compare a eq a and b eq b to check for NaN
Do AND of results to get final */
uint32x4_t ceqaa = vceqq_f32(a.neon_f32, a.neon_f32);
uint32x4_t ceqbb = vceqq_f32(b.neon_f32, b.neon_f32);
r.neon_u32 = vandq_u32(ceqaa, ceqbb);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = (isnan(a.f32[i]) || isnan(b.f32[i])) ? 0
: 0xffffffff;
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpord_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpord_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
uint32x4_t ceqaa = vceqq_f32(a.neon_f32, a.neon_f32);
uint32x4_t ceqbb = vceqq_f32(b.neon_f32, b.neon_f32);
float32x4_t s = vreinterpretq_f32_u32(vandq_u32(ceqaa, ceqbb));
float32x4_t t = vextq_f32(a.neon_f32, s, 1);
r.neon_f32 = vextq_f32(t, t, 3);
#elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
r.f32 = SIMDE__SHUFFLE_VECTOR(32, 16, a.f32,
simde_mm_cmpord_ps(a, b).f32, 4, 1, 2, 3);
#else
r.u32[0] = (isnan(a.f32[0]) || isnan(b.f32[0])) ? 0 : 0xffffffff;
SIMDE__VECTORIZE
for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = a.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpunord_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cmpunord_ps(a.n, b.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.u32[i] = (isnan(a.f32[i]) || isnan(b.f32[i])) ? 0xffffffff
: 0;
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cmpunord_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
r.n = _mm_cmpunord_ss(a.n, b.n);
#elif defined(SIMDE__SHUFFLE_VECTOR) && defined(SIMDE_ASSUME_VECTORIZATION)
r.f32 = SIMDE__SHUFFLE_VECTOR(
32, 16, a.f32, simde_mm_cmpunord_ps(a, b).f32, 4, 1, 2, 3);
#else
r.u32[0] = (isnan(a.f32[0]) || isnan(b.f32[0])) ? 0xffffffff : 0;
SIMDE__VECTORIZE
for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = a.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_comieq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_comieq_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
uint32x4_t a_eq_b = vceqq_f32(a.neon_f32, b.neon_f32);
return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_eq_b), 0) != 0) ? 1 : 0;
#else
return a.f32[0] == b.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_comige_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_comige_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
uint32x4_t a_ge_b = vcgeq_f32(a.neon_f32, b.neon_f32);
return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_ge_b), 0) != 0) ? 1
: 0;
#else
return a.f32[0] >= b.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_comigt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_comigt_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
uint32x4_t a_gt_b = vcgtq_f32(a.neon_f32, b.neon_f32);
return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_gt_b), 0) != 0) ? 1
: 0;
#else
return a.f32[0] > b.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_comile_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_comile_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
uint32x4_t a_le_b = vcleq_f32(a.neon_f32, b.neon_f32);
return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_le_b), 0) != 0) ? 1 : 0;
#else
return a.f32[0] <= b.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_comilt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_comilt_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NATIVE)
uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
uint32x4_t a_or_b_nan = vmvnq_u32(vandq_u32(a_not_nan, b_not_nan));
uint32x4_t a_lt_b = vcltq_f32(a.neon_f32, b.neon_f32);
return (vgetq_lane_u32(vorrq_u32(a_or_b_nan, a_lt_b), 0) != 0) ? 1 : 0;
#else
return a.f32[0] < b.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_comineq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_comineq_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
uint32x4_t a_not_nan = vceqq_f32(a.neon_f32, a.neon_f32);
uint32x4_t b_not_nan = vceqq_f32(b.neon_f32, b.neon_f32);
uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
uint32x4_t a_neq_b = vmvnq_u32(vceqq_f32(a.neon_f32, b.neon_f32));
return (vgetq_lane_u32(vandq_u32(a_and_b_not_nan, a_neq_b), 0) != 0)
? 1
: 0;
#else
return a.f32[0] != b.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvt_pi2ps(simde__m128 a, simde__m64 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvt_pi2ps(a.n, b.n);
#else
r.f32[0] = (simde_float32)b.i32[0];
r.f32[1] = (simde_float32)b.i32[1];
r.i32[2] = a.i32[2];
r.i32[3] = a.i32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvt_ps2pi(simde__m128 a)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvt_ps2pi(a.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
r.i32[i] = (int32_t)a.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvt_si2ss(simde__m128 a, int32_t b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvt_si2ss(a.n, b);
#else
r.f32[0] = (simde_float32)b;
r.i32[1] = a.i32[1];
r.i32[2] = a.i32[2];
r.i32[3] = a.i32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
int32_t simde_mm_cvt_ss2si(simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_cvt_ss2si(a.n);
#else
return (int32_t)a.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpi16_ps(simde__m64 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtpi16_ps(a.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = (simde_float32)a.i16[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpi32_ps(simde__m128 a, simde__m64 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtpi32_ps(a.n, b.n);
#else
r.f32[0] = (simde_float32)b.i32[0];
r.f32[1] = (simde_float32)b.i32[1];
r.i32[2] = a.i32[2];
r.i32[3] = a.i32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpi32x2_ps(simde__m64 a, simde__m64 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtpi32x2_ps(a.n, b.n);
#else
r.f32[0] = (simde_float32)a.i32[0];
r.f32[1] = (simde_float32)a.i32[1];
r.f32[2] = (simde_float32)b.i32[0];
r.f32[3] = (simde_float32)b.i32[1];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpi8_ps(simde__m64 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtpi8_ps(a.n);
#else
r.f32[0] = (simde_float32)a.i8[0];
r.f32[1] = (simde_float32)a.i8[1];
r.f32[2] = (simde_float32)a.i8[2];
r.f32[3] = (simde_float32)a.i8[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvtps_pi16(simde__m128 a)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtps_pi16(a.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.i16) / sizeof(r.i16[0])); i++) {
r.i16[i] = (int16_t)a.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvtps_pi32(simde__m128 a)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtps_pi32(a.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
r.i32[i] = (int32_t)a.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvtps_pi8(simde__m128 a)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtps_pi8(a.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(a.f32) / sizeof(a.f32[0])); i++) {
r.i8[i] = (int8_t)a.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpu16_ps(simde__m64 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtpu16_ps(a.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = (simde_float32)a.u16[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtpu8_ps(simde__m64 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtpu8_ps(a.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < 4; i++) {
r.f32[i] = (simde_float32)a.u8[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtsi32_ss(simde__m128 a, int32_t b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtsi32_ss(a.n, b);
#else
r.f32[0] = (simde_float32)b;
SIMDE__VECTORIZE
for (size_t i = 1; i < 4; i++) {
r.i32[i] = a.i32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_cvtsi64_ss(simde__m128 a, int64_t b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
#if !defined(__PGI)
r.n = _mm_cvtsi64_ss(a.n, b);
#else
r.n = _mm_cvtsi64x_ss(a.n, b);
#endif
#else
r.f32[0] = (simde_float32)b;
SIMDE__VECTORIZE
for (size_t i = 1; i < 4; i++) {
r.i32[i] = a.i32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde_float32 simde_mm_cvtss_f32(simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_cvtss_f32(a.n);
#elif defined(SIMDE_SSE_NEON)
return vgetq_lane_f32(a.neon_f32, 0);
#else
return a.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int32_t simde_mm_cvtss_si32(simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_cvtss_si32(a.n);
#else
return (int32_t)a.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int64_t simde_mm_cvtss_si64(simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
#if !defined(__PGI)
return _mm_cvtss_si64(a.n);
#else
return _mm_cvtss_si64x(a.n);
#endif
#else
return (int64_t)a.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvtt_ps2pi(simde__m128 a)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvtt_ps2pi(a.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.i32[i] = (int32_t)truncf(a.f32[i]);
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
int32_t simde_mm_cvtt_ss2si(simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_cvtt_ss2si(a.n);
#else
return (int32_t)truncf(a.f32[0]);
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_cvttps_pi32(simde__m128 a)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_cvttps_pi32(a.n);
#else
r = simde_mm_cvtt_ps2pi(a);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
int32_t simde_mm_cvttss_si32(simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_cvttss_si32(a.n);
#else
return (int32_t)truncf(a.f32[0]);
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int64_t simde_mm_cvttss_si64(simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE) && defined(SIMDE_ARCH_AMD64)
#if defined(__PGI)
return _mm_cvttss_si64x(a.n);
#else
return _mm_cvttss_si64(a.n);
#endif
#else
return (int64_t)truncf(a.f32[0]);
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_div_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_div_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t recip0 = vrecpeq_f32(b.neon_f32);
float32x4_t recip1 = vmulq_f32(recip0, vrecpsq_f32(recip0, b.neon_f32));
r.neon_f32 = vmulq_f32(a.neon_f32, recip1);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = a.f32[i] / b.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_div_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_div_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32_t value = vgetq_lane_f32(simde_mm_div_ps(a, b).neon_f32, 0);
r.neon_f32 = vsetq_lane_f32(value, a.neon_f32, 0);
#else
r.f32[0] = a.f32[0] / b.f32[0];
SIMDE__VECTORIZE
for (size_t i = 1; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = a.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
int32_t simde_mm_extract_pi16(simde__m64 a, const int imm8)
{
return a.u16[imm8];
}
#if defined(SIMDE_SSE_NATIVE)
#define simde_mm_extract_pi16(a, imm8) _mm_extract_pi16(a.n, imm8)
#endif
#define simde_m_pextrw(a, imm8) simde_mm_extract_pi16(a.n, imm8)
enum {
#if defined(SIMDE_SSE_NATIVE)
simde_MM_ROUND_NEAREST = _MM_ROUND_NEAREST,
simde_MM_ROUND_DOWN = _MM_ROUND_DOWN,
simde_MM_ROUND_UP = _MM_ROUND_UP,
simde_MM_ROUND_TOWARD_ZERO = _MM_ROUND_TOWARD_ZERO
#else
simde_MM_ROUND_NEAREST
#if defined(FE_TONEAREST)
= FE_TONEAREST
#endif
,
simde_MM_ROUND_DOWN
#if defined(FE_DOWNWARD)
= FE_DOWNWARD
#endif
,
simde_MM_ROUND_UP
#if defined(FE_UPWARD)
= FE_UPWARD
#endif
,
simde_MM_ROUND_TOWARD_ZERO
#if defined(FE_TOWARDZERO)
= FE_TOWARDZERO
#endif
#endif
};
SIMDE__FUNCTION_ATTRIBUTES
unsigned int simde_MM_GET_ROUNDING_MODE(void)
{
#if defined(SIMDE_SSE_NATIVE)
return _MM_GET_ROUNDING_MODE();
#else
return fegetround();
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_MM_SET_ROUNDING_MODE(unsigned int a)
{
#if defined(SIMDE_SSE_NATIVE)
_MM_SET_ROUNDING_MODE(a);
#else
fesetround((int)a);
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_insert_pi16(simde__m64 a, int16_t i, const int imm8)
{
simde__m64 r;
r.i64[0] = a.i64[0];
r.i16[imm8] = i;
return r;
}
#if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
#define simde_mm_insert_pi16(a, i, imm8) \
SIMDE__M64_C(_mm_insert_pi16((a).n, i, imm8));
#endif
#define simde_m_pinsrw(a, i, imm8) \
SIMDE__M64_C(simde_mm_insert_pi16((a).n, i, imm8));
SIMDE__FUNCTION_ATTRIBUTES
simde__m128
simde_mm_load_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
{
simde__m128 r;
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_load_ps(mem_addr);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vld1q_f32(mem_addr);
#else
memcpy(&r, mem_addr, sizeof(r.f32));
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_load_ps1(simde_float32 const *mem_addr)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_load_ps1(mem_addr);
#else
const simde_float32 v = *mem_addr;
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.i32) / sizeof(r.i32[0])); i++) {
r.f32[i] = v;
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_load_ss(simde_float32 const *mem_addr)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_load_ss(mem_addr);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vsetq_lane_f32(*mem_addr, vdupq_n_f32(0), 0);
#else
r.f32[0] = *mem_addr;
r.i32[1] = 0;
r.i32[2] = 0;
r.i32[3] = 0;
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_load1_ps(simde_float32 const *mem_addr)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_load1_ps(mem_addr);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vld1q_dup_f32(mem_addr);
#else
r = simde_mm_load_ps1(mem_addr);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_loadh_pi(simde__m128 a, simde__m64 const *mem_addr)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_loadh_pi(a.n, (__m64 *)mem_addr);
#else
r.f32[0] = a.f32[0];
r.f32[1] = a.f32[1];
r.f32[2] = mem_addr->f32[0];
r.f32[3] = mem_addr->f32[1];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_loadl_pi(simde__m128 a, simde__m64 const *mem_addr)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_loadl_pi(a.n, (__m64 *)mem_addr);
#else
r.f32[0] = mem_addr->f32[0];
r.f32[1] = mem_addr->f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128
simde_mm_loadr_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
{
simde__m128 r;
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_loadr_ps(mem_addr);
#else
r.f32[0] = mem_addr[3];
r.f32[1] = mem_addr[2];
r.f32[2] = mem_addr[1];
r.f32[3] = mem_addr[0];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128
simde_mm_loadu_ps(simde_float32 const mem_addr[HEDLEY_ARRAY_PARAM(4)])
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_loadu_ps(mem_addr);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vld1q_f32(mem_addr);
#else
r.f32[0] = mem_addr[0];
r.f32[1] = mem_addr[1];
r.f32[2] = mem_addr[2];
r.f32[3] = mem_addr[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_maskmove_si64(simde__m64 a, simde__m64 mask, char *mem_addr)
{
#if defined(SIMDE_SSE_NATIVE)
_mm_maskmove_si64(a.n, mask.n, mem_addr);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(a.i8) / sizeof(a.i8[0])); i++)
if (mask.i8[i] < 0)
mem_addr[i] = a.i8[i];
#endif
}
#define simde_m_maskmovq(a, mask, mem_addr) \
simde_mm_maskmove_si64(a, mask, mem_addr)
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_max_pi16(simde__m64 a, simde__m64 b)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_max_pi16(a.n, b.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.i16) / sizeof(r.i16[0])); i++) {
r.i16[i] = (a.i16[i] > b.i16[i]) ? a.i16[i] : b.i16[i];
}
#endif
return r;
}
#define simde_m_pmaxsw(a, b) simde_mm_max_pi16(a, b)
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_max_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_max_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vmaxq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = (a.f32[i] > b.f32[i]) ? a.f32[i] : b.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_max_pu8(simde__m64 a, simde__m64 b)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_max_pu8(a.n, b.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.u8) / sizeof(r.u8[0])); i++) {
r.u8[i] = (a.u8[i] > b.u8[i]) ? a.u8[i] : b.u8[i];
}
#endif
return r;
}
#define simde_m_pmaxub(a, b) simde_mm_max_pu8(a, b)
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_max_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_max_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32_t value = vgetq_lane_f32(vmaxq_f32(a.neon_f32, b.neon_f32), 0);
r.neon_f32 = vsetq_lane_f32(value, a.neon_f32, 0);
#else
r.f32[0] = (a.f32[0] > b.f32[0]) ? a.f32[0] : b.f32[0];
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_min_pi16(simde__m64 a, simde__m64 b)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_min_pi16(a.n, b.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.i16) / sizeof(r.i16[0])); i++) {
r.i16[i] = (a.i16[i] < b.i16[i]) ? a.i16[i] : b.i16[i];
}
#endif
return r;
}
#define simde_m_pminsw(a, b) simde_mm_min_pi16(a, b)
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_min_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_min_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vminq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = (a.f32[i] < b.f32[i]) ? a.f32[i] : b.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_min_pu8(simde__m64 a, simde__m64 b)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_min_pu8(a.n, b.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.u8) / sizeof(r.u8[0])); i++) {
r.u8[i] = (a.u8[i] < b.u8[i]) ? a.u8[i] : b.u8[i];
}
#endif
return r;
}
#define simde_m_pminub(a, b) simde_mm_min_pu8(a, b)
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_min_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_min_ss(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32_t value = vgetq_lane_f32(vminq_f32(a.neon_f32, b.neon_f32), 0);
r.neon_f32 = vsetq_lane_f32(value, a.neon_f32, 0);
#else
r.f32[0] = (a.f32[0] < b.f32[0]) ? a.f32[0] : b.f32[0];
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_move_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_move_ss(a.n, b.n);
#else
r.f32[0] = b.f32[0];
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_movehl_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_movehl_ps(a.n, b.n);
#else
r.f32[0] = b.f32[2];
r.f32[1] = b.f32[3];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_movelh_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_movelh_ps(a.n, b.n);
#else
r.f32[0] = a.f32[0];
r.f32[1] = a.f32[1];
r.f32[2] = b.f32[0];
r.f32[3] = b.f32[1];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_movemask_pi8(simde__m64 a)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_movemask_pi8(a.n);
#else
int r = 0;
const size_t nmemb = sizeof(a.i8) / sizeof(a.i8[0]);
SIMDE__VECTORIZE_REDUCTION(| : r)
for (size_t i = 0; i < nmemb; i++) {
r |= (a.u8[nmemb - 1 - i] >> 7) << (nmemb - 1 - i);
}
return r;
#endif
}
#define simde_m_pmovmskb(a, b) simde_mm_movemask_pi8(a, b)
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_movemask_ps(simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_movemask_ps(a.n);
#elif defined(SIMDE_SSE_NEON)
/* TODO: check to see if NEON version is faster than the portable version */
static const uint32x4_t movemask = {1, 2, 4, 8};
static const uint32x4_t highbit = {0x80000000, 0x80000000, 0x80000000,
0x80000000};
uint32x4_t t0 = a.neon_u32;
uint32x4_t t1 = vtstq_u32(t0, highbit);
uint32x4_t t2 = vandq_u32(t1, movemask);
uint32x2_t t3 = vorr_u32(vget_low_u32(t2), vget_high_u32(t2));
return vget_lane_u32(t3, 0) | vget_lane_u32(t3, 1);
#else
int r = 0;
SIMDE__VECTORIZE_REDUCTION(| : r)
for (size_t i = 0; i < sizeof(a.u32) / sizeof(a.u32[0]); i++) {
r |= (a.u32[i] >> ((sizeof(a.u32[i]) * CHAR_BIT) - 1)) << i;
}
return r;
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_mul_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_mul_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vmulq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = a.f32[i] * b.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_mul_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_mul_ss(a.n, b.n);
#else
r.f32[0] = a.f32[0] * b.f32[0];
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_mulhi_pu16(simde__m64 a, simde__m64 b)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_mulhi_pu16(a.n, b.n);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.u16) / sizeof(r.u16[0])); i++) {
r.u16[i] = (a.u16[i] * b.u16[i]) >> 16;
}
#endif
return r;
}
#define simde_m_pmulhuw(a, b) simde_mm_mulhi_pu16(a, b)
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_or_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_or_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_i32 = vorrq_s32(a.neon_i32, b.neon_i32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.u32) / sizeof(r.u32[0])); i++) {
r.u32[i] = a.u32[i] | b.u32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_prefetch(char const *p, int i)
{
(void)p;
(void)i;
}
#if defined(SIMDE_SSE_NATIVE)
#define simde_mm_prefetch(p, i) _mm_prefetch(p, i)
#endif
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_rcp_ps(simde__m128 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_rcp_ps(a.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t recip = vrecpeq_f32(a.neon_f32);
#if !defined(SIMDE_MM_RCP_PS_ITERS)
#define SIMDE_MM_RCP_PS_ITERS SIMDE_ACCURACY_ITERS
#endif
for (int i = 0; i < SIMDE_MM_RCP_PS_ITERS; ++i) {
recip = vmulq_f32(recip, vrecpsq_f32(recip, a.neon_f32));
}
r.neon_f32 = recip;
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = 1.0f / a.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_rcp_ss(simde__m128 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_rcp_ss(a.n);
#else
r.f32[0] = 1.0f / a.f32[0];
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_rsqrt_ps(simde__m128 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_rsqrt_ps(a.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vrsqrteq_f32(a.neon_f32);
#elif defined(__STDC_IEC_559__)
/* http://h14s.p5r.org/2012/09/0x5f3759df.html?mwh=1 */
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.i32[i] = INT32_C(0x5f3759df) - (a.i32[i] >> 1);
#if SIMDE_ACCURACY_ITERS > 2
const float half = SIMDE_FLOAT32_C(0.5) * a.f32[i];
for (int ai = 2; ai < SIMDE_ACCURACY_ITERS; ai++)
r.f32[i] *= SIMDE_FLOAT32_C(1.5) -
(half * r.f32[i] * r.f32[i]);
#endif
}
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = 1.0f / sqrtf(a.f32[i]);
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_rsqrt_ss(simde__m128 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_rsqrt_ss(a.n);
#elif defined(__STDC_IEC_559__)
{
r.i32[0] = INT32_C(0x5f3759df) - (a.i32[0] >> 1);
#if SIMDE_ACCURACY_ITERS > 2
float half = SIMDE_FLOAT32_C(0.5) * a.f32[0];
for (int ai = 2; ai < SIMDE_ACCURACY_ITERS; ai++)
r.f32[0] *= SIMDE_FLOAT32_C(1.5) -
(half * r.f32[0] * r.f32[0]);
#endif
}
r.f32[0] = 1.0f / sqrtf(a.f32[0]);
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#else
r.f32[0] = 1.0f / sqrtf(a.f32[0]);
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_sad_pu8(simde__m64 a, simde__m64 b)
{
simde__m64 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_sad_pu8(a.n, b.n);
#else
uint16_t sum = 0;
SIMDE__VECTORIZE_REDUCTION(+ : sum)
for (size_t i = 0; i < (sizeof(r.u8) / sizeof(r.u8[0])); i++) {
sum += (uint8_t)abs(a.u8[i] - b.u8[i]);
}
r.i16[0] = sum;
r.i16[1] = 0;
r.i16[2] = 0;
r.i16[3] = 0;
#endif
return r;
}
#define simde_m_psadbw(a, b) simde_mm_sad_pu8(a, b)
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_set_ps(simde_float32 e3, simde_float32 e2,
simde_float32 e1, simde_float32 e0)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_set_ps(e3, e2, e1, e0);
#elif defined(SIMDE_SSE_NEON)
SIMDE_ALIGN(16) simde_float32 data[4] = {e0, e1, e2, e3};
r.neon_f32 = vld1q_f32(data);
#else
r.f32[0] = e0;
r.f32[1] = e1;
r.f32[2] = e2;
r.f32[3] = e3;
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_set_ps1(simde_float32 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_set1_ps(a);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vdupq_n_f32(a);
#else
r = simde_mm_set_ps(a, a, a, a);
#endif
return r;
}
#define simde_mm_set1_ps(a) simde_mm_set_ps1(a)
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_set_ss(simde_float32 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_set_ss(a);
#else
r = simde_mm_set_ps(0, 0, 0, a);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_setr_ps(simde_float32 e3, simde_float32 e2,
simde_float32 e1, simde_float32 e0)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_setr_ps(e3, e2, e1, e0);
#elif defined(SIMDE_SSE_NEON)
SIMDE_ALIGN(16) simde_float32 data[4] = {e3, e2, e1, e0};
r.neon_f32 = vld1q_f32(data);
#else
r = simde_mm_set_ps(e0, e1, e2, e3);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_setzero_ps(void)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_setzero_ps();
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vdupq_n_f32(0.0f);
#else
r = simde_mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f);
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_sfence(void)
{
/* TODO: Use Hedley. */
#if defined(SIMDE_SSE_NATIVE)
_mm_sfence();
#elif defined(__GNUC__) && \
((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))
__atomic_thread_fence(__ATOMIC_SEQ_CST);
#elif !defined(__INTEL_COMPILER) && defined(__STDC_VERSION__) && \
(__STDC_VERSION__ >= 201112L) && !defined(__STDC_NO_ATOMICS__)
#if defined(__GNUC__) && (__GNUC__ == 4) && (__GNUC_MINOR__ < 9)
__atomic_thread_fence(__ATOMIC_SEQ_CST);
#else
atomic_thread_fence(memory_order_seq_cst);
#endif
#elif defined(_MSC_VER)
MemoryBarrier();
#elif defined(__GNUC__) && \
((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7))
__atomic_thread_fence(__ATOMIC_SEQ_CST);
#elif HEDLEY_CLANG_HAS_FEATURE(c_atomic)
__c11_atomic_thread_fence(__ATOMIC_SEQ_CST)
#elif defined(__GNUC__) && \
((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
__sync_synchronize();
#elif (defined(__SUNPRO_C) && (__SUNPRO_C >= 0x5140)) || \
(defined(__SUNPRO_CC) && (__SUNPRO_CC >= 0x5140))
__atomic_thread_fence(__ATOMIC_SEQ_CST);
#elif defined(_OPENMP)
#pragma omp critical(simde_mm_sfence_)
{
}
#endif
}
#define SIMDE_MM_SHUFFLE(z, y, x, w) \
(((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
SIMDE__FUNCTION_ATTRIBUTES
simde__m64 simde_mm_shuffle_pi16(simde__m64 a, const int imm8)
{
simde__m64 r;
for (size_t i = 0; i < sizeof(r.u16) / sizeof(r.u16[0]); i++) {
r.i16[i] = a.i16[(imm8 >> (i * 2)) & 3];
}
return r;
}
#if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
#define simde_mm_shuffle_pi16(a, imm8) SIMDE__M64_C(_mm_shuffle_pi16(a.n, imm8))
#elif defined(SIMDE__SHUFFLE_VECTOR)
#define simde_mm_shuffle_pi16(a, imm8) \
({ \
const simde__m64 simde__tmp_a_ = a; \
(simde__m64){.i16 = SIMDE__SHUFFLE_VECTOR( \
16, 8, (simde__tmp_a_).i16, \
(simde__tmp_a_).i16, (((imm8)) & 3), \
(((imm8) >> 2) & 3), (((imm8) >> 4) & 3), \
(((imm8) >> 6) & 3))}; \
})
#endif
#if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
#define simde_m_pshufw(a, imm8) SIMDE__M64_C(_m_pshufw(a.n, imm8))
#else
#define simde_m_pshufw(a, imm8) simde_mm_shuffle_pi16(a, imm8)
#endif
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_shuffle_ps(simde__m128 a, simde__m128 b, const int imm8)
{
simde__m128 r;
r.f32[0] = a.f32[(imm8 >> 0) & 3];
r.f32[1] = a.f32[(imm8 >> 2) & 3];
r.f32[2] = b.f32[(imm8 >> 4) & 3];
r.f32[3] = b.f32[(imm8 >> 6) & 3];
return r;
}
#if defined(SIMDE_SSE_NATIVE) && !defined(__PGI)
#define simde_mm_shuffle_ps(a, b, imm8) \
SIMDE__M128_C(_mm_shuffle_ps(a.n, b.n, imm8))
#elif defined(SIMDE__SHUFFLE_VECTOR)
#define simde_mm_shuffle_ps(a, b, imm8) \
({ \
(simde__m128){.f32 = SIMDE__SHUFFLE_VECTOR( \
32, 16, (a).f32, (b).f32, \
(((imm8)) & 3), (((imm8) >> 2) & 3), \
(((imm8) >> 4) & 3) + 4, \
(((imm8) >> 6) & 3) + 4)}; \
})
#endif
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_sqrt_ps(simde__m128 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_sqrt_ps(a.n);
#elif defined(SIMDE_SSE_NEON)
float32x4_t recipsq = vrsqrteq_f32(a.neon_f32);
float32x4_t sq = vrecpeq_f32(recipsq);
/* ??? use step versions of both sqrt and recip for better accuracy? */
r.neon_f32 = sq;
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < sizeof(r.f32) / sizeof(r.f32[0]); i++) {
r.f32[i] = sqrtf(a.f32[i]);
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_sqrt_ss(simde__m128 a)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_sqrt_ss(a.n);
#elif defined(SIMDE_SSE_NEON)
float32_t value = vgetq_lane_f32(simde_mm_sqrt_ps(a).neon_f32, 0);
r.neon_f32 = vsetq_lane_f32(value, a.neon_f32, 0);
#else
r.f32[0] = sqrtf(a.f32[0]);
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_store_ps(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_SSE_NATIVE)
_mm_store_ps(mem_addr, a.n);
#elif defined(SIMDE_SSE_NEON)
vst1q_f32(mem_addr, a.neon_f32);
#else
SIMDE__VECTORIZE_ALIGNED(mem_addr : 16)
for (size_t i = 0; i < sizeof(a.f32) / sizeof(a.f32[0]); i++) {
mem_addr[i] = a.f32[i];
}
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_store_ps1(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_SSE_NATIVE)
_mm_store_ps1(mem_addr, a.n);
#else
SIMDE__VECTORIZE_ALIGNED(mem_addr : 16)
for (size_t i = 0; i < sizeof(a.f32) / sizeof(a.f32[0]); i++) {
mem_addr[i] = a.f32[0];
}
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_store_ss(simde_float32 *mem_addr, simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
_mm_store_ss(mem_addr, a.n);
#elif defined(SIMDE_SSE_NEON)
vst1q_lane_f32(mem_addr, a.neon_f32, 0);
#else
*mem_addr = a.f32[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_store1_ps(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_SSE_NATIVE)
_mm_store1_ps(mem_addr, a.n);
#else
simde_mm_store_ps1(mem_addr, a);
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_storeh_pi(simde__m64 *mem_addr, simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
_mm_storeh_pi(&(mem_addr->n), a.n);
#else
mem_addr->f32[0] = a.f32[2];
mem_addr->f32[1] = a.f32[3];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_storel_pi(simde__m64 *mem_addr, simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
_mm_storel_pi(&(mem_addr->n), a.n);
#else
mem_addr->f32[0] = a.f32[0];
mem_addr->f32[1] = a.f32[1];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_storer_ps(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_SSE_NATIVE)
_mm_storer_ps(mem_addr, a.n);
#else
SIMDE__VECTORIZE_ALIGNED(mem_addr : 16)
for (size_t i = 0; i < sizeof(a.f32) / sizeof(a.f32[0]); i++) {
mem_addr[i] =
a.f32[((sizeof(a.f32) / sizeof(a.f32[0])) - 1) - i];
}
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_storeu_ps(simde_float32 mem_addr[4], simde__m128 a)
{
#if defined(SIMDE_SSE_NATIVE)
_mm_storeu_ps(mem_addr, a.n);
#elif defined(SIMDE_SSE_NEON)
vst1q_f32(mem_addr, a.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < sizeof(a.f32) / sizeof(a.f32[0]); i++) {
mem_addr[i] = a.f32[i];
}
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_sub_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_sub_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_f32 = vsubq_f32(a.neon_f32, b.neon_f32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.f32) / sizeof(r.f32[0])); i++) {
r.f32[i] = a.f32[i] - b.f32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_sub_ss(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_sub_ss(a.n, b.n);
#else
r.f32[0] = a.f32[0] - b.f32[0];
r.f32[1] = a.f32[1];
r.f32[2] = a.f32[2];
r.f32[3] = a.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_ucomieq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_ucomieq_ss(a.n, b.n);
#else
fenv_t envp;
int x = feholdexcept(&envp);
int r = a.f32[0] == b.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
return r;
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_ucomige_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_ucomige_ss(a.n, b.n);
#else
fenv_t envp;
int x = feholdexcept(&envp);
int r = a.f32[0] >= b.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
return r;
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_ucomigt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_ucomigt_ss(a.n, b.n);
#else
fenv_t envp;
int x = feholdexcept(&envp);
int r = a.f32[0] > b.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
return r;
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_ucomile_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_ucomile_ss(a.n, b.n);
#else
fenv_t envp;
int x = feholdexcept(&envp);
int r = a.f32[0] <= b.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
return r;
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_ucomilt_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_ucomilt_ss(a.n, b.n);
#else
fenv_t envp;
int x = feholdexcept(&envp);
int r = a.f32[0] < b.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
return r;
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
int simde_mm_ucomineq_ss(simde__m128 a, simde__m128 b)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_ucomineq_ss(a.n, b.n);
#else
fenv_t envp;
int x = feholdexcept(&envp);
int r = a.f32[0] != b.f32[0];
if (HEDLEY_LIKELY(x == 0))
fesetenv(&envp);
return r;
#endif
}
#if defined(SIMDE_SSE_NATIVE)
#if defined(__has_builtin)
#if __has_builtin(__builtin_ia32_undef128)
#define SIMDE__HAVE_UNDEFINED128
#endif
#elif !defined(__PGI) && !defined(SIMDE_BUG_GCC_REV_208793)
#define SIMDE__HAVE_UNDEFINED128
#endif
#endif
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_undefined_ps(void)
{
simde__m128 r;
#if defined(SIMDE__HAVE_UNDEFINED128)
r.n = _mm_undefined_ps();
#else
r = simde_mm_setzero_ps();
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_unpackhi_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_unpackhi_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x2_t a1 = vget_high_f32(a.neon_f32);
float32x2_t b1 = vget_high_f32(b.neon_f32);
float32x2x2_t result = vzip_f32(a1, b1);
r.neon_f32 = vcombine_f32(result.val[0], result.val[1]);
#else
r.f32[0] = a.f32[2];
r.f32[1] = b.f32[2];
r.f32[2] = a.f32[3];
r.f32[3] = b.f32[3];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_unpacklo_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_unpacklo_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
float32x2_t a1 = vget_low_f32(a.neon_f32);
float32x2_t b1 = vget_low_f32(b.neon_f32);
float32x2x2_t result = vzip_f32(a1, b1);
r.neon_f32 = vcombine_f32(result.val[0], result.val[1]);
#else
r.f32[0] = a.f32[0];
r.f32[1] = b.f32[0];
r.f32[2] = a.f32[1];
r.f32[3] = b.f32[1];
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
simde__m128 simde_mm_xor_ps(simde__m128 a, simde__m128 b)
{
simde__m128 r;
#if defined(SIMDE_SSE_NATIVE)
r.n = _mm_xor_ps(a.n, b.n);
#elif defined(SIMDE_SSE_NEON)
r.neon_i32 = veorq_s32(a.neon_i32, b.neon_i32);
#else
SIMDE__VECTORIZE
for (size_t i = 0; i < (sizeof(r.u32) / sizeof(r.u32[0])); i++) {
r.u32[i] = a.u32[i] ^ b.u32[i];
}
#endif
return r;
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_stream_pi(simde__m64 *mem_addr, simde__m64 a)
{
#if defined(SIMDE_SSE_NATIVE)
_mm_stream_pi(&(mem_addr->n), a.n);
#else
mem_addr->i64[0] = a.i64[0];
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_stream_ps(simde_float32 mem_addr[4], simde__m128 a)
{
simde_assert_aligned(16, mem_addr);
#if defined(SIMDE_SSE_NATIVE)
_mm_stream_ps(mem_addr, a.n);
#else
SIMDE__ASSUME_ALIGNED(mem_addr, 16);
memcpy(mem_addr, &a, sizeof(a));
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
uint32_t simde_mm_getcsr(void)
{
#if defined(SIMDE_SSE_NATIVE)
return _mm_getcsr();
#else
uint32_t r = 0;
int rounding_mode = fegetround();
switch (rounding_mode) {
case FE_TONEAREST:
break;
case FE_UPWARD:
r |= 2 << 13;
break;
case FE_DOWNWARD:
r |= 1 << 13;
break;
case FE_TOWARDZERO:
r = 3 << 13;
break;
}
return r;
#endif
}
SIMDE__FUNCTION_ATTRIBUTES
void simde_mm_setcsr(uint32_t a)
{
#if defined(SIMDE_SSE_NATIVE)
_mm_setcsr(a);
#else
switch ((a >> 13) & 3) {
case 0:
fesetround(FE_TONEAREST);
break;
case 1:
fesetround(FE_DOWNWARD);
break;
case 2:
fesetround(FE_UPWARD);
break;
case 3:
fesetround(FE_TOWARDZERO);
break;
}
#endif
}
#define SIMDE_MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
do { \
simde__m128 tmp3, tmp2, tmp1, tmp0; \
tmp0 = simde_mm_unpacklo_ps((row0), (row1)); \
tmp2 = simde_mm_unpacklo_ps((row2), (row3)); \
tmp1 = simde_mm_unpackhi_ps((row0), (row1)); \
tmp3 = simde_mm_unpackhi_ps((row2), (row3)); \
row0 = simde_mm_movelh_ps(tmp0, tmp2); \
row1 = simde_mm_movehl_ps(tmp2, tmp0); \
row2 = simde_mm_movelh_ps(tmp1, tmp3); \
row3 = simde_mm_movehl_ps(tmp3, tmp1); \
} while (0)
SIMDE__END_DECLS
#endif /* !defined(SIMDE__SSE_H) */