Import Upstream version 1.0.4

This commit is contained in:
Guus Sliepen 2019-08-26 13:44:36 +02:00
parent c12028eeaa
commit 392ff555ea
83 changed files with 2580 additions and 2300 deletions

View file

@ -1,7 +1,7 @@
/*
graph.c -- graph algorithms
Copyright (C) 2001-2004 Guus Sliepen <guus@tinc-vpn.org>,
2001-2004 Ivo Timmermans <ivo@tinc-vpn.org>
Copyright (C) 2001-2005 Guus Sliepen <guus@tinc-vpn.org>,
2001-2005 Ivo Timmermans <ivo@tinc-vpn.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@ -17,7 +17,7 @@
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
$Id: graph.c 1374 2004-03-21 14:21:22Z guus $
$Id: graph.c 1439 2005-05-04 18:09:30Z guus $
*/
/* We need to generate two trees from the graph:
@ -54,6 +54,7 @@
#include "netutl.h"
#include "node.h"
#include "process.h"
#include "subnet.h"
#include "utils.h"
/* Implementation of Kruskal's algorithm.
@ -141,10 +142,11 @@ void mst_kruskal(void)
void sssp_bfs(void)
{
avl_node_t *node, *from, *next, *to;
avl_node_t *node, *next, *to;
edge_t *e;
node_t *n;
avl_tree_t *todo_tree;
list_t *todo_list;
list_node_t *from, *todonext;
bool indirect;
char *name;
char *address, *port;
@ -153,7 +155,7 @@ void sssp_bfs(void)
cp();
todo_tree = avl_alloc_tree(NULL, NULL);
todo_list = list_alloc(NULL);
/* Clear visited status on nodes */
@ -169,86 +171,82 @@ void sssp_bfs(void)
myself->status.indirect = false;
myself->nexthop = myself;
myself->via = myself;
node = avl_alloc_node();
node->data = myself;
avl_insert_top(todo_tree, node);
list_insert_head(todo_list, myself);
/* Loop while todo_tree is filled */
/* Loop while todo_list is filled */
while(todo_tree->head) {
for(from = todo_tree->head; from; from = next) { /* "from" is the node from which we start */
next = from->next;
n = from->data;
for(from = todo_list->head; from; from = todonext) { /* "from" is the node from which we start */
n = from->data;
for(to = n->edge_tree->head; to; to = to->next) { /* "to" is the edge connected to "from" */
e = to->data;
for(to = n->edge_tree->head; to; to = to->next) { /* "to" is the edge connected to "from" */
e = to->data;
if(!e->reverse)
continue;
if(!e->reverse)
continue;
/* Situation:
/* Situation:
/
/
----->(n)---e-->(e->to)
\
\
/
/
----->(n)---e-->(e->to)
\
\
Where e is an edge, (n) and (e->to) are nodes.
n->address is set to the e->address of the edge left of n to n.
We are currently examining the edge e right of n from n:
Where e is an edge, (n) and (e->to) are nodes.
n->address is set to the e->address of the edge left of n to n.
We are currently examining the edge e right of n from n:
- If e->reverse->address != n->address, then e->to is probably
not reachable for the nodes left of n. We do as if the indirectdata
flag is set on edge e.
- If edge e provides for better reachability of e->to, update
e->to and (re)add it to the todo_tree to (re)examine the reachability
of nodes behind it.
*/
- If e->reverse->address != n->address, then e->to is probably
not reachable for the nodes left of n. We do as if the indirectdata
flag is set on edge e.
- If edge e provides for better reachability of e->to, update
e->to and (re)add it to the todo_list to (re)examine the reachability
of nodes behind it.
*/
indirect = n->status.indirect || e->options & OPTION_INDIRECT
|| ((n != myself) && sockaddrcmp(&n->address, &e->reverse->address));
indirect = n->status.indirect || e->options & OPTION_INDIRECT
|| ((n != myself) && sockaddrcmp(&n->address, &e->reverse->address));
if(e->to->status.visited
&& (!e->to->status.indirect || indirect))
continue;
if(e->to->status.visited
&& (!e->to->status.indirect || indirect))
continue;
e->to->status.visited = true;
e->to->status.indirect = indirect;
e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
e->to->via = indirect ? n->via : e->to;
e->to->options = e->options;
e->to->status.visited = true;
e->to->status.indirect = indirect;
e->to->nexthop = (n->nexthop == myself) ? e->to : n->nexthop;
e->to->via = indirect ? n->via : e->to;
e->to->options = e->options;
if(sockaddrcmp(&e->to->address, &e->address)) {
node = avl_unlink(node_udp_tree, e->to);
sockaddrfree(&e->to->address);
sockaddrcpy(&e->to->address, &e->address);
if(sockaddrcmp(&e->to->address, &e->address)) {
node = avl_unlink(node_udp_tree, e->to);
sockaddrfree(&e->to->address);
sockaddrcpy(&e->to->address, &e->address);
if(e->to->hostname)
free(e->to->hostname);
if(e->to->hostname)
free(e->to->hostname);
e->to->hostname = sockaddr2hostname(&e->to->address);
e->to->hostname = sockaddr2hostname(&e->to->address);
if(node)
avl_insert_node(node_udp_tree, node);
if(e->to->options & OPTION_PMTU_DISCOVERY) {
e->to->mtuprobes = 0;
e->to->minmtu = 0;
e->to->maxmtu = MTU;
if(e->to->status.validkey)
send_mtu_probe(e->to);
}
if(e->to->options & OPTION_PMTU_DISCOVERY) {
e->to->mtuprobes = 0;
e->to->minmtu = 0;
e->to->maxmtu = MTU;
if(e->to->status.validkey)
send_mtu_probe(e->to);
}
node = avl_alloc_node();
node->data = e->to;
avl_insert_before(todo_tree, from, node);
}
avl_delete_node(todo_tree, from);
list_insert_tail(todo_list, e->to);
}
todonext = from->next;
list_delete_node(todo_list, from);
}
avl_free_tree(todo_tree);
list_free(todo_list);
/* Check reachability status. */
@ -262,9 +260,11 @@ void sssp_bfs(void)
if(n->status.reachable) {
ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became reachable"),
n->name, n->hostname);
avl_insert(node_udp_tree, n);
} else {
ifdebug(TRAFFIC) logger(LOG_DEBUG, _("Node %s (%s) became unreachable"),
n->name, n->hostname);
avl_delete(node_udp_tree, n);
}
n->status.validkey = false;
@ -292,8 +292,10 @@ void sssp_bfs(void)
free(address);
free(port);
for(i = 0; i < 7; i++)
for(i = 0; i < 6; i++)
free(envp[i]);
subnet_update(n, NULL, n->status.reachable);
}
}
}