nut/drivers/nutdrv_qx_voltronic.c
2015-04-30 15:53:36 +02:00

4210 lines
120 KiB
C

/* nutdrv_qx_voltronic.c - Subdriver for Voltronic Power UPSes
*
* Copyright (C)
* 2013 Daniele Pezzini <hyouko@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "main.h"
#include "nutdrv_qx.h"
#include "nutdrv_qx_voltronic.h"
#define VOLTRONIC_VERSION "Voltronic 0.03"
/* Support functions */
static int voltronic_claim(void);
static void voltronic_makevartable(void);
static void voltronic_massive_unskip(const int protocol);
/* Range/enum functions */
static int voltronic_batt_low(char *value, size_t len);
static int voltronic_bypass_volt_max(char *value, size_t len);
static int voltronic_bypass_volt_min(char *value, size_t len);
static int voltronic_bypass_freq_max(char *value, size_t len);
static int voltronic_bypass_freq_min(char *value, size_t len);
static int voltronic_eco_freq_min(char *value, size_t len);
static int voltronic_eco_freq_max(char *value, size_t len);
/* Preprocess functions */
static int voltronic_process_setvar(item_t *item, char *value, size_t valuelen);
static int voltronic_process_command(item_t *item, char *value, size_t valuelen);
static int voltronic_capability(item_t *item, char *value, size_t valuelen);
static int voltronic_capability_set(item_t *item, char *value, size_t valuelen);
static int voltronic_capability_set_nonut(item_t *item, char *value, size_t valuelen);
static int voltronic_capability_reset(item_t *item, char *value, size_t valuelen);
static int voltronic_eco_volt(item_t *item, char *value, size_t valuelen);
static int voltronic_eco_volt_range(item_t *item, char *value, size_t valuelen);
static int voltronic_eco_freq(item_t *item, char *value, size_t valuelen);
static int voltronic_bypass(item_t *item, char *value, size_t valuelen);
static int voltronic_batt_numb(item_t *item, char *value, size_t valuelen);
static int voltronic_batt_runtime(item_t *item, char *value, size_t valuelen);
static int voltronic_protocol(item_t *item, char *value, size_t valuelen);
static int voltronic_fault(item_t *item, char *value, size_t valuelen);
static int voltronic_warning(item_t *item, char *value, size_t valuelen);
static int voltronic_mode(item_t *item, char *value, size_t valuelen);
static int voltronic_status(item_t *item, char *value, size_t valuelen);
static int voltronic_output_powerfactor(item_t *item, char *value, size_t valuelen);
static int voltronic_serial_numb(item_t *item, char *value, size_t valuelen);
static int voltronic_outlet(item_t *item, char *value, size_t valuelen);
static int voltronic_outlet_delay(item_t *item, char *value, size_t valuelen);
static int voltronic_outlet_delay_set(item_t *item, char *value, size_t valuelen);
static int voltronic_p31b(item_t *item, char *value, size_t valuelen);
static int voltronic_p31b_set(item_t *item, char *value, size_t valuelen);
static int voltronic_p31g(item_t *item, char *value, size_t valuelen);
static int voltronic_p31g_set(item_t *item, char *value, size_t valuelen);
static int voltronic_phase(item_t *item, char *value, size_t valuelen);
static int voltronic_phase_set(item_t *item, char *value, size_t valuelen);
static int voltronic_parallel(item_t *item, char *value, size_t valuelen);
/* Capability vars */
static char *bypass_alarm,
*battery_alarm,
*bypass_when_off,
*alarm_control,
*converter_mode,
*eco_mode,
*battery_open_status_check,
*bypass_forbidding,
*site_fault_detection,
*advanced_eco_mode,
*constant_phase_angle,
*limited_runtime_on_battery;
/* ups.conf settings */
static int max_bypass_volt,
min_bypass_volt,
battery_number,
output_phase_angle,
work_range_type;
static double max_bypass_freq,
min_bypass_freq;
/* == Ranges/enums == */
/* Range for ups.delay.start */
static info_rw_t voltronic_r_ondelay[] = {
{ "0", 0 },
{ "599940", 0 },
{ "", 0 }
};
/* Range for ups.delay.shutdown */
static info_rw_t voltronic_r_offdelay[] = {
{ "12", 0 },
{ "5940", 0 },
{ "", 0 }
};
/* Enumlist for output phase angle */
static info_rw_t voltronic_e_phase[] = {
{ "000", 0 },
{ "120", 0 },
{ "180", 0 },
{ "240", 0 },
{ "", 0 }
};
/* Range for battery low voltage */
static info_rw_t voltronic_r_batt_low[] = {
{ "20", 0 },
{ "24", voltronic_batt_low },
{ "28", voltronic_batt_low },
{ "", 0 }
};
/* Preprocess range value for battery low voltage */
static int voltronic_batt_low(char *value, size_t len)
{
int val = strtol(value, NULL, 10);
const char *ovn = dstate_getinfo("output.voltage.nominal"),
*ocn = dstate_getinfo("output.current.nominal");
if (!ovn || !ocn) {
upsdebugx(2, "%s: unable to get the value of output voltage nominal/output current nominal", __func__);
return -1;
}
if ((strtol(ovn, NULL, 10) * strtol(ocn, NULL, 10)) < 1000) {
if (val == 24)
return 0;
else
return -1;
} else {
if (val == 28)
return 0;
else
return -1;
}
}
/* Range for outlet.n.delay.shutdown */
static info_rw_t voltronic_r_outlet_delay[] = {
{ "0", 0 },
{ "59940", 0 },
{ "", 0 }
};
/* Enumlist for device grid working range type */
static info_rw_t voltronic_e_work_range[] = {
{ "Appliance", 0 }, /* 00 */
{ "UPS", 0 }, /* 01 */
{ "", 0 }
};
/* Enumlist for battery type */
static info_rw_t voltronic_e_batt_type[] = {
{ "Li", 0 }, /* 00 */
{ "Flooded", 0 }, /* 01 */
{ "AGM", 0 }, /* 02 */
{ "", 0 }
};
/* Range for number of battery packs */
static info_rw_t voltronic_r_batt_packs[] = {
{ "1", 0 },
{ "99", 0 },
{ "", 0 }
};
/* Range for number of batteries */
static info_rw_t voltronic_r_batt_numb[] = {
{ "1", 0 },
{ "9", 0 },
{ "", 0 }
};
/* Range for Bypass Mode maximum voltage */
static info_rw_t voltronic_r_bypass_volt_max[] = {
{ "60", voltronic_bypass_volt_max }, /* P09 */
{ "115", voltronic_bypass_volt_max }, /* P02/P03/P10/P13/P14/P99 ivn<200 */
{ "120", voltronic_bypass_volt_max }, /* P01 ivn<200 */
{ "132", voltronic_bypass_volt_max }, /* P99 ivn<200 */
{ "138", voltronic_bypass_volt_max }, /* P02/P03/P10/P13/P14 ivn<200 */
{ "140", voltronic_bypass_volt_max }, /* P01 ivn<200, P09 */
{ "230", voltronic_bypass_volt_max }, /* P01 ivn>=200 */
{ "231", voltronic_bypass_volt_max }, /* P02/P03/P10/P13/P14/P99 ivn>=200 */
{ "261", voltronic_bypass_volt_max }, /* P99 ivn>=200 */
{ "264", voltronic_bypass_volt_max }, /* P01 ivn>=200 */
{ "276", voltronic_bypass_volt_max }, /* P02/P03/P10/P13/P14 ivn>=200 */
{ "", 0 }
};
/* Preprocess range value for Bypass Mode maximum voltage */
static int voltronic_bypass_volt_max(char *value, size_t len)
{
int protocol = strtol(dstate_getinfo("ups.firmware.aux")+1, NULL, 10),
val = strtol(value, NULL, 10),
ivn;
const char *involtnom = dstate_getinfo("input.voltage.nominal");
if (!involtnom) {
upsdebugx(2, "%s: unable to get input.voltage.nominal", __func__);
return -1;
}
ivn = strtol(involtnom, NULL, 10);
switch (val)
{
case 60: /* P09 */
if (protocol == 9)
return 0;
break;
case 115: /* P02/P03/P10/P13/P14/P99 ivn<200 */
if (ivn >= 200)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 120: /* P01 ivn<200 */
if (ivn >= 200)
return -1;
if (protocol == 1)
return 0;
break;
case 132: /* P99 ivn<200 */
if (ivn >= 200)
return -1;
if (protocol == 99)
return 0;
break;
case 138: /* P02/P03/P10/P13/P14 ivn<200 */
if (ivn >= 200)
return -1;
if (protocol == 2 || protocol == 2 || protocol == 10 || protocol == 13 || protocol == 14)
return 0;
break;
case 140: /* P01 ivn<200, P09 */
if (protocol == 9)
return 0;
if (ivn >= 200)
return -1;
if (protocol == 1)
return 0;
break;
case 230: /* P01 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 1)
return 0;
break;
case 231: /* P02/P03/P10/P13/P14/P99 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 2 || protocol == 2 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 261: /* P99 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 99)
return 0;
break;
case 264: /* P01 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 1)
return 0;
break;
case 276: /* P02/P03/P10/P13/P14 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14)
return 0;
break;
default:
upsdebugx(2, "%s: unknown value (%s)", __func__, value);
break;
}
return -1;
}
/* Range for Bypass Mode minimum voltage */
static info_rw_t voltronic_r_bypass_volt_min[] = {
{ "50", voltronic_bypass_volt_min }, /* P99 ivn<200 */
{ "55", voltronic_bypass_volt_min }, /* P02/P03/P10/P13/P14 ivn<200 */
{ "60", voltronic_bypass_volt_min }, /* P09 */
{ "85", voltronic_bypass_volt_min }, /* P01/P99 ivn<200 */
{ "104", voltronic_bypass_volt_min }, /* P02/P03/P10/P13/P14 ivn<200 */
{ "110", voltronic_bypass_volt_min }, /* P02/P03/P10/P13/P14 ivn>=200 */
{ "115", voltronic_bypass_volt_min }, /* P01 ivn<200 */
{ "140", voltronic_bypass_volt_min }, /* P09 */
{ "149", voltronic_bypass_volt_min }, /* P99 ivn>=200 */
{ "170", voltronic_bypass_volt_min }, /* P01 ivn>=200 */
{ "209", voltronic_bypass_volt_min }, /* P02/P03/P10/P13/P14/P99 ivn>=200 */
{ "220", voltronic_bypass_volt_min }, /* P01 ivn>=200 */
{ "", 0 }
};
/* Preprocess range value for Bypass Mode minimum voltage */
static int voltronic_bypass_volt_min(char *value, size_t len)
{
int protocol = strtol(dstate_getinfo("ups.firmware.aux")+1, NULL, 10),
val = strtol(value, NULL, 10),
ivn;
const char *involtnom = dstate_getinfo("input.voltage.nominal");
if (!involtnom) {
upsdebugx(2, "%s: unable to get input.voltage.nominal", __func__);
return -1;
}
ivn = strtol(involtnom, NULL, 10);
switch (val)
{
case 50: /* P99 ivn<200 */
if (ivn >= 200)
return -1;
if (protocol == 99)
return 0;
break;
case 55: /* P02/P03/P10/P13/P14 ivn<200 */
if (ivn >= 200)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 10 || protocol == 13 || protocol == 14)
return 0;
break;
case 60: /* P09 */
case 140: /* P09 */
if (protocol == 9)
return 0;
break;
case 85: /* P01/P99 ivn<200 */
if (ivn >= 200)
return -1;
if (protocol == 1 || protocol == 99)
return 0;
break;
case 104: /* P02/P03/P10/P13/P14 ivn<200 */
if (ivn >= 200)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14)
return 0;
break;
case 110: /* P02/P03/P10/P13/P14 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14)
return 0;
break;
case 115: /* P01 ivn<200 */
if (ivn >= 200)
return -1;
if (protocol == 1)
return 0;
break;
case 149: /* P99 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 99)
return 0;
break;
case 170: /* P01 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 1)
return 0;
break;
case 209: /* P02/P03/P10/P13/P14/P99 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 220: /* P01 ivn>=200 */
if (ivn < 200)
return -1;
if (protocol == 1)
return 0;
break;
default:
upsdebugx(2, "%s: unknown value (%s)", __func__, value);
break;
}
return -1;
}
/* Range for Bypass Mode maximum frequency */
static info_rw_t voltronic_r_bypass_freq_max[] = {
{ "51.0", voltronic_bypass_freq_max }, /* P01/P09/P02/P03/P10/P13/P14/P99 ofn==50.0 */
{ "54.0", voltronic_bypass_freq_max }, /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
{ "60.0", voltronic_bypass_freq_max }, /* P01/P09 ofn==50.0 */
{ "61.0", voltronic_bypass_freq_max }, /* P01/P09/P02/P03/P10/P13/P14/P99 ofn==60.0 */
{ "64.0", voltronic_bypass_freq_max }, /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
{ "70.0", voltronic_bypass_freq_max }, /* P01/P09 ofn==60.0 */
{ "", 0 }
};
/* Preprocess range value for Bypass Mode maximum frequency */
static int voltronic_bypass_freq_max(char *value, size_t len)
{
int protocol = strtol(dstate_getinfo("ups.firmware.aux")+1, NULL, 10),
val = strtol(value, NULL, 10);
double ofn;
const char *outfreqnom = dstate_getinfo("output.frequency.nominal");
if (!outfreqnom) {
upsdebugx(2, "%s: unable to get output.frequency.nominal", __func__);
return -1;
}
ofn = strtod(outfreqnom, NULL);
switch (val)
{
case 51: /* P01/P09/P02/P03/P10/P13/P14/P99 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 1 || protocol == 2 || protocol == 3 || protocol == 9 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 54: /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 60: /* P01/P09 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 61: /* P01/P09/P02/P03/P10/P13/P14/P99 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 1 || protocol == 2 || protocol == 3 || protocol == 9 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 64: /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 70: /* P01/P09 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
default:
upsdebugx(2, "%s: unknown value (%s)", __func__, value);
break;
}
return -1;
}
/* Range for Bypass Mode minimum frequency */
static info_rw_t voltronic_r_bypass_freq_min[] = {
{ "40.0", voltronic_bypass_freq_min }, /* P01/P09 ofn==50.0 */
{ "46.0", voltronic_bypass_freq_min }, /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
{ "49.0", voltronic_bypass_freq_min }, /* P01/P09/P02/P03/P10/P13/P14/P99 ofn==50.0 */
{ "50.0", voltronic_bypass_freq_min }, /* P01/P09 ofn==60.0 */
{ "56.0", voltronic_bypass_freq_min }, /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
{ "59.0", voltronic_bypass_freq_min }, /* P01/P09/P02/P03/P10/P13/P14/P99 ofn==60.0 */
{ "", 0 }
};
/* Preprocess range value for Bypass Mode minimum frequency */
static int voltronic_bypass_freq_min(char *value, size_t len)
{
int protocol = strtol(dstate_getinfo("ups.firmware.aux")+1, NULL, 10),
val = strtol(value, NULL, 10);
double ofn;
const char *outfreqnom = dstate_getinfo("output.frequency.nominal");
if (!outfreqnom) {
upsdebugx(2, "%s: unable to get output.frequency.nominal", __func__);
return -1;
}
ofn = strtod(outfreqnom, NULL);
switch (val)
{
case 40: /* P01/P09 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 46: /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 49: /* P01/P09/P02/P03/P10/P13/P14/P99 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 1 || protocol == 2 || protocol == 3 || protocol == 9 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 50: /* P01/P09 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 56: /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 59: /* P01/P09/P02/P03/P10/P13/P14/P99 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 1 || protocol == 2 || protocol == 3 || protocol == 9 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
default:
upsdebugx(2, "%s: unknown value (%s)", __func__, value);
break;
}
return -1;
}
/* Range for Eco Mode maximum voltage: filled at runtime by voltronic_eco_volt */
static info_rw_t voltronic_r_eco_volt_max[] = {
{ "", 0 },
{ "", 0 },
{ "", 0 }
};
/* Range for ECO Mode minimum voltage: filled at runtime by voltronic_eco_volt */
static info_rw_t voltronic_r_eco_volt_min[] = {
{ "", 0 },
{ "", 0 },
{ "", 0 }
};
/* Range for ECO Mode minimum frequency */
static info_rw_t voltronic_r_eco_freq_min[] = {
{ "40.0", voltronic_eco_freq_min }, /* P01/P09 ofn==50.0 */
{ "46.0", voltronic_eco_freq_min }, /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
{ "47.0", voltronic_eco_freq_min }, /* P01/P09 ofn==50.0 */
{ "48.0", voltronic_eco_freq_min }, /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
{ "50.0", voltronic_eco_freq_min }, /* P01/P09 ofn==60.0 */
{ "56.0", voltronic_eco_freq_min }, /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
{ "57.0", voltronic_eco_freq_min }, /* P01/P09 ofn==60.0 */
{ "58.0", voltronic_eco_freq_min }, /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
{ "", 0 }
};
/* Preprocess range value for ECO Mode minimum frequency */
static int voltronic_eco_freq_min(char *value, size_t len)
{
int protocol = strtol(dstate_getinfo("ups.firmware.aux")+1, NULL, 10),
val = strtol(value, NULL, 10);
double ofn;
const char *outfreqnom = dstate_getinfo("output.frequency.nominal");
if (!outfreqnom) {
upsdebugx(2, "%s: unable to get output.frequency.nominal", __func__);
return -1;
}
ofn = strtod(outfreqnom, NULL);
switch (val)
{
case 40: /* P01/P09 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 46: /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 47: /* P01/P09 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 48: /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 50: /* P01/P09 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 56: /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 57: /* P01/P09 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 58: /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
default:
upsdebugx(2, "%s: unknown value (%s)", __func__, value);
break;
}
return -1;
}
/* Range for ECO Mode maximum frequency */
static info_rw_t voltronic_r_eco_freq_max[] = {
{ "52.0", voltronic_eco_freq_max }, /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
{ "53.0", voltronic_eco_freq_max }, /* P01/P09 ofn==50.0 */
{ "54.0", voltronic_eco_freq_max }, /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
{ "60.0", voltronic_eco_freq_max }, /* P01/P09 ofn==50.0 */
{ "62.0", voltronic_eco_freq_max }, /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
{ "63.0", voltronic_eco_freq_max }, /* P01/P09 ofn==60.0 */
{ "64.0", voltronic_eco_freq_max }, /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
{ "70.0", voltronic_eco_freq_max }, /* P01/P09 ofn==60.0 */
{ "", 0 }
};
/* Preprocess range value for ECO Mode maximum frequency */
static int voltronic_eco_freq_max(char *value, size_t len)
{
int protocol = strtol(dstate_getinfo("ups.firmware.aux")+1, NULL, 10),
val = strtol(value, NULL, 10);
double ofn;
const char *outfreqnom = dstate_getinfo("output.frequency.nominal");
if (!outfreqnom) {
upsdebugx(2, "%s: unable to get output.frequency.nominal", __func__);
return -1;
}
ofn = strtod(outfreqnom, NULL);
switch (val)
{
case 52: /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 53: /* P01/P09 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 54: /* P02/P03/P10/P13/P14/P99 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 60: /* P01/P09 ofn==50.0 */
if (ofn != 50.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 62: /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 63: /* P01/P09 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
case 64: /* P02/P03/P10/P13/P14/P99 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99)
return 0;
break;
case 70: /* P01/P09 ofn==60.0 */
if (ofn != 60.0)
return -1;
if (protocol == 1 || protocol == 9)
return 0;
break;
default:
upsdebugx(2, "%s: unknown value (%s)", __func__, value);
break;
}
return -1;
}
/* Enumlist for UPS capabilities that have a NUT var */
static info_rw_t voltronic_e_cap[] = {
{ "no", 0 },
{ "yes", 0 },
{ "", 0 }
};
/* Enumlist for NONUT capabilities */
static info_rw_t voltronic_e_cap_nonut[] = {
{ "enabled", 0 },
{ "disabled", 0 },
{ "", 0 }
};
/* == qx2nut lookup table == */
static item_t voltronic_qx2nut[] = {
/* Query UPS for protocol
* > [QPI\r]
* < [(PI00\r]
* 012345
* 0
*/
{ "ups.firmware.aux", 0, NULL, "QPI\r", "", 6, '(', "", 1, 4, "%s", QX_FLAG_STATIC, NULL, voltronic_protocol },
/* Query UPS for ratings
* > [QRI\r]
* < [(230.0 004 024.0 50.0\r]
* 0123456789012345678901
* 0 1 2
*/
{ "output.voltage.nominal", 0, NULL, "QRI\r", "", 22, '(', "", 1, 5, "%.1f", QX_FLAG_STATIC, NULL, NULL },
{ "output.current.nominal", 0, NULL, "QRI\r", "", 22, '(', "", 7, 9, "%.0f", QX_FLAG_STATIC, NULL, NULL },
{ "battery.voltage.nominal", 0, NULL, "QRI\r", "", 22, '(', "", 11, 15, "%.1f", QX_FLAG_SEMI_STATIC, NULL, NULL }, /* as *per battery pack*: the value will change when the number of batteries is changed (battery_number through BATNn) */
{ "output.frequency.nominal", 0, NULL, "QRI\r", "", 22, '(', "", 17, 20, "%.1f", QX_FLAG_STATIC, NULL, NULL },
/* Query UPS for ratings
* > [QMD\r]
* < [(#######OLHVT1K0 ###1000 80 1/1 230 230 02 12.0\r] <- Some UPS may reply with spaces instead of hashes
* 012345678901234567890123456789012345678901234567
* 0 1 2 3 4
*/
{ "device.model", 0, NULL, "QMD\r", "", 48, '(', "", 1, 15, "%s", QX_FLAG_STATIC | QX_FLAG_TRIM, NULL, NULL },
{ "ups.power.nominal", 0, NULL, "QMD\r", "", 48, '(', "", 17, 23, "%s", QX_FLAG_STATIC | QX_FLAG_TRIM, NULL, NULL },
{ "output.powerfactor", 0, NULL, "QMD\r", "", 48, '(', "", 25, 26, "%.1f", QX_FLAG_STATIC, NULL, voltronic_output_powerfactor },
{ "input.phases", 0, NULL, "QMD\r", "", 48, '(', "", 28, 28, "%.0f", QX_FLAG_STATIC, NULL, NULL },
{ "output.phases", 0, NULL, "QMD\r", "", 48, '(', "", 30, 30, "%.0f", QX_FLAG_STATIC, NULL, NULL },
{ "input.voltage.nominal", 0, NULL, "QMD\r", "", 48, '(', "", 32, 34, "%.1f", QX_FLAG_STATIC, NULL, NULL },
{ "output.voltage.nominal", 0, NULL, "QMD\r", "", 48, '(', "", 36, 38, "%.1f", QX_FLAG_STATIC, NULL, NULL }, /* redundant with value from QRI */
/* { "battery_number", ST_FLAG_RW, voltronic_r_batt_numb, "QMD\r", "", 48, '(', "", 40, 41, "%d", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_NONUT, NULL, voltronic_batt_numb }, *//* redundant with value from QBV */
/* { "battery.voltage.nominal", 0, NULL, "QMD\r", "", 48, '(', "", 43, 46, "%.1f", QX_FLAG_STATIC, NULL, NULL }, *//* as *per battery* vs *per pack* reported by QRI */
/* Query UPS for ratings
* > [F\r]
* < [#220.0 000 024.0 50.0\r]
* 0123456789012345678901
* 0 1 2
*/
{ "input.voltage.nominal", 0, NULL, "F\r", "", 22, '#', "", 1, 5, "%.1f", QX_FLAG_STATIC, NULL, NULL },
{ "input.current.nominal", 0, NULL, "F\r", "", 22, '#', "", 7, 9, "%.1f", QX_FLAG_STATIC, NULL, NULL },
{ "battery.voltage.nominal", 0, NULL, "F\r", "", 22, '#', "", 11, 15, "%.1f", QX_FLAG_STATIC, NULL, NULL },
{ "input.frequency.nominal", 0, NULL, "F\r", "", 22, '#', "", 17, 20, "%.1f", QX_FLAG_STATIC, NULL, NULL },
/* Query UPS for manufacturer
* > [QMF\r]
* < [(#######BOH\r] <- I don't know if it has a fixed length (-> so min length = ( + \r = 2). Hashes may be replaced by spaces
* 012345678901
* 0 1
*/
{ "device.mfr", 0, NULL, "QMF\r", "", 2, '(', "", 1, 0, "%s", QX_FLAG_STATIC | QX_FLAG_TRIM, NULL, NULL },
/* Query UPS for firmware version
* > [QVFW\r]
* < [(VERFW:00322.02\r]
* 0123456789012345
* 0 1
*/
{ "ups.firmware", 0, NULL, "QVFW\r", "", 16, '(', "", 7, 14, "%s", QX_FLAG_STATIC, NULL, NULL },
/* Query UPS for serial number
* > [QID\r]
* < [(12345679012345\r] <- As far as I know it hasn't a fixed length -> min length = ( + \r = 2
* 0123456789012345
* 0 1
*/
{ "device.serial", 0, NULL, "QID\r", "", 2, '(', "", 1, 0, "%s", QX_FLAG_STATIC, NULL, voltronic_serial_numb },
/* Query UPS for vendor infos
* > [I\r]
* < [#------------- ------ VT12046Q \r]
* 012345678901234567890123456789012345678
* 0 1 2 3
*/
{ "device.mfr", 0, NULL, "I\r", "", 39, '#', "", 1, 15, "%s", QX_FLAG_STATIC | QX_FLAG_TRIM, NULL, NULL },
{ "device.model", 0, NULL, "I\r", "", 39, '#', "", 17, 26, "%s", QX_FLAG_STATIC | QX_FLAG_TRIM, NULL, NULL },
{ "ups.firmware", 0, NULL, "I\r", "", 39, '#', "", 28, 37, "%s", QX_FLAG_STATIC | QX_FLAG_TRIM, NULL, NULL },
/* Query UPS for status
* > [QGS\r]
* < [(234.9 50.0 229.8 50.0 000.0 000 369.1 ---.- 026.5 ---.- 018.8 100000000001\r]
* 0123456789012345678901234567890123456789012345678901234567890123456789012345
* 0 1 2 3 4 5 6 7
*/
{ "input.voltage", 0, NULL, "QGS\r", "", 76, '(', "", 1, 5, "%.1f", 0, NULL, NULL },
{ "input.frequency", 0, NULL, "QGS\r", "", 76, '(', "", 7, 10, "%.1f", 0, NULL, NULL },
{ "output.voltage", 0, NULL, "QGS\r", "", 76, '(', "", 12, 16, "%.1f", 0, NULL, NULL },
{ "output.frequency", 0, NULL, "QGS\r", "", 76, '(', "", 18, 21, "%.1f", 0, NULL, NULL },
{ "output.current", 0, NULL, "QGS\r", "", 76, '(', "", 23, 27, "%.1f", 0, NULL, NULL },
{ "ups.load", 0, NULL, "QGS\r", "", 76, '(', "", 29, 31, "%.0f", 0, NULL, NULL },
/* { "unknown.1", 0, NULL, "QGS\r", "", 76, '(', "", 33, 37, "%.1f", 0, NULL, NULL }, *//* Unknown */
/* { "unknown.2", 0, NULL, "QGS\r", "", 76, '(', "", 39, 43, "%.1f", 0, NULL, NULL }, *//* Unknown */
{ "battery.voltage", 0, NULL, "QGS\r", "", 76, '(', "", 45, 49, "%.2f", 0, NULL, NULL },
/* { "unknown.3", 0, NULL, "QGS\r", "", 76, '(', "", 51, 55, "%.1f", 0, NULL, NULL }, *//* Unknown */
{ "ups.temperature", 0, NULL, "QGS\r", "", 76, '(', "", 57, 61, "%.1f", 0, NULL, NULL },
{ "ups.type", 0, NULL, "QGS\r", "", 76, '(', "", 63, 64, "%s", QX_FLAG_SEMI_STATIC, NULL, voltronic_status },
{ "ups.status", 0, NULL, "QGS\r", "", 76, '(', "", 65, 65, "%s", QX_FLAG_QUICK_POLL, NULL, voltronic_status }, /* Utility Fail (Immediate) */
{ "ups.status", 0, NULL, "QGS\r", "", 76, '(', "", 66, 66, "%s", QX_FLAG_QUICK_POLL, NULL, voltronic_status }, /* Battery Low */
{ "ups.status", 0, NULL, "QGS\r", "", 76, '(', "", 67, 67, "%s", QX_FLAG_QUICK_POLL, NULL, voltronic_status }, /* Bypass/Boost or Buck Active */
{ "ups.alarm", 0, NULL, "QGS\r", "", 76, '(', "", 67, 67, "%s", 0, NULL, voltronic_status }, /* Bypass/Boost or Buck Active */
{ "ups.alarm", 0, NULL, "QGS\r", "", 76, '(', "", 68, 68, "%s", 0, NULL, voltronic_status }, /* UPS Fault */
/* { "unknown.4", 0, NULL, "QGS\r", "", 76, '(', "", 69, 69, "%s", 0, NULL, voltronic_status }, *//* Unknown */
{ "ups.status", 0, NULL, "QGS\r", "", 76, '(', "", 70, 70, "%s", QX_FLAG_QUICK_POLL, NULL, voltronic_status }, /* Test in Progress */
{ "ups.status", 0, NULL, "QGS\r", "", 76, '(', "", 71, 71, "%s", QX_FLAG_QUICK_POLL, NULL, voltronic_status }, /* Shutdown Active */
{ "ups.beeper.status", 0, NULL, "QGS\r", "", 76, '(', "", 72, 72, "%s", 0, NULL, voltronic_status }, /* Beeper status - ups.beeper.status */
/* { "unknown.5", 0, NULL, "QGS\r", "", 76, '(', "", 73, 73, "%s", 0, NULL, voltronic_status }, *//* Unknown */
/* { "unknown.6", 0, NULL, "QGS\r", "", 76, '(', "", 74, 74, "%s", 0, NULL, voltronic_status }, *//* Unknown */
/* Query UPS for actual working mode
* > [QMOD\r]
* < [(S\r]
* 012
* 0
*/
{ "ups.alarm", 0, NULL, "QMOD\r", "", 3, '(', "", 1, 1, "%s", 0, NULL, voltronic_mode },
{ "ups.status", 0, NULL, "QMOD\r", "", 3, '(', "", 1, 1, "%s", 0, NULL, voltronic_mode },
/* Query UPS for faults and their type. Unskipped when a fault is found in 12bit flag of QGS, otherwise you'll get a fake reply.
* > [QFS\r]
* < [(OK\r] <- No fault
* 0123
* 0
* < [(14 212.1 50.0 005.6 49.9 006 010.6 343.8 ---.- 026.2 021.8 01101100\r] <- Fault type + Short status
* 012345678901234567890123456789012345678901234567890123456789012345678
* 0 1 2 3 4 5 6
*/
{ "ups.alarm", 0, NULL, "QFS\r", "", 4, '(', "", 1, 2, "%s", QX_FLAG_SKIP, NULL, voltronic_fault },
/* Query UPS for warnings and their type
* > [QWS\r]
* < [(0000000100000000000000000000000000000000000000000000000000000000\r]
* 012345678901234567890123456789012345678901234567890123456789012345
* 0 1 2 3 4 5 6
*/
{ "ups.alarm", 0, NULL, "QWS\r", "", 66, '(', "", 1, 64, "%s", 0, NULL, voltronic_warning },
/* Query UPS for actual infos about battery
* > [QBV\r]
* < [(026.5 02 01 068 255\r]
* 012345678901234567890
* 0 1 2
*/
{ "battery.voltage", 0, NULL, "QBV\r", "", 21, '(', "", 1, 5, "%.2f", 0, NULL, NULL },
{ "battery_number", ST_FLAG_RW, voltronic_r_batt_numb, "QBV\r", "", 21, '(', "", 7, 9, "%d", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_NONUT, NULL, voltronic_batt_numb }, /* Number of batteries that make a pack */
{ "battery.packs", ST_FLAG_RW, voltronic_r_batt_packs, "QBV\r", "", 21, '(', "", 10, 11, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE, NULL, NULL }, /* Number of battery packs in parallel */
{ "battery.charge", 0, NULL, "QBV\r", "", 21, '(', "", 13, 15, "%.0f", 0, NULL, NULL },
{ "battery.runtime", 0, NULL, "QBV\r", "", 21, '(', "", 17, 19, "%.0f", 0, NULL, voltronic_batt_runtime },
/* Query UPS for last seen min/max load level
* > [QLDL\r]
* < [(021 023\r] <- minimum load level - maximum load level
* 012345678
* 0
*/
{ "output.power.minimum.percent", 0, NULL, "QLDL\r", "", 9, '(', "", 1, 3, "%.0f", 0, NULL, NULL },
{ "output.power.maximum.percent", 0, NULL, "QLDL\r", "", 9, '(', "", 5, 7, "%.0f", 0, NULL, NULL },
/* Query UPS for multi-phase voltages/frequencies
* > [Q3**\r]
* < [(123.4 123.4 123.4 123.4 123.4 123.4\r] <- Q3PV
* < [(123.4 123.4 123.4 123.4 123.4 123.4\r] <- Q3OV
* < [(123 123 123\r] <- Q3PC
* < [(123 123 123\r] <- Q3OC
* < [(123 123 123\r] <- Q3LD
* < [(123.4 123.4 123.4\r] <- Q3YV - P09 protocol
* < [(123.4 123.4 123.4 123.4 123.4 123.4\r] <- Q3YV - P10/P03 protocols
* 0123456789012345678901234567890123456
* 0 1 2 3
*
* P09 = 2-phase input/2-phase output
* Q3PV (Input Voltage L1 | Input Voltage L2 | Input Voltage L3 | Input Voltage L1-L2 | Input Voltage L1-L3 | Input Voltage L2-L3
* Q3OV (Output Voltage L1 | Output Voltage L2 | Output Voltage L3 | Output Voltage L1-L2 | Output Voltage L1-L3 | Output Voltage L2-L3
* Q3PC (Input Current L1 | Input Current L2 | Input Current L3
* Q3OC (Output Current L1 | Output Current L2 | Output Current L3
* Q3LD (Output Load Level L1 | Output Load Level L2 | Output Load Level L3
* Q3YV (Output Bypass Voltage L1 | Output Bypass Voltage L2 | Output Bypass Voltage L3
*
* P10 = 3-phase input/3-phase output / P03 = 3-phase input/ 1-phase output
* Q3PV (Input Voltage L1 | Input Voltage L2 | Input Voltage L3 | Input Voltage L1-L2 | Input Voltage L2-L3 | Input Voltage L1-L3
* Q3OV (Output Voltage L1 | Output Voltage L2 | Output Voltage L3 | Output Voltage L1-L2 | Output Voltage L2-L3 | Output Voltage L1-L3
* Q3PC (Input Current L1 | Input Current L2 | Input Current L3
* Q3OC (Output Current L1 | Output Current L2 | Output Current L3
* Q3LD (Output Load Level L1 | Output Load Level L2 | Output Load Level L3
* Q3YV (Output Bypass Voltage L1 | Output Bypass Voltage L2 | Output Bypass Voltage L3 | Output Bypass Voltage L1-L2 | Output Bypass Voltage L2-L3 | Output Bypass Voltage L1-L3
*
*/
/* From Q3PV */
{ "input.L1-N.voltage", 0, NULL, "Q3PV\r", "", 37, '(', "", 1, 5, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "input.L2-N.voltage", 0, NULL, "Q3PV\r", "", 37, '(', "", 7, 11, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "input.L3-N.voltage", 0, NULL, "Q3PV\r", "", 37, '(', "", 13, 17, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "input.L1-L2.voltage", 0, NULL, "Q3PV\r", "", 37, '(', "", 19, 23, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "input.L2-L3.voltage", 0, NULL, "Q3PV\r", "", 37, '(', "", 25, 29, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "input.L1-L3.voltage", 0, NULL, "Q3PV\r", "", 37, '(', "", 31, 35, "%.1f", QX_FLAG_SKIP, NULL, NULL },
/* { "input.L1-L3.voltage", 0, NULL, "Q3PV\r", "", 37, '(', "", 25, 29, "%.1f", QX_FLAG_SKIP, NULL, NULL }, *//* P09 *//* Commented out because P09 should be two-phase input/output UPSes */
/* { "input.L2-L3.voltage", 0, NULL, "Q3PV\r", "", 37, '(', "", 31, 35, "%.1f", QX_FLAG_SKIP, NULL, NULL }, *//* P09 *//* Commented out because P09 should be two-phase input/output UPSes */
/* From Q3PC */
{ "input.L1.current", 0, NULL, "Q3PC\r", "", 13, '(', "", 1, 3, "%.0f", QX_FLAG_SKIP, NULL, NULL },
{ "input.L2.current", 0, NULL, "Q3PC\r", "", 13, '(', "", 5, 7, "%.0f", QX_FLAG_SKIP, NULL, NULL },
{ "input.L3.current", 0, NULL, "Q3PC\r", "", 13, '(', "", 9, 11, "%.0f", QX_FLAG_SKIP, NULL, NULL },
/* From Q3OV */
{ "output.L1-N.voltage", 0, NULL, "Q3OV\r", "", 37, '(', "", 1, 5, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.L2-N.voltage", 0, NULL, "Q3OV\r", "", 37, '(', "", 7, 11, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.L3-N.voltage", 0, NULL, "Q3OV\r", "", 37, '(', "", 13, 17, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.L1-L2.voltage", 0, NULL, "Q3OV\r", "", 37, '(', "", 19, 23, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.L2-L3.voltage", 0, NULL, "Q3OV\r", "", 37, '(', "", 25, 29, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.L1-L3.voltage", 0, NULL, "Q3OV\r", "", 37, '(', "", 31, 35, "%.1f", QX_FLAG_SKIP, NULL, NULL },
/* { "output.L1-L3.voltage", 0, NULL, "Q3OV\r", "", 37, '(', "", 25, 29, "%.1f", QX_FLAG_SKIP, NULL, NULL }, *//* P09 *//* Commented out because P09 should be two-phase input/output UPSes */
/* { "output.L2-L3.voltage", 0, NULL, "Q3OV\r", "", 37, '(', "", 31, 35, "%.1f", QX_FLAG_SKIP, NULL, NULL }, *//* P09 *//* Commented out because P09 should be two-phase input/output UPSes */
/* From Q3OC */
{ "output.L1.current", 0, NULL, "Q3OC\r", "", 13, '(', "", 1, 3, "%.0f", QX_FLAG_SKIP, NULL, NULL },
{ "output.L2.current", 0, NULL, "Q3OC\r", "", 13, '(', "", 5, 7, "%.0f", QX_FLAG_SKIP, NULL, NULL },
{ "output.L3.current", 0, NULL, "Q3OC\r", "", 13, '(', "", 9, 11, "%.0f", QX_FLAG_SKIP, NULL, NULL },
/* From Q3LD */
{ "output.L1.power.percent", 0, NULL, "Q3LD\r", "", 13, '(', "", 1, 3, "%.0f", QX_FLAG_SKIP, NULL, NULL },
{ "output.L2.power.percent", 0, NULL, "Q3LD\r", "", 13, '(', "", 5, 7, "%.0f", QX_FLAG_SKIP, NULL, NULL },
{ "output.L3.power.percent", 0, NULL, "Q3LD\r", "", 13, '(', "", 9, 11, "%.0f", QX_FLAG_SKIP, NULL, NULL },
/* From Q3YV */
{ "output.bypass.L1-N.voltage", 0, NULL, "Q3YV\r", "", 37, '(', "", 1, 5, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.bypass.L2-N.voltage", 0, NULL, "Q3YV\r", "", 37, '(', "", 7, 11, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.bypass.L3-N.voltage", 0, NULL, "Q3YV\r", "", 37, '(', "", 13, 17, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.bypass.L1-N.voltage", 0, NULL, "Q3YV\r", "", 19, '(', "", 1, 5, "%.1f", QX_FLAG_SKIP, NULL, NULL }, /* P09 */
{ "output.bypass.L2-N.voltage", 0, NULL, "Q3YV\r", "", 19, '(', "", 7, 11, "%.1f", QX_FLAG_SKIP, NULL, NULL }, /* P09 */
/* { "output.bypass.L3-N.voltage", 0, NULL, "Q3YV\r", "", 19, '(', "", 13, 17, "%.1f", QX_FLAG_SKIP, NULL, NULL }, *//* P09 *//* Commented out because P09 should be two-phase input/output UPSes */
{ "output.bypass.L1-L2.voltage", 0, NULL, "Q3YV\r", "", 37, '(', "", 19, 23, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.bypass.L2-L3.voltage", 0, NULL, "Q3YV\r", "", 37, '(', "", 25, 29, "%.1f", QX_FLAG_SKIP, NULL, NULL },
{ "output.bypass.L1-L3.voltage", 0, NULL, "Q3YV\r", "", 37, '(', "", 31, 35, "%.1f", QX_FLAG_SKIP, NULL, NULL },
/* Query UPS for capability - total options available: 23; only those whom the UPS is capable of are reported as Enabled or Disabled
* > [QFLAG\r]
* < [(EpashcDbroegfl\r]
* 0123456789012345
* 0 1 * min length = ( + E + D + \r = 4
*/
{ "ups.start.auto", ST_FLAG_RW, voltronic_e_cap, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_ENUM, NULL, voltronic_capability },
{ "battery.protection", ST_FLAG_RW, voltronic_e_cap, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_ENUM, NULL, voltronic_capability },
{ "battery.energysave", ST_FLAG_RW, voltronic_e_cap, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_ENUM, NULL, voltronic_capability },
{ "ups.start.battery", ST_FLAG_RW, voltronic_e_cap, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_ENUM, NULL, voltronic_capability },
{ "outlet.0.switchable", ST_FLAG_RW, voltronic_e_cap, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_ENUM, NULL, voltronic_capability },
/* Not available in NUT */
{ "bypass_alarm", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "battery_alarm", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "bypass_when_off", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "alarm_control", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "converter_mode", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "eco_mode", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "battery_open_status_check", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "bypass_forbidding", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "site_fault_detection", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "advanced_eco_mode", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "constant_phase_angle", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
{ "limited_runtime_on_battery", 0, NULL, "QFLAG\r", "", 4, '(', "", 1, 0, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_capability },
/* Enable or Disable or Reset to safe default values capability options
* > [PEX\r] > [PDX\r] > [PF\r]
* < [(ACK\r] < [(ACK\r] < [(ACK\r]
* 01234 01234 01234
* 0 0 0
*/
{ "ups.start.auto", 0, voltronic_e_cap, "P%sR\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_SKIP, NULL, voltronic_capability_set },
{ "battery.protection", 0, voltronic_e_cap, "P%sS\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_SKIP, NULL, voltronic_capability_set },
{ "battery.energysave", 0, voltronic_e_cap, "P%sG\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_SKIP, NULL, voltronic_capability_set },
{ "ups.start.battery", 0, voltronic_e_cap, "P%sC\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_SKIP, NULL, voltronic_capability_set },
{ "outlet.0.switchable", 0, voltronic_e_cap, "P%sJ\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_SKIP, NULL, voltronic_capability_set },
/* Not available in NUT */
{ "reset_to_default", 0, NULL, "PF\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_reset },
{ "bypass_alarm", 0, voltronic_e_cap_nonut, "P%sP\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "battery_alarm", 0, voltronic_e_cap_nonut, "P%sB\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "bypass_when_off", 0, voltronic_e_cap_nonut, "P%sO\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "alarm_control", 0, voltronic_e_cap_nonut, "P%sA\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "converter_mode", 0, voltronic_e_cap_nonut, "P%sV\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "eco_mode", 0, voltronic_e_cap_nonut, "P%sE\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "battery_open_status_check", 0, voltronic_e_cap_nonut, "P%sD\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "bypass_forbidding", 0, voltronic_e_cap_nonut, "P%sF\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "site_fault_detection", 0, voltronic_e_cap_nonut, "P%sL\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "advanced_eco_mode", 0, voltronic_e_cap_nonut, "P%sN\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "constant_phase_angle", 0, voltronic_e_cap_nonut, "P%sQ\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
{ "limited_runtime_on_battery", 0, voltronic_e_cap_nonut, "P%sW\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_capability_set_nonut },
/* Query UPS for programmable outlet (1-4) status
* > [QSK1\r]
* < [(1\r] <- if outlet is on -> (1 , if off -> (0 ; (NAK -> outlet is not programmable
* 012
* 0
*/
{ "outlet.1.switchable", 0, NULL, "QSK1\r", "", 3, '(', "", 1, 1, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_outlet },
{ "outlet.1.status", 0, NULL, "QSK1\r", "", 3, '(', "", 1, 1, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_outlet },
{ "outlet.2.switchable", 0, NULL, "QSK2\r", "", 3, '(', "", 1, 1, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_outlet },
{ "outlet.2.status", 0, NULL, "QSK2\r", "", 3, '(', "", 1, 1, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_outlet },
{ "outlet.3.switchable", 0, NULL, "QSK3\r", "", 3, '(', "", 1, 1, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_outlet },
{ "outlet.3.status", 0, NULL, "QSK3\r", "", 3, '(', "", 1, 1, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_outlet },
{ "outlet.4.switchable", 0, NULL, "QSK4\r", "", 3, '(', "", 1, 1, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_outlet },
{ "outlet.4.status", 0, NULL, "QSK4\r", "", 3, '(', "", 1, 1, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_outlet },
/* Query UPS for programmable outlet n (1-4) delay time before it shuts down the load when on battery mode
* > [QSKT1\r]
* < [(008\r] <- if delay time is set (by PSK[1-4]n) it'll report n (minutes) otherwise it'll report (NAK (also if outlet is not programmable)
* 01234
* 0
*/
{ "outlet.1.delay.shutdown", ST_FLAG_RW, voltronic_r_outlet_delay, "QSKT1\r", "", 5, '(', "", 1, 3, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_outlet_delay },
{ "outlet.2.delay.shutdown", ST_FLAG_RW, voltronic_r_outlet_delay, "QSKT2\r", "", 5, '(', "", 1, 3, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_outlet_delay },
{ "outlet.3.delay.shutdown", ST_FLAG_RW, voltronic_r_outlet_delay, "QSKT3\r", "", 5, '(', "", 1, 3, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_outlet_delay },
{ "outlet.4.delay.shutdown", ST_FLAG_RW, voltronic_r_outlet_delay, "QSKT4\r", "", 5, '(', "", 1, 3, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_outlet_delay },
/* Set delay time for programmable outlets
* > [PSK1nnn\r] n = 0..9
* < [(ACK\r]
* 01234
* 0
*/
{ "outlet.1.delay.shutdown", 0, voltronic_r_outlet_delay, "PSK1%03d\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_outlet_delay_set },
{ "outlet.2.delay.shutdown", 0, voltronic_r_outlet_delay, "PSK2%03d\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_outlet_delay_set },
{ "outlet.3.delay.shutdown", 0, voltronic_r_outlet_delay, "PSK3%03d\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_outlet_delay_set },
{ "outlet.4.delay.shutdown", 0, voltronic_r_outlet_delay, "PSK4%03d\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_outlet_delay_set },
/* Query UPS for ECO Mode voltage limits
* > [QHE\r]
* < [(242 218\r]
* 012345678
* 0
*/
{ "input.transfer.high", ST_FLAG_RW, voltronic_r_eco_volt_max, "QHE\r", "", 9, '(', "", 1, 3, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_eco_volt },
{ "input.transfer.low", ST_FLAG_RW, voltronic_r_eco_volt_min, "QHE\r", "", 9, '(', "", 5, 7, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_eco_volt },
{ "input.transfer.low.min", 0, NULL, "QHE\r", "", 9, '(', "", 5, 7, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_eco_volt_range },
{ "input.transfer.low.max", 0, NULL, "QHE\r", "", 9, '(', "", 5, 7, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_eco_volt_range },
{ "input.transfer.high.min", 0, NULL, "QHE\r", "", 9, '(', "", 1, 3, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_eco_volt_range },
{ "input.transfer.high.max", 0, NULL, "QHE\r", "", 9, '(', "", 1, 3, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_SKIP, NULL, voltronic_eco_volt_range },
/* Set ECO Mode voltage limits
* > [HEHnnn\r] > [HELnnn\r] n = 0..9
* < [(ACK\r] < [(ACK\r]
* 01234 01234
* 0 0
*/
{ "input.transfer.high", 0, voltronic_r_eco_volt_max, "HEH%03.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_process_setvar },
{ "input.transfer.low", 0, voltronic_r_eco_volt_min, "HEL%03.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_process_setvar },
/* Query UPS for ECO Mode frequency limits
* > [QFRE\r]
* < [(53.0 47.0\r]
* 01234567890
* 0 1
*/
{ "input.frequency.high", ST_FLAG_RW, voltronic_r_eco_freq_max, "QFRE\r", "", 11, '(', "", 1, 4, "%.1f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_eco_freq },
{ "input.frequency.low", ST_FLAG_RW, voltronic_r_eco_freq_min, "QFRE\r", "", 11, '(', "", 6, 9, "%.1f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_eco_freq },
/* Set ECO Mode frequency limits
* > [FREHnn.n\r] > [FRELnn.n\r] n = 0..9
* < [(ACK\r] < [(ACK\r]
* 01234 01234
* 0 0
*/
{ "input.frequency.high", 0, voltronic_r_eco_freq_max, "FREH%04.1f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_process_setvar },
{ "input.frequency.low", 0, voltronic_r_eco_freq_min, "FREL%04.1f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_SKIP, NULL, voltronic_process_setvar },
/* Query UPS for Bypass Mode voltage limits
* > [QBYV\r]
* < [(264 170\r]
* 012345678
* 0
*/
{ "max_bypass_volt", ST_FLAG_RW, voltronic_r_bypass_volt_max, "QBYV\r", "", 9, '(', "", 1, 3, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_bypass },
{ "min_bypass_volt", ST_FLAG_RW, voltronic_r_bypass_volt_min, "QBYV\r", "", 9, '(', "", 5, 7, "%.0f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_bypass },
/* Set Bypass Mode voltage limits
* > [PHVnnn\r] > [PLVnnn\r] n = 0..9
* < [(ACK\r] < [(ACK\r]
* 01234 01234
* 0 0
*/
{ "max_bypass_volt", 0, voltronic_r_bypass_volt_max, "PHV%03.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_process_setvar },
{ "min_bypass_volt", 0, voltronic_r_bypass_volt_min, "PLV%03.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_process_setvar },
/* Query UPS for Bypass Mode frequency limits
* > [QBYF\r]
* < [(53.0 47.0\r]
* 01234567890
* 0 1
*/
{ "max_bypass_freq", ST_FLAG_RW, voltronic_r_bypass_freq_max, "QBYF\r", "", 11, '(', "", 1, 4, "%.1f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_bypass },
{ "min_bypass_freq", ST_FLAG_RW, voltronic_r_bypass_freq_min, "QBYF\r", "", 11, '(', "", 6, 9, "%.1f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_bypass },
/* Set Bypass Mode frequency limits
* > [PGFnn.n\r] > [PSFnn.n\r] n = 0..9
* < [(ACK\r] < [(ACK\r]
* 01234 01234
* 0 0
*/
{ "max_bypass_freq", 0, voltronic_r_bypass_freq_max, "PGF%04.1f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_process_setvar },
{ "min_bypass_freq", 0, voltronic_r_bypass_freq_min, "PSF%04.1f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_process_setvar },
/* Set number of batteries that make a pack to n (integer, 1-9). NOTE: changing the number of batteries will change the UPS's estimation on battery charge/runtime
* > [BATNn\r]
* < [(ACK\r]
* 01234
* 0
*/
{ "battery_number", 0, voltronic_r_batt_numb, "BATN%1.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE | QX_FLAG_NONUT, NULL, voltronic_process_setvar },
/* Set number of battery packs in parallel to n (integer, 01-99). NOTE: changing the number of battery packs will change the UPS's estimation on battery charge/runtime
* > [BATGNn\r]
* < [(ACK\r]
* 01234
* 0
*/
{ "battery.packs", 0, voltronic_r_batt_packs, "BATGN%02.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE, NULL, voltronic_process_setvar },
/* Query UPS for battery type (Only P31)
* > [QBT\r]
* < [(01\r] <- 00="Li", 01="Flooded" or 02="AGM"
* 0123
* 0
*/
{ "battery.type", ST_FLAG_RW, voltronic_e_batt_type, "QBT\r", "", 4, '(', "", 1, 2, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_ENUM | QX_FLAG_SKIP, NULL, voltronic_p31b },
/* Set battery type (Only P31)
* > [PBTnn\r] nn = 00/01/02
* < [(ACK\r]
* 01234
* 0
*/
{ "battery.type", 0, voltronic_e_batt_type, "PBT%02.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_SKIP, NULL, voltronic_p31b_set },
/* Query UPS for device grid working range (Only P31)
* > [QGR\r]
* < [(01\r] <- 00=Appliance, 01=UPS
* 0123
* 0
*/
{ "work_range_type", ST_FLAG_RW, voltronic_e_work_range, "QGR\r", "", 4, '(', "", 1, 2, "%s", QX_FLAG_SEMI_STATIC | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_p31g },
/* Set device grid working range type (Only P31)
* > [PBTnn\r] nn = 00/01
* < [(ACK\r]
* 01234
* 0
*/
{ "work_range_type", 0, voltronic_e_work_range, "PGR%02.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_p31g_set },
/* Query UPS for battery low voltage
* > [RE0\r]
* < [#20\r]
* 012
* 0
*/
{ "battery.voltage.low", ST_FLAG_RW, voltronic_r_batt_low, "RE0\r", "", 3, '#', "", 1, 2, "%.1f", QX_FLAG_SEMI_STATIC | QX_FLAG_RANGE, NULL, NULL },
/* Set voltage for battery low to n (integer, 20..24/20..28). NOTE: changing the battery low voltage will change the UPS's estimation on battery charge/runtime
* > [W0En\r]
* < [(ACK\r]
* 01234
* 0
*/
{ "battery.voltage.low", 0, voltronic_r_batt_low, "W0E%02.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_RANGE, NULL, voltronic_process_setvar },
/* Query UPS for Phase Angle
* > [QPD\r]
* < [(000 120\r] <- Input Phase Angle - Output Phase Angle
* 012345678
* 0
*/
{ "input_phase_angle", 0, NULL, "QPD\r", "", 9, '(', "", 1, 3, "%03d", QX_FLAG_SEMI_STATIC | QX_FLAG_NONUT, NULL, voltronic_phase },
{ "output_phase_angle", ST_FLAG_RW, voltronic_e_phase, "QPD\r", "", 9, '(', "", 5, 7, "%03d", QX_FLAG_SEMI_STATIC | QX_FLAG_ENUM | QX_FLAG_NONUT, NULL, voltronic_phase },
/* Set output phase angle
* > [PPDn\r] n = (000, 120, 180 or 240)
* < [(ACK\r]
* 01234
* 0
*/
{ "output_phase_angle", 0, voltronic_e_phase, "PPD%03.0f\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_SETVAR | QX_FLAG_ENUM | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, voltronic_phase_set },
/* Query UPS for master/slave for a system of UPSes in parallel
* > [QPAR\r]
* < [(001\r] <- 001 for master UPS, 002 and 003 for slave UPSes
* 01234
* 0
*/
{ "voltronic_parallel", 0, NULL, "QPAR\r", "", 5, '(', "", 1, 3, "%s", QX_FLAG_STATIC | QX_FLAG_NONUT, NULL, voltronic_parallel },
/* Query UPS for ??
* > [QBDR\r]
* < [(1234\r] <- unknown reply - My UPS (NAK at me
* 012345
* 0
*/
{ "unknown.7", 0, NULL, "QBDR\r", "", 5, '(', "", 1, 0, "%s", QX_FLAG_STATIC | QX_FLAG_NONUT | QX_FLAG_SKIP, NULL, NULL },
/* Instant commands */
{ "load.off", 0, NULL, "SOFF\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, NULL },
{ "load.on", 0, NULL, "SON\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, NULL },
{ "shutdown.return", 0, NULL, "S%s\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, voltronic_process_command },
{ "shutdown.stayoff", 0, NULL, "S%sR0000\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, voltronic_process_command },
{ "shutdown.stop", 0, NULL, "CS\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, NULL },
{ "test.battery.start", 0, NULL, "T%s\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, voltronic_process_command },
{ "test.battery.start.deep", 0, NULL, "TL\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, NULL },
{ "test.battery.start.quick", 0, NULL, "T\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, NULL },
{ "test.battery.stop", 0, NULL, "CT\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, NULL },
{ "beeper.toggle", 0, NULL, "BZ%s\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD, NULL, voltronic_process_command },
/* Enable/disable beeper: unskipped if the UPS can control alarm (capability) */
{ "beeper.enable", 0, NULL, "PEA\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
{ "beeper.disable", 0, NULL, "PDA\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
/* Outlet control: unskipped if the outlets are manageable */
{ "outlet.1.load.off", 0, NULL, "SKOFF1\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
{ "outlet.1.load.on", 0, NULL, "SKON1\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
{ "outlet.2.load.off", 0, NULL, "SKOFF2\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
{ "outlet.2.load.on", 0, NULL, "SKON2\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
{ "outlet.3.load.off", 0, NULL, "SKOFF3\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
{ "outlet.3.load.on", 0, NULL, "SKON3\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
{ "outlet.4.load.off", 0, NULL, "SKOFF4\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
{ "outlet.4.load.on", 0, NULL, "SKON4\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
/* Bypass: unskipped if the UPS is capable of ECO Mode */
{ "bypass.start", 0, NULL, "PEE\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
{ "bypass.stop", 0, NULL, "PDE\r", "", 5, '(', "", 1, 3, NULL, QX_FLAG_CMD | QX_FLAG_SKIP, NULL, NULL },
/* Server-side settable vars */
{ "ups.delay.start", ST_FLAG_RW, voltronic_r_ondelay, NULL, "", 0, 0, "", 0, 0, DEFAULT_ONDELAY, QX_FLAG_ABSENT | QX_FLAG_SETVAR | QX_FLAG_RANGE, NULL, voltronic_process_setvar },
{ "ups.delay.shutdown", ST_FLAG_RW, voltronic_r_offdelay, NULL, "", 0, 0, "", 0, 0, DEFAULT_OFFDELAY, QX_FLAG_ABSENT | QX_FLAG_SETVAR | QX_FLAG_RANGE, NULL, voltronic_process_setvar },
/* End of structure. */
{ NULL, 0, NULL, NULL, "", 0, 0, "", 0, 0, NULL, 0, NULL, NULL }
};
/* == Testing table == */
#ifdef TESTING
static testing_t voltronic_testing[] = {
{ "QGS\r", "(234.9 50.0 229.8 50.0 000.0 00A 369.1 ---.- 026.5 ---.- 018.8 100000000001\r", -1 },
{ "QPI\r", "(PI01\r", -1 },
{ "QRI\r", "(230.0 004 024.0 50.0\r", -1 },
{ "QMF\r", "(#####VOLTRONIC\r", -1 },
{ "I\r", "#------------- ------ VT12046Q \r", -1 },
{ "F\r", "#220.0 000 024.0 50.0\r", -1 },
{ "QMD\r", "(#######OLHVT1K0 ###1000 80 2/2 230 230 02 12.0\r", -1 },
{ "QFS\r", "(14 212.1 50.0 005.6 49.9 006 010.6 343.8 ---.- 026.2 021.8 01101100\r", -1 },
{ "QMOD\r", "(S\r", -1 },
{ "QVFW\r", "(VERFW:00322.02\r", -1 },
{ "QID\r", "(685653211455\r", -1 },
{ "QBV\r", "(026.5 02 01 068 255\r", -1 },
{ "QFLAG\r", "(EpashcjDbroegfl\r", -1 },
{ "QWS\r", "(0000000000000000000000000000000000000000000000000000000001000001\r", -1 },
{ "QHE\r", "(242 218\r", -1 },
{ "QBYV\r", "(264 170\r", -1 },
{ "QBYF\r", "(53.0 47.0\r", -1 },
{ "QSK1\r", "(1\r", -1 },
{ "QSK2\r", "(0\r", -1 },
{ "QSK3\r", "(1\r", -1 },
{ "QSK4\r", "(NAK\r", -1 },
{ "QSKT1\r", "(008\r", -1 },
{ "QSKT2\r", "(012\r", -1 },
{ "QSKT3\r", "(NAK\r", -1 },
{ "QSKT4\r", "(007\r", -1 },
{ "RE0\r", "#20\r", -1 },
{ "W0E24\r", "(ACK\r", -1 },
{ "PF\r", "(ACK\r", -1 },
{ "PEA\r", "(ACK\r", -1 },
{ "PDR\r", "(NAK\r", -1 },
{ "HEH250\r", "(ACK\r", -1 },
{ "HEL210\r", "(ACK\r", -1 },
{ "PHV260\r", "(NAK\r", -1 },
{ "PLV190\r", "(ACK\r", -1 },
{ "PGF51.0\r", "(NAK\r", -1 },
{ "PSF47.5\r", "(ACK\r", -1 },
{ "BATN2\r", "(ACK\r", -1 },
{ "BATGN04\r", "(ACK\r", -1 },
{ "QBT\r", "(01\r", -1 },
{ "PBT02\r", "(ACK\r", -1 },
{ "QGR\r", "(00\r", -1 },
{ "PGR01\r", "(ACK\r", -1 },
{ "PSK1008\r", "(ACK\r", -1 },
{ "PSK3987\r", "(ACK\r", -1 },
{ "PSK2009\r", "(ACK\r", -1 },
{ "PSK4012\r", "(ACK\r", -1 },
{ "Q3PV\r", "(123.4 456.4 789.4 012.4 323.4 223.4\r", -1 },
{ "Q3OV\r", "(253.4 163.4 023.4 143.4 103.4 523.4\r", -1 },
{ "Q3OC\r", "(109 069 023\r", -1 },
{ "Q3LD\r", "(005 033 089\r", -1 },
{ "Q3YV\r", "(303.4 245.4 126.4 222.4 293.4 321.4\r", -1 },
{ "Q3PC\r", "(002 023 051\r", -1 },
{ "SOFF\r", "(NAK\r", -1 },
{ "SON\r", "(ACK\r", -1 },
{ "T\r", "(NAK\r", -1 },
{ "TL\r", "(ACK\r", -1 },
{ "CS\r", "(ACK\r", -1 },
{ "CT\r", "(NAK\r", -1 },
{ "BZOFF\r", "(ACK\r", -1 },
{ "BZON\r", "(ACK\r", -1 },
{ "S.3R0002\r", "(ACK\r", -1 },
{ "S02R0024\r", "(NAK\r", -1 },
{ "S.5\r", "(ACK\r", -1 },
{ "T.3\r", "(ACK\r", -1 },
{ "T02\r", "(NAK\r", -1 },
{ "SKON1\r", "(ACK\r", -1 },
{ "SKOFF1\r", "(NAK\r", -1 },
{ "SKON2\r", "(ACK\r", -1 },
{ "SKOFF2\r", "(ACK\r", -1 },
{ "SKON3\r", "(NAK\r", -1 },
{ "SKOFF3\r", "(ACK\r", -1 },
{ "SKON4\r", "(NAK\r", -1 },
{ "SKOFF4\r", "(NAK\r", -1 },
{ "QPAR\r", "(003\r", -1 },
{ "QPD\r", "(000 240\r", -1 },
{ "PPD120\r", "(ACK\r", -1 },
{ "QLDL\r", "(005 080\r", -1 },
{ "QBDR\r", "(1234\r", -1 },
{ "QFRE\r", "(50.0 00.0\r", -1 },
{ "FREH54.0\r", "(ACK\r", -1 },
{ "FREL47.0\r", "(ACK\r", -1 },
{ "PEP\r", "(ACK\r", -1 },
{ "PDP\r", "(ACK\r", -1 },
{ "PEB\r", "(ACK\r", -1 },
{ "PDB\r", "(ACK\r", -1 },
{ "PER\r", "(NAK\r", -1 },
{ "PDR\r", "(NAK\r", -1 },
{ "PEO\r", "(ACK\r", -1 },
{ "PDO\r", "(ACK\r", -1 },
{ "PEA\r", "(ACK\r", -1 },
{ "PDA\r", "(ACK\r", -1 },
{ "PES\r", "(ACK\r", -1 },
{ "PDS\r", "(ACK\r", -1 },
{ "PEV\r", "(ACK\r", -1 },
{ "PDV\r", "(ACK\r", -1 },
{ "PEE\r", "(ACK\r", -1 },
{ "PDE\r", "(ACK\r", -1 },
{ "PEG\r", "(ACK\r", -1 },
{ "PDG\r", "(NAK\r", -1 },
{ "PED\r", "(ACK\r", -1 },
{ "PDD\r", "(ACK\r", -1 },
{ "PEC\r", "(ACK\r", -1 },
{ "PDC\r", "(NAK\r", -1 },
{ "PEF\r", "(NAK\r", -1 },
{ "PDF\r", "(ACK\r", -1 },
{ "PEJ\r", "(NAK\r", -1 },
{ "PDJ\r", "(ACK\r", -1 },
{ "PEL\r", "(ACK\r", -1 },
{ "PDL\r", "(ACK\r", -1 },
{ "PEN\r", "(ACK\r", -1 },
{ "PDN\r", "(ACK\r", -1 },
{ "PEQ\r", "(ACK\r", -1 },
{ "PDQ\r", "(ACK\r", -1 },
{ "PEW\r", "(NAK\r", -1 },
{ "PDW\r", "(ACK\r", -1 },
{ NULL }
};
#endif /* TESTING */
/* == Support functions == */
/* This function allows the subdriver to "claim" a device: return 1 if the device is supported by this subdriver, else 0. */
static int voltronic_claim(void)
{
/* We need at least QGS and QPI to run this subdriver */
item_t *item = find_nut_info("input.voltage", 0, 0);
/* Don't know what happened */
if (!item)
return 0;
/* No reply/Unable to get value */
if (qx_process(item, NULL))
return 0;
/* Unable to process value */
if (ups_infoval_set(item) != 1)
return 0;
/* UPS Protocol */
item = find_nut_info("ups.firmware.aux", 0, 0);
/* Don't know what happened */
if (!item) {
dstate_delinfo("input.voltage");
return 0;
}
/* No reply/Unable to get value */
if (qx_process(item, NULL)) {
dstate_delinfo("input.voltage");
return 0;
}
/* Unable to process value/Protocol out of range */
if (ups_infoval_set(item) != 1) {
dstate_delinfo("input.voltage");
return 0;
}
return 1;
}
/* Subdriver-specific flags/vars */
static void voltronic_makevartable(void)
{
/* Capability vars */
addvar(VAR_FLAG, "reset_to_default", "Reset capability options and their limits to safe default values");
addvar(VAR_VALUE, "bypass_alarm", "Alarm (BEEP!) at Bypass Mode [enabled/disabled]");
addvar(VAR_VALUE, "battery_alarm", "Alarm (BEEP!) at Battery Mode [enabled/disabled]");
addvar(VAR_VALUE, "bypass_when_off", "Bypass when the UPS is Off [enabled/disabled]");
addvar(VAR_VALUE, "alarm_control", "Alarm (BEEP!) Control [enabled/disabled]");
addvar(VAR_VALUE, "converter_mode", "Converter Mode [enabled/disabled]");
addvar(VAR_VALUE, "eco_mode", "ECO Mode [enabled/disabled]");
addvar(VAR_VALUE, "battery_open_status_check", "Battery Open Status Check [enabled/disabled]");
addvar(VAR_VALUE, "bypass_forbidding", "Bypass not allowed (Bypass Forbidding) [enabled/disabled]");
addvar(VAR_VALUE, "site_fault_detection", "Site fault detection [enabled/disabled]");
addvar(VAR_VALUE, "advanced_eco_mode", "Advanced ECO Mode [enabled/disabled]");
addvar(VAR_VALUE, "constant_phase_angle", "Constant Phase Angle Function (Output and input phase angles are not equal) [enabled/disabled]");
addvar(VAR_VALUE, "limited_runtime_on_battery", "Limited runtime on battery mode [enabled/disabled]");
/* Bypass Mode frequency/voltage limits */
addvar(VAR_VALUE, "max_bypass_volt", "Maximum voltage for Bypass Mode");
addvar(VAR_VALUE, "min_bypass_volt", "Minimum voltage for Bypass Mode");
addvar(VAR_VALUE, "max_bypass_freq", "Maximum frequency for Bypass Mode");
addvar(VAR_VALUE, "min_bypass_freq", "Minimum frequency for Bypass Mode");
/* Device grid working range type for P31 UPSes */
addvar(VAR_VALUE, "work_range_type", "Device grid working range for P31 UPSes [Appliance/UPS]");
/* Output phase angle */
addvar(VAR_VALUE, "output_phase_angle", "Change output phase angle to the provided value [000, 120, 180, 240]°");
/* Number of batteries */
addvar(VAR_VALUE, "battery_number", "Set number of batteries that make a pack to n (integer, 1-9)");
/* For testing purposes */
addvar(VAR_FLAG, "testing", "If invoked the driver will exec also commands that still need testing");
}
/* Unskip vars according to protocol used by the UPS */
static void voltronic_massive_unskip(const int protocol)
{
item_t *item;
for (item = voltronic_qx2nut; item->info_type != NULL; item++) {
if (!item->command)
continue;
if ( /* == Multiphase UPSes == */
/* P09 */
(protocol == 9 && (
/* (!strcasecmp(item->info_type, "input.L1-L3.voltage") && item->from == 25) || *//* Not unskipped because P09 should be 2-phase input/output */
/* (!strcasecmp(item->info_type, "input.L2-L3.voltage") && item->from == 31) || *//* Not unskipped because P09 should be 2-phase input/output */
/* (!strcasecmp(item->info_type, "output.L1-L3.voltage") && item->from == 25) || *//* Not unskipped because P09 should be 2-phase input/output */
/* (!strcasecmp(item->info_type, "output.L2-L3.voltage") && item->from == 31) || *//* Not unskipped because P09 should be 2-phase input/output */
(!strcasecmp(item->info_type, "output.bypass.L1-N.voltage") && item->answer_len == 19) ||
(!strcasecmp(item->info_type, "output.bypass.L2-N.voltage") && item->answer_len == 19)/* ||
(!strcasecmp(item->info_type, "output.bypass.L3-N.voltage") && item->answer_len == 19) *//* Not unskipped because P09 should be 2-phase input/output */
)) ||
/* P10 */
(protocol == 10 && (
!strcasecmp(item->info_type, "output.L3-N.voltage") ||
(!strcasecmp(item->info_type, "output.L2-L3.voltage") && item->from == 25) ||
(!strcasecmp(item->info_type, "output.L1-L3.voltage") && item->from == 31) ||
(!strcasecmp(item->info_type, "output.bypass.L1-N.voltage") && item->answer_len == 37) ||
(!strcasecmp(item->info_type, "output.bypass.L2-N.voltage") && item->answer_len == 37) ||
(!strcasecmp(item->info_type, "output.bypass.L3-N.voltage") && item->answer_len == 37) ||
!strcasecmp(item->info_type, "output.bypass.L1-L2.voltage") ||
!strcasecmp(item->info_type, "output.bypass.L2-L3.voltage") ||
!strcasecmp(item->info_type, "output.bypass.L1-L3.voltage") ||
!strcasecmp(item->info_type, "output.L3.current") ||
!strcasecmp(item->info_type, "output.L3.power.percent")
)) ||
/* P09-P10 */
((protocol == 9 || protocol == 10) && (
!strcasecmp(item->info_type, "output.L1-N.voltage") ||
!strcasecmp(item->info_type, "output.L2-N.voltage") ||/*
!strcasecmp(item->info_type, "output.L3-N.voltage") || *//* Not unskipped because P09 should be 2-phase input/output */
!strcasecmp(item->info_type, "output.L1-L2.voltage") ||
!strcasecmp(item->info_type, "output.L1.current") ||
!strcasecmp(item->info_type, "output.L2.current") ||/*
!strcasecmp(item->info_type, "output.L3.current") || *//* Not unskipped because P09 should be 2-phase input/output */
!strcasecmp(item->info_type, "output.L1.power.percent") ||
!strcasecmp(item->info_type, "output.L2.power.percent")/* ||
!strcasecmp(item->info_type, "output.L3.power.percent") *//* Not unskipped because P09 should be 2-phase input/output */
)) ||
/* P03-P09-P10 */
((protocol == 3 || protocol == 9 || protocol == 10) && (
!strcasecmp(item->info_type, "input.L1-N.voltage") ||
!strcasecmp(item->info_type, "input.L2-N.voltage") ||/*
!strcasecmp(item->info_type, "input.L3-N.voltage") ||*//* Not unskipped because P09 should be 2-phase input/output */
!strcasecmp(item->info_type, "input.L1-L2.voltage") ||
!strcasecmp(item->info_type, "input.L1.current") ||
!strcasecmp(item->info_type, "input.L2.current")/* ||
!strcasecmp(item->info_type, "input.L3.current")*//* Not unskipped because P09 should be 2-phase input/output */
)) ||
/* P03-P10 */
((protocol == 3 || protocol == 10) && (
!strcasecmp(item->info_type, "input.L3-N.voltage") ||
(!strcasecmp(item->info_type, "input.L2-L3.voltage") && item->from == 25) ||
(!strcasecmp(item->info_type, "input.L1-L3.voltage") && item->from == 31) ||
!strcasecmp(item->info_type, "input.L3.current")
)) ||
/* == P31 battery type/device grid working range == */
(protocol == 31 && (
!strcasecmp(item->info_type, "battery.type") ||
(!strcasecmp(item->info_type, "work_range_type") && !(item->qxflags & QX_FLAG_SETVAR)) ||
(!strcasecmp(item->info_type, "work_range_type") && (item->qxflags & QX_FLAG_SETVAR) && getval(item->info_type))
)) ||
/* == ByPass limits: all but P00/P08/P31 == */
(protocol != 0 && protocol != 8 && protocol != 31 && (
(!strcasecmp(item->info_type, "max_bypass_volt") && !(item->qxflags & QX_FLAG_SETVAR)) ||
(!strcasecmp(item->info_type, "min_bypass_volt") && !(item->qxflags & QX_FLAG_SETVAR)) ||
(!strcasecmp(item->info_type, "max_bypass_freq") && !(item->qxflags & QX_FLAG_SETVAR)) ||
(!strcasecmp(item->info_type, "min_bypass_freq") && !(item->qxflags & QX_FLAG_SETVAR))
)) ||
/* == Reset capabilities options to safe default values == */
(!strcasecmp(item->info_type, "reset_to_default") && testvar("reset_to_default")) ||
/* == QBDR (unknown) == */
(!strcasecmp(item->info_type, "unknown.7") && testvar("testing"))
) {
item->qxflags &= ~QX_FLAG_SKIP;
}
}
}
/* == Preprocess functions == */
/* *SETVAR(/NONUT)* Preprocess setvars */
static int voltronic_process_setvar(item_t *item, char *value, size_t valuelen)
{
if (!strlen(value)) {
upsdebugx(2, "%s: value not given for %s", __func__, item->info_type);
return -1;
}
double val = strtod(value, NULL);
if (!strcasecmp(item->info_type, "ups.delay.start")) {
/* Truncate to minute */
val -= ((int)val % 60);
snprintf(value, valuelen, "%.0f", val);
return 0;
} else if (!strcasecmp(item->info_type, "ups.delay.shutdown")) {
/* Truncate to nearest setable value */
if (val < 60) {
val -= ((int)val % 6);
} else {
val -= ((int)val % 60);
}
snprintf(value, valuelen, "%.0f", val);
return 0;
} else if (!strcasecmp(item->info_type, "max_bypass_freq")) {
if (val == max_bypass_freq) {
upslogx(LOG_INFO, "%s is already set to %.1f", item->info_type, val);
return -1;
}
} else if (!strcasecmp(item->info_type, "min_bypass_freq")) {
if (val == min_bypass_freq) {
upslogx(LOG_INFO, "%s is already set to %.1f", item->info_type, val);
return -1;
}
} else if (!strcasecmp(item->info_type, "max_bypass_volt")) {
if (val == max_bypass_volt) {
upslogx(LOG_INFO, "%s is already set to %.0f", item->info_type, val);
return -1;
}
} else if (!strcasecmp(item->info_type, "min_bypass_volt")) {
if (val == min_bypass_volt) {
upslogx(LOG_INFO, "%s is already set to %.0f", item->info_type, val);
return -1;
}
} else if (!strcasecmp(item->info_type, "battery_number")) {
if (val == battery_number) {
upslogx(LOG_INFO, "%s is already set to %.0f", item->info_type, val);
return -1;
}
}
snprintf(value, valuelen, item->command, val);
return 0;
}
/* *CMD* Preprocess instant commands */
static int voltronic_process_command(item_t *item, char *value, size_t valuelen)
{
char buf[SMALLBUF] = "";
if (!strcasecmp(item->info_type, "shutdown.return")) {
/* Sn: Shutdown after n minutes and then turn on when mains is back
* SnRm: Shutdown after n minutes and then turn on after m minutes
* Accepted values for n: .2 -> .9 , 01 -> 99
* Accepted values for m: 0001 -> 9999 */
int offdelay = strtol(dstate_getinfo("ups.delay.shutdown"), NULL, 10),
ondelay = strtol(dstate_getinfo("ups.delay.start"), NULL, 10) / 60;
if (ondelay == 0) {
if (offdelay < 60) {
snprintf(buf, sizeof(buf), ".%d", offdelay / 6);
} else {
snprintf(buf, sizeof(buf), "%02d", offdelay / 60);
}
} else if (offdelay < 60) {
snprintf(buf, sizeof(buf), ".%dR%04d", offdelay / 6, ondelay);
} else {
snprintf(buf, sizeof(buf), "%02dR%04d", offdelay / 60, ondelay);
}
} else if (!strcasecmp(item->info_type, "shutdown.stayoff")) {
/* SnR0000
* Shutdown after n minutes and stay off
* Accepted values for n: .2 -> .9 , 01 -> 99 */
int offdelay = strtol(dstate_getinfo("ups.delay.shutdown"), NULL, 10);
if (offdelay < 60) {
snprintf(buf, sizeof(buf), ".%d", offdelay / 6);
} else {
snprintf(buf, sizeof(buf), "%02d", offdelay / 60);
}
} else if (!strcasecmp(item->info_type, "test.battery.start")) {
/* Accepted values for test time: .2 -> .9 (.2=12sec ..), 01 -> 99 (minutes)
* -> you have to invoke test.battery.start + number of seconds [12..5940] */
int delay;
if (strlen(value) != strspn(value, "0123456789")) {
upslogx(LOG_ERR, "%s: non numerical value [%s]", item->info_type, value);
return -1;
}
delay = strlen(value) > 0 ? strtol(value, NULL, 10) : 600;
if ((delay < 12) || (delay > 5940)) {
upslogx(LOG_ERR, "%s: battery test time '%d' out of range [12..5940] seconds", item->info_type, delay);
return -1;
}
/* test time < 1 minute */
if (delay < 60) {
delay = delay / 6;
snprintf(buf, sizeof(buf), ".%d", delay);
/* test time > 1 minute */
} else {
delay = delay / 60;
snprintf(buf, sizeof(buf), "%02d", delay);
}
} else if (!strcasecmp(item->info_type, "beeper.toggle")) {
const char *beeper_status = dstate_getinfo("ups.beeper.status");
/* If the UPS is beeping then we can call BZOFF; if we previously set BZOFF we can call BZON, provided that the beeper is not disabled */
/* The UPS can disable/enable alarm (from UPS capability) */
if (alarm_control) {
if (!strcmp(beeper_status, "enabled")) {
snprintf(buf, sizeof(buf), "OFF");
} else if (!strcmp(beeper_status, "muted")) {
snprintf(buf, sizeof(buf), "ON");
/* Beeper disabled */
} else {
upslogx(LOG_INFO, "The beeper is already disabled");
return -1;
}
/* The UPS can't disable/enable alarm (from UPS capability) */
} else {
if (!strcmp(beeper_status, "enabled")) {
snprintf(buf, sizeof(buf), "OFF");
} else if (!strcmp(beeper_status, "disabled")) {
snprintf(buf, sizeof(buf), "ON");
}
}
} else {
/* Don't know what happened */
return -1;
}
snprintf(value, valuelen, item->command, buf);
return 0;
}
/* UPS capabilities */
static int voltronic_capability(item_t *item, char *value, size_t valuelen)
{
char rawval[SMALLBUF], *enabled, *disabled, *val = NULL, *saveptr = NULL;
item_t *unskip;
snprintf(rawval, sizeof(rawval), "%s", item->value);
enabled = strtok_r(rawval+1, "D", &saveptr);
disabled = strtok_r(NULL, "\0", &saveptr);
if (!enabled && !disabled) {
upsdebugx(2, "%s: parsing failed", __func__);
return -1;
}
enabled = enabled ? enabled : "";
disabled = disabled ? disabled : "";
/* NONUT items */
if (!strcasecmp(item->info_type, "bypass_alarm")) {
if (strchr(enabled, 'p')) {
val = bypass_alarm = "enabled";
} else if (strchr(disabled, 'p')) {
val = bypass_alarm = "disabled";
}
} else if (!strcasecmp(item->info_type, "battery_alarm")) {
if (strchr(enabled, 'b')) {
val = battery_alarm = "enabled";
} else if (strchr(disabled, 'b')) {
val = battery_alarm = "disabled";
}
} else if (!strcasecmp(item->info_type, "bypass_when_off")) {
if (strchr(enabled, 'o')) {
val = bypass_when_off = "enabled";
} else if (strchr(disabled, 'o')) {
val = bypass_when_off = "disabled";
}
} else if (!strcasecmp(item->info_type, "alarm_control")) {
if (strchr(item->value, 'a')) {
if (strchr(enabled, 'a')) {
const char *beeper = dstate_getinfo("ups.beeper.status");
val = alarm_control = "enabled";
if (!beeper || strcmp(beeper, "muted")) {
dstate_setinfo("ups.beeper.status", "enabled");
}
} else if (strchr(disabled, 'a')) {
val = alarm_control = "disabled";
dstate_setinfo("ups.beeper.status", "disabled");
}
/* Unskip beeper.{enable,disable} instcmds */
unskip = find_nut_info("beeper.enable", QX_FLAG_CMD, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
unskip = find_nut_info("beeper.disable", QX_FLAG_CMD, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
}
} else if (!strcasecmp(item->info_type, "converter_mode")) {
if (strchr(enabled, 'v')) {
val = converter_mode = "enabled";
} else if (strchr(disabled, 'v')) {
val = converter_mode = "disabled";
}
} else if (!strcasecmp(item->info_type, "eco_mode")) {
if (strchr(item->value, 'e')) {
if (strchr(enabled, 'e')) {
val = eco_mode = "enabled";
} else if (strchr(disabled, 'e')) {
val = eco_mode = "disabled";
}
/* Unskip bypass.{start,stop} instcmds */
unskip = find_nut_info("bypass.start", QX_FLAG_CMD, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
unskip = find_nut_info("bypass.stop", QX_FLAG_CMD, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
/* Unskip input.transfer.{high,low} */
unskip = find_nut_info("input.transfer.high", QX_FLAG_SEMI_STATIC, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
unskip = find_nut_info("input.transfer.low", QX_FLAG_SEMI_STATIC, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
/* Unskip input.frequency.{high,low} */
unskip = find_nut_info("input.frequency.high", QX_FLAG_SEMI_STATIC, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
unskip = find_nut_info("input.frequency.low", QX_FLAG_SEMI_STATIC, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
}
} else if (!strcasecmp(item->info_type, "battery_open_status_check")) {
if (strchr(enabled, 'd')) {
val = battery_open_status_check = "enabled";
} else if (strchr(disabled, 'd')) {
val = battery_open_status_check = "disabled";
}
} else if (!strcasecmp(item->info_type, "bypass_forbidding")) {
if (strchr(enabled, 'f')) {
val = bypass_forbidding = "enabled";
} else if (strchr(disabled, 'f')) {
val = bypass_forbidding = "disabled";
}
} else if (!strcasecmp(item->info_type, "site_fault_detection")) {
if (strchr(enabled, 'l')) {
val = site_fault_detection = "enabled";
} else if (strchr(disabled, 'l')) {
val = site_fault_detection = "disabled";
}
} else if (!strcasecmp(item->info_type, "advanced_eco_mode")) {
if (strchr(enabled, 'n')) {
val = advanced_eco_mode = "enabled";
} else if (strchr(disabled, 'n')) {
val = advanced_eco_mode = "disabled";
}
} else if (!strcasecmp(item->info_type, "constant_phase_angle")) {
if (strchr(enabled, 'q')) {
val = constant_phase_angle = "enabled";
} else if (strchr(disabled, 'q')) {
val = constant_phase_angle = "disabled";
}
} else if (!strcasecmp(item->info_type, "limited_runtime_on_battery")) {
if (strchr(enabled, 'w')) {
val = limited_runtime_on_battery = "enabled";
} else if (strchr(disabled, 'w')) {
val = limited_runtime_on_battery = "disabled";
}
/* } else if (!strcasecmp(item->info_type, "")) {
if (strchr(enabled, 'h')) { unknown/unused
} else if (strchr(disabled, 'h')) { }
} else if (!strcasecmp(item->info_type, "")) {
if (strchr(enabled, 't')) { unknown/unused
} else if (strchr(disabled, 't')) { }
} else if (!strcasecmp(item->info_type, "")) {
if (strchr(enabled, 'k')) { unknown/unused
} else if (strchr(disabled, 'k')) { }
} else if (!strcasecmp(item->info_type, "")) {
if (strchr(enabled, 'i')) { unknown/unused
} else if (strchr(disabled, 'i')) { }
} else if (!strcasecmp(item->info_type, "")) {
if (strchr(enabled, 'm')) { unknown/unused
} else if (strchr(disabled, 'm')) { }
} else if (!strcasecmp(item->info_type, "")) {
if (strchr(enabled, 'z')) { unknown/unused
} else if (strchr(disabled, 'z')) { }
*/
/* Items with a NUT variable */
} else if (!strcasecmp(item->info_type, "ups.start.auto")) {
if (strchr(enabled, 'r')) {
val = "yes";
} else if (strchr(disabled, 'r')) {
val = "no";
}
} else if (!strcasecmp(item->info_type, "battery.protection")) {
if (strchr(enabled, 's')) {
val = "yes";
} else if (strchr(disabled, 's')) {
val = "no";
}
} else if (!strcasecmp(item->info_type, "battery.energysave")) {
if (strchr(enabled, 'g')) {
val = "yes";
} else if (strchr(disabled, 'g')) {
val = "no";
}
} else if (!strcasecmp(item->info_type, "ups.start.battery")) {
if (strchr(enabled, 'c')) {
val = "yes";
} else if (strchr(disabled, 'c')) {
val = "no";
}
} else if (!strcasecmp(item->info_type, "outlet.0.switchable")) {
if (strchr(enabled, 'j')) {
int i;
char buf[SMALLBUF];
val = "yes";
/* Unskip outlet.n.{switchable,status} */
for (i = 1; i <= 4; i++) {
snprintf(buf, sizeof(buf), "outlet.%d.switchable", i);
unskip = find_nut_info(buf, 0, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
snprintf(buf, sizeof(buf), "outlet.%d.status", i);
unskip = find_nut_info(buf, 0, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
}
} else if (strchr(disabled, 'j')) {
val = "no";
}
}
/* UPS doesn't have that capability */
if (!val)
return -1;
snprintf(value, valuelen, item->dfl, val);
/* This item doesn't have a NUT var and we were not asked by the user to change its value */
if ((item->qxflags & QX_FLAG_NONUT) && !getval(item->info_type))
return 0;
/* Unskip setvar */
unskip = find_nut_info(item->info_type, QX_FLAG_SETVAR, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
return 0;
}
/* *SETVAR* Set UPS capability options */
static int voltronic_capability_set(item_t *item, char *value, size_t valuelen)
{
if (!strcasecmp(value, "yes")) {
snprintf(value, valuelen, item->command, "E");
return 0;
}
if (!strcasecmp(value, "no")) {
snprintf(value, valuelen, item->command, "D");
return 0;
}
/* At this point value should have been already checked against enum so this shouldn't happen.. however.. */
upslogx(LOG_ERR, "%s: given value [%s] is not acceptable. Enter either 'yes' or 'no'.", item->info_type, value);
return -1;
}
/* *SETVAR/NONUT* Change UPS capability according to user configuration in ups.conf */
static int voltronic_capability_set_nonut(item_t *item, char *value, size_t valuelen)
{
const char *match = NULL;
int i;
const struct {
const char *type; /* Name of the option */
const char *match; /* Value reported by the UPS */
} capability[] = {
{ "bypass_alarm", bypass_alarm },
{ "battery_alarm", battery_alarm },
{ "bypass_when_off", bypass_when_off },
{ "alarm_control", alarm_control },
{ "converter_mode", converter_mode },
{ "eco_mode", eco_mode },
{ "battery_open_status_check", battery_open_status_check },
{ "bypass_forbidding", bypass_forbidding },
{ "site_fault_detection", site_fault_detection },
{ "advanced_eco_mode", advanced_eco_mode },
{ "constant_phase_angle", constant_phase_angle },
{ "limited_runtime_on_battery", limited_runtime_on_battery },
{ NULL }
};
for (i = 0; capability[i].type; i++) {
if (strcasecmp(item->info_type, capability[i].type))
continue;
match = capability[i].match;
break;
}
/* UPS doesn't have that capability */
if (!match)
return -1;
/* At this point value should have been already checked by nutdrv_qx's own setvar so this shouldn't happen.. however.. */
if (!strcasecmp(value, match)) {
upslogx(LOG_INFO, "%s is already %s", item->info_type, match);
return -1;
}
if (!strcasecmp(value, "disabled")) {
snprintf(value, valuelen, item->command, "D");
} else if (!strcasecmp(value, "enabled")) {
snprintf(value, valuelen, item->command, "E");
} else {
/* At this point value should have been already checked against enum so this shouldn't happen.. however.. */
upslogx(LOG_ERR, "%s: [%s] is not within acceptable values [enabled/disabled]", item->info_type, value);
return -1;
}
return 0;
}
/* *SETVAR/NONUT* Reset capability options and their limits to safe default values */
static int voltronic_capability_reset(item_t *item, char *value, size_t valuelen)
{
/* Nothing to do */
if (!testvar("reset_to_default"))
return -1;
/* UPS capability options can be reset only when the UPS is in 'Standby Mode' (=OFF) (from QMOD) */
if (!(qx_status() & STATUS(OFF))) {
upslogx(LOG_ERR, "%s: UPS capability options can be reset only when the UPS is in Standby Mode (i.e. ups.status = 'OFF').", item->info_type);
return -1;
}
snprintf(value, valuelen, "%s", item->command);
return 0;
}
/* Voltage limits for ECO Mode */
static int voltronic_eco_volt(item_t *item, char *value, size_t valuelen)
{
const int protocol = strtol(dstate_getinfo("ups.firmware.aux")+1, NULL, 10);
int ovn;
const char *outvoltnom;
char buf[SMALLBUF];
item_t *unskip;
/* Range of accepted values for maximum voltage for ECO Mode */
struct {
int lower; /* Lower limit */
int upper; /* Upper limit */
} max;
/* Range of accepted values for minimum voltage for ECO Mode */
struct {
int lower; /* Lower limit */
int upper; /* Upper limit */
} min;
if (strspn(item->value, "0123456789 .") != strlen(item->value)) {
upsdebugx(2, "%s: non numerical value [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
snprintf(value, valuelen, item->dfl, strtod(item->value, NULL));
outvoltnom = dstate_getinfo("output.voltage.nominal");
/* Since query for ratings (QRI) is not mandatory to run this driver, skip next steps if we can't get the value of output voltage nominal */
if (!outvoltnom) {
upsdebugx(2, "%s: unable to get output voltage nominal", __func__);
/* We return 0 since we have the value and all's ok: simply we can't set its range so we won't unskip SETVAR item and .{min,max} */
return 0;
}
ovn = strtol(outvoltnom, NULL, 10);
/* For P01/P09 */
if (protocol == 1 || protocol == 9) {
if (ovn >= 200) {
min.lower = ovn - 24;
min.upper = ovn - 7;
max.lower = ovn + 7;
max.upper = ovn + 24;
} else {
min.lower = ovn - 12;
min.upper = ovn - 3;
max.lower = ovn + 3;
max.upper = ovn + 12;
}
/* For P02/P03/P10/P13/P14/P99 */
} else if (protocol == 2 || protocol == 3 || protocol == 10 || protocol == 13 || protocol == 14 || protocol == 99) {
if (ovn >= 200) {
min.lower = ovn - 24;
min.upper = ovn - 11;
max.lower = ovn + 11;
max.upper = ovn + 24;
} else {
min.lower = ovn - 12;
min.upper = ovn - 5;
max.lower = ovn + 5;
max.upper = ovn + 12;
}
/* ECO mode not supported */
} else {
upsdebugx(2, "%s: the UPS doesn't seem to support ECO Mode", __func__);
/* We return 0 since we have the value and all's ok: simply we can't set its range so we won't unskip SETVAR item and .{min,max} */
return 0;
}
if (!strcasecmp(item->info_type, "input.transfer.high")) {
/* Fill voltronic_r_eco_volt_max */
snprintf(item->info_rw[0].value, sizeof(item->info_rw[0].value), "%d", max.lower);
snprintf(item->info_rw[1].value, sizeof(item->info_rw[1].value), "%d", max.upper);
} else if (!strcasecmp(item->info_type, "input.transfer.low")) {
/* Fill voltronic_r_eco_volt_min */
snprintf(item->info_rw[0].value, sizeof(item->info_rw[0].value), "%d", min.lower);
snprintf(item->info_rw[1].value, sizeof(item->info_rw[1].value), "%d", min.upper);
}
/* Unskip input.transfer.{high,low}.{min,max} */
snprintf(buf, sizeof(buf), "%s.min", item->info_type);
unskip = find_nut_info(buf, QX_FLAG_SEMI_STATIC, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
snprintf(buf, sizeof(buf), "%s.max", item->info_type);
unskip = find_nut_info(buf, QX_FLAG_SEMI_STATIC, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
/* Unskip input.transfer.{high,low} setvar */
unskip = find_nut_info(item->info_type, QX_FLAG_SETVAR, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
return 0;
}
/* Voltage limits for ECO Mode (max, min) */
static int voltronic_eco_volt_range(item_t *item, char *value, size_t valuelen)
{
char *buf;
int i;
item_t *from;
if (!strcasecmp(item->info_type, "input.transfer.low.min")) {
buf = "input.transfer.low";
i = 0;
} else if (!strcasecmp(item->info_type, "input.transfer.low.max")) {
buf = "input.transfer.low";
i = 1;
} else if (!strcasecmp(item->info_type, "input.transfer.high.min")) {
buf = "input.transfer.high";
i = 0;
} else if (!strcasecmp(item->info_type, "input.transfer.high.max")) {
buf = "input.transfer.high";
i = 1;
} else {
/* Don't know what happened */
return -1;
}
from = find_nut_info(buf, QX_FLAG_SEMI_STATIC, 0);
/* Don't know what happened */
if (!from)
return -1;
/* Value is set at runtime by voltronic_eco_volt, so if it's still unset something went wrong */
if (!strlen(from->info_rw[i].value))
return -1;
snprintf(value, valuelen, "%s", from->info_rw[i].value);
return 0;
}
/* Frequency limits for ECO Mode */
static int voltronic_eco_freq(item_t *item, char *value, size_t valuelen)
{
item_t *unskip;
if (strspn(item->value, "0123456789 .") != strlen(item->value)) {
upsdebugx(2, "%s: non numerical value [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
snprintf(value, valuelen, item->dfl, strtod(item->value, NULL));
/* Unskip input.transfer.{high,low} setvar */
unskip = find_nut_info(item->info_type, QX_FLAG_SETVAR, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
return 0;
}
/* *NONUT* Voltage/frequency limits for Bypass Mode */
static int voltronic_bypass(item_t *item, char *value, size_t valuelen)
{
item_t *unskip;
double val;
if (strspn(item->value, "0123456789 .") != strlen(item->value)) {
upsdebugx(2, "%s: non numerical value [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
if (!strcasecmp(item->info_type, "max_bypass_volt")) {
val = max_bypass_volt = strtol(item->value, NULL, 10);
} else if (!strcasecmp(item->info_type, "min_bypass_volt")) {
val = min_bypass_volt = strtol(item->value, NULL, 10);
} else if (!strcasecmp(item->info_type, "max_bypass_freq")) {
val = max_bypass_freq = strtod(item->value, NULL);
} else if (!strcasecmp(item->info_type, "min_bypass_freq")) {
val = min_bypass_freq = strtod(item->value, NULL);
} else {
/* Don't know what happened */
return -1;
}
snprintf(value, valuelen, item->dfl, val);
/* No user-provided value to change.. */
if (!getval(item->info_type))
return 0;
/* Unskip {min,max}_bypass_volt setvar */
unskip = find_nut_info(item->info_type, QX_FLAG_SETVAR, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
return 0;
}
/* *NONUT* Number of batteries */
static int voltronic_batt_numb(item_t *item, char *value, size_t valuelen)
{
item_t *unskip;
if (strspn(item->value, "0123456789 .") != strlen(item->value)) {
upsdebugx(2, "%s: non numerical value [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
battery_number = strtol(item->value, NULL, 10);
snprintf(value, valuelen, item->dfl, battery_number);
/* No user-provided value to change.. */
if (!getval(item->info_type))
return 0;
/* Unskip battery_number setvar */
unskip = find_nut_info("battery_number", QX_FLAG_SETVAR, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
return 0;
}
/* Battery runtime */
static int voltronic_batt_runtime(item_t *item, char *value, size_t valuelen)
{
double runtime;
if (strspn(item->value, "0123456789 .") != strlen(item->value)) {
upsdebugx(2, "%s: non numerical value [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
/* Battery runtime is reported by the UPS in minutes, NUT expects seconds */
runtime = strtod(item->value, NULL) * 60;
snprintf(value, valuelen, item->dfl, runtime);
return 0;
}
/* Protocol used by the UPS */
static int voltronic_protocol(item_t *item, char *value, size_t valuelen)
{
int protocol;
if (strncasecmp(item->value, "PI", 2)) {
upsdebugx(2, "%s: invalid start characters [%.2s]", __func__, item->value);
return -1;
}
/* Here we exclude non numerical value and other non accepted protocols (hence the restricted comparison target) */
if (strspn(item->value+2, "0123489") != strlen(item->value+2)) {
upslogx(LOG_ERR, "Protocol [%s] is not supported by this driver", item->value);
return -1;
}
protocol = strtol(item->value+2, NULL, 10);
switch (protocol)
{
case 0:
case 1:
case 2:
case 3:
case 8:
case 9:
case 10:
case 13:
case 14:
case 31:
case 99:
break;
default:
upslogx(LOG_ERR, "Protocol [PI%02d] is not supported by this driver", protocol);
return -1;
}
snprintf(value, valuelen, "P%02d", protocol);
/* Unskip vars according to protocol */
voltronic_massive_unskip(protocol);
return 0;
}
/* Fault reported by the UPS:
* When the UPS is queried for status (QGS), if it reports a fault (6th bit of 12bit flag of the reply to QGS set to 1), the driver unskips the QFS item in qx2nut array: this function processes the reply to QFS query */
static int voltronic_fault(item_t *item, char *value, size_t valuelen)
{
int protocol = strtol(dstate_getinfo("ups.firmware.aux")+1, NULL, 10);
char alarm[SMALLBUF];
upslogx(LOG_INFO, "Checking for faults..");
if (!strcasecmp(item->value, "OK")) {
snprintf(value, valuelen, item->dfl, "No fault found");
upslogx(LOG_INFO, "%s", value);
item->qxflags |= QX_FLAG_SKIP;
return 0;
}
if ((strspn(item->value, "0123456789ABC") != 2) || ((item->value[0] != '1') && (strspn(item->value+1, "0123456789") != 1))) {
snprintf(alarm, sizeof(alarm), "Unknown fault [%s]", item->value);
/* P31 UPSes */
} else if (protocol == 31) {
if (strpbrk(item->value+1, "ABC")) {
snprintf(alarm, sizeof(alarm), "Unknown fault [%s]", item->value);
} else {
switch (strtol(item->value, NULL, 10))
{
case 1:
strcpy(alarm, "Fan failure.");
break;
case 2:
strcpy(alarm, "Over temperature fault.");
break;
case 3:
strcpy(alarm, "Battery voltage is too high.");
break;
case 4:
strcpy(alarm, "Battery voltage too low.");
break;
case 5:
strcpy(alarm, "Inverter relay short-circuited.");
break;
case 6:
strcpy(alarm, "Inverter voltage over maximum value.");
break;
case 7:
strcpy(alarm, "Overload fault.");
update_status("OVER");
break;
case 8:
strcpy(alarm, "Bus voltage exceeds its upper limit.");
break;
case 9:
strcpy(alarm, "Bus soft start fail.");
break;
case 10:
strcpy(alarm, "Unknown fault [Fault code: 10]");
break;
case 51:
strcpy(alarm, "Over current fault.");
break;
case 52:
strcpy(alarm, "Bus voltage below its under limit.");
break;
case 53:
strcpy(alarm, "Inverter soft start fail.");
break;
case 54:
strcpy(alarm, "Self test fail.");
break;
case 55:
strcpy(alarm, "Output DC voltage exceeds its upper limit.");
break;
case 56:
strcpy(alarm, "Battery open fault.");
break;
case 57:
strcpy(alarm, "Current sensor fault.");
break;
case 58:
strcpy(alarm, "Battery short.");
break;
case 59:
strcpy(alarm, "Inverter voltage below its lower limit.");
break;
default:
snprintf(alarm, sizeof(alarm), "Unknown fault [%s]", item->value);
break;
}
}
/* All other UPSes */
} else {
switch (strtol(item->value, NULL, 10))
{
case 1:
switch (item->value[1])
{
case 'A':
strcpy(alarm, "L1 inverter negative power out of acceptable range.");
break;
case 'B':
strcpy(alarm, "L2 inverter negative power out of acceptable range.");
break;
case 'C':
strcpy(alarm, "L3 inverter negative power out of acceptable range.");
break;
default:
strcpy(alarm, "Bus voltage not within default setting.");
break;
}
break;
case 2:
strcpy(alarm, "Bus voltage over maximum value.");
break;
case 3:
strcpy(alarm, "Bus voltage below minimum value.");
break;
case 4:
strcpy(alarm, "Bus voltage differences out of acceptable range.");
break;
case 5:
strcpy(alarm, "Bus voltage of slope rate drops too fast.");
break;
case 6:
strcpy(alarm, "Over current in PFC input inductor.");
break;
case 11:
strcpy(alarm, "Inverter voltage not within default setting.");
break;
case 12:
strcpy(alarm, "Inverter voltage over maximum value.");
break;
case 13:
strcpy(alarm, "Inverter voltage below minimum value.");
break;
case 14:
strcpy(alarm, "Inverter short-circuited.");
break;
case 15:
strcpy(alarm, "L2 phase inverter short-circuited.");
break;
case 16:
strcpy(alarm, "L3 phase inverter short-circuited.");
break;
case 17:
strcpy(alarm, "L1L2 inverter short-circuited.");
break;
case 18:
strcpy(alarm, "L2L3 inverter short-circuited.");
break;
case 19:
strcpy(alarm, "L3L1 inverter short-circuited.");
break;
case 21:
strcpy(alarm, "Battery SCR short-circuited.");
break;
case 22:
strcpy(alarm, "Line SCR short-circuited.");
break;
case 23:
strcpy(alarm, "Inverter relay open fault.");
break;
case 24:
strcpy(alarm, "Inverter relay short-circuited.");
break;
case 25:
strcpy(alarm, "Input and output wires oppositely connected.");
break;
case 26:
strcpy(alarm, "Battery oppositely connected.");
break;
case 27:
strcpy(alarm, "Battery voltage is too high.");
break;
case 28:
strcpy(alarm, "Battery voltage too low.");
break;
case 29:
strcpy(alarm, "Failure for battery fuse being open-circuited.");
break;
case 31:
strcpy(alarm, "CAN-bus communication fault.");
break;
case 32:
strcpy(alarm, "Host signal circuit fault.");
break;
case 33:
strcpy(alarm, "Synchronous signal circuit fault.");
break;
case 34:
strcpy(alarm, "Synchronous pulse signal circuit fault.");
break;
case 35:
strcpy(alarm, "Parallel cable disconnected.");
break;
case 36:
strcpy(alarm, "Load unbalanced.");
break;
case 41:
strcpy(alarm, "Over temperature fault.");
break;
case 42:
strcpy(alarm, "Communication failure between CPUs in control board.");
break;
case 43:
strcpy(alarm, "Overload fault.");
update_status("OVER");
break;
case 44:
strcpy(alarm, "Fan failure.");
break;
case 45:
strcpy(alarm, "Charger failure.");
break;
case 46:
strcpy(alarm, "Model fault.");
break;
case 47:
strcpy(alarm, "MCU communication fault.");
break;
default:
snprintf(alarm, sizeof(alarm), "Unknown fault [%s]", item->value);
break;
}
}
snprintf(value, valuelen, item->dfl, alarm);
upslogx(LOG_INFO, "Fault found: %s", alarm);
item->qxflags |= QX_FLAG_SKIP;
return 0;
}
/* Warnings reported by the UPS */
static int voltronic_warning(item_t *item, char *value, size_t valuelen)
{
char warn[SMALLBUF] = "", unk[SMALLBUF] = "", bitwarns[SMALLBUF] = "", warns[4096] = "";
int i;
if (strspn(item->value, "01") != strlen(item->value)) {
upsdebugx(2, "%s: invalid reply from the UPS [%s]", __func__, item->value);
return -1;
}
/* No warnings */
if (strspn(item->value, "0") == strlen(item->value)) {
return 0;
}
snprintf(value, valuelen, "UPS warnings:");
for (i = 0; i < (int)strlen(item->value); i++) {
int u = 0;
if (item->value[i] == '1') {
switch (i)
{
case 0:
strcpy(warn, "Battery disconnected.");
break;
case 1:
strcpy(warn, "Neutral not connected.");
break;
case 2:
strcpy(warn, "Site fault.");
break;
case 3:
strcpy(warn, "Phase sequence incorrect.");
break;
case 4:
strcpy(warn, "Phase sequence incorrect in bypass.");
break;
case 5:
strcpy(warn, "Input frequency unstable in bypass.");
break;
case 6:
strcpy(warn, "Battery overcharged.");
break;
case 7:
strcpy(warn, "Low battery.");
update_status("LB");
break;
case 8:
strcpy(warn, "Overload alarm.");
update_status("OVER");
break;
case 9:
strcpy(warn, "Fan alarm.");
break;
case 10:
strcpy(warn, "EPO enabled.");
break;
case 11:
strcpy(warn, "Unable to turn on UPS.");
break;
case 12:
strcpy(warn, "Over temperature alarm.");
break;
case 13:
strcpy(warn, "Charger alarm.");
break;
case 14:
strcpy(warn, "Remote auto shutdown.");
break;
case 15:
strcpy(warn, "L1 input fuse not working.");
break;
case 16:
strcpy(warn, "L2 input fuse not working.");
break;
case 17:
strcpy(warn, "L3 input fuse not working.");
break;
case 18:
strcpy(warn, "Positive PFC abnormal in L1.");
break;
case 19:
strcpy(warn, "Negative PFC abnormal in L1.");
break;
case 20:
strcpy(warn, "Positive PFC abnormal in L2.");
break;
case 21:
strcpy(warn, "Negative PFC abnormal in L2.");
break;
case 22:
strcpy(warn, "Positive PFC abnormal in L3.");
break;
case 23:
strcpy(warn, "Negative PFC abnormal in L3.");
break;
case 24:
strcpy(warn, "Abnormal in CAN-bus communication.");
break;
case 25:
strcpy(warn, "Abnormal in synchronous signal circuit.");
break;
case 26:
strcpy(warn, "Abnormal in synchronous pulse signal circuit.");
break;
case 27:
strcpy(warn, "Abnormal in host signal circuit.");
break;
case 28:
strcpy(warn, "Male connector of parallel cable not connected well.");
break;
case 29:
strcpy(warn, "Female connector of parallel cable not connected well.");
break;
case 30:
strcpy(warn, "Parallel cable not connected well.");
break;
case 31:
strcpy(warn, "Battery connection not consistent in parallel systems.");
break;
case 32:
strcpy(warn, "AC connection not consistent in parallel systems.");
break;
case 33:
strcpy(warn, "Bypass connection not consistent in parallel systems.");
break;
case 34:
strcpy(warn, "UPS model types not consistent in parallel systems.");
break;
case 35:
strcpy(warn, "Capacity of UPSes not consistent in parallel systems.");
break;
case 36:
strcpy(warn, "Auto restart setting not consistent in parallel systems.");
break;
case 37:
strcpy(warn, "Battery cell over charge.");
break;
case 38:
strcpy(warn, "Battery protection setting not consistent in parallel systems.");
break;
case 39:
strcpy(warn, "Battery detection setting not consistent in parallel systems.");
break;
case 40:
strcpy(warn, "Bypass not allowed setting not consistent in parallel systems.");
break;
case 41:
strcpy(warn, "Converter setting not consistent in parallel systems.");
break;
case 42:
strcpy(warn, "High loss point for frequency in bypass mode not consistent in parallel systems.");
break;
case 43:
strcpy(warn, "Low loss point for frequency in bypass mode not consistent in parallel systems.");
break;
case 44:
strcpy(warn, "High loss point for voltage in bypass mode not consistent in parallel systems.");
break;
case 45:
strcpy(warn, "Low loss point for voltage in bypass mode not consistent in parallel systems.");
break;
case 46:
strcpy(warn, "High loss point for frequency in AC mode not consistent in parallel systems.");
break;
case 47:
strcpy(warn, "Low loss point for frequency in AC mode not consistent in parallel systems.");
break;
case 48:
strcpy(warn, "High loss point for voltage in AC mode not consistent in parallel systems.");
break;
case 49:
strcpy(warn, "Low loss point for voltage in AC mode not consistent in parallel systems.");
break;
case 50:
strcpy(warn, "Warning for locking in bypass mode after 3 consecutive overloads within 30 min.");
break;
case 51:
strcpy(warn, "Warning for three-phase AC input current unbalance.");
break;
case 52:
strcpy(warn, "Warning for a three-phase input current unbalance detected in battery mode.");
break;
case 53:
strcpy(warn, "Warning for Inverter inter-current unbalance.");
break;
case 54:
strcpy(warn, "Programmable outlets cut off pre-alarm.");
break;
case 55:
strcpy(warn, "Warning for Battery replace.");
update_status("RB");
break;
case 56:
strcpy(warn, "Abnormal warning on input phase angle.");
break;
case 57:
strcpy(warn, "Warning!! Cover of maintain switch is open.");
break;
case 61:
strcpy(warn, "EEPROM operation error.");
break;
default:
snprintf(warn, sizeof(warn), "Unknown warning from UPS [bit: #%02d]", i + 1);
u++;
break;
}
upslogx(LOG_INFO, "Warning from UPS: %s", warn);
if (u) { /* Unknown warnings */
snprintfcat(unk, sizeof(unk), ", #%02d", i + 1);
} else { /* Known warnings */
if (strlen(warns) > 0) {
/* For too long warnings (total) */
snprintfcat(bitwarns, sizeof(bitwarns), ", #%02d", i + 1);
/* For warnings (total) not too long */
snprintfcat(warns, sizeof(warns), " %s", warn);
} else {
snprintf(bitwarns, sizeof(bitwarns), "Known (see log or manual) [bit: #%02d", i + 1);
snprintf(warns, sizeof(warns), "%s", warn);
}
}
}
}
/* There's some known warning, at least */
if (strlen(warns) > 0) {
/* We have both known and unknown warnings */
if (strlen(unk) > 0) {
/* Appending unknown ones to known ones; removing leading comma from unk - 'explicit' */
snprintfcat(warns, sizeof(warns), " Unknown warnings [bit:%s]", unk+1);
/* Appending unknown ones to known ones; removing leading comma from unk - 'cryptic' */
snprintfcat(bitwarns, sizeof(bitwarns), "]; Unknown warnings [bit:%s]", unk+1);
/* We have only known warnings */
} else {
snprintfcat(bitwarns, sizeof(bitwarns), "]");
}
/* We have only unknown warnings */
} else if (strlen(unk) > 0) {
/* Removing leading comma from unk */
snprintf(warns, sizeof(warns), "Unknown warnings [bit:%s]", unk+1);
strcpy(bitwarns, warns);
} else {
/* Don't know what happened */
upsdebugx(2, "%s: failed to process warnings", __func__);
return -1;
}
/* If grand total of warnings doesn't exceed value of alarm (=ST_MAX_VALUE_LEN) minus some space (32) for other alarms.. */
if ((ST_MAX_VALUE_LEN - 32) > strlen(warns)) {
/* ..then be explicit.. */
snprintfcat(value, valuelen, " %s", warns);
/* ..otherwise.. */
} else {
/* ..be cryptic */
snprintfcat(value, valuelen, " %s", bitwarns);
}
return 0;
}
/* Working mode reported by the UPS */
static int voltronic_mode(item_t *item, char *value, size_t valuelen)
{
char *status = NULL, *alarm = NULL;
switch (item->value[0])
{
case 'P':
alarm = "UPS is going ON";
break;
case 'S':
status = "OFF";
break;
case 'Y':
status = "BYPASS";
break;
case 'L':
status = "OL";
break;
case 'B':
status = "!OL";
break;
case 'T':
status = "CAL";
break;
case 'F':
alarm = "Fault reported by UPS.";
break;
case 'E':
alarm = "UPS is in ECO Mode.";
break;
case 'C':
alarm = "UPS is in Converter Mode.";
break;
case 'D':
alarm = "UPS is shutting down!";
status = "FSD";
break;
default:
upsdebugx(2, "%s: invalid reply from the UPS [%s]", __func__, item->value);
return -1;
}
if (alarm && !strcasecmp(item->info_type, "ups.alarm")) {
snprintf(value, valuelen, item->dfl, alarm);
} else if (status && !strcasecmp(item->info_type, "ups.status")) {
snprintf(value, valuelen, item->dfl, status);
}
return 0;
}
/* Process status bits */
static int voltronic_status(item_t *item, char *value, size_t valuelen)
{
char *val = "";
if (strspn(item->value, "01") != strlen(item->value)) {
upsdebugx(3, "%s: unexpected value %s@%d->%s", __func__, item->value, item->from, item->value);
return -1;
}
switch (item->from)
{
case 63: /* UPS Type - ups.type */
{
int type = strtol(item->value, NULL, 10);
if (!type) /* 00 -> Offline */
val = "offline";
else if (type == 1) /* 01 -> Line-interactive */
val = "line-interactive";
else if (type == 10) /* 10 -> Online */
val = "online";
else {
upsdebugx(2, "%s: invalid type [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
}
break;
case 65: /* Utility Fail (Immediate) - ups.status */
if (item->value[0] == '1')
val = "!OL";
else
val = "OL";
break;
case 66: /* Battery Low - ups.status */
if (item->value[0] == '1')
val = "LB";
else
val = "!LB";
break;
case 67: /* Bypass/Boost or Buck Active - ups.{status,alarm} */
if (item->value[0] == '1') {
double vi, vo;
vi = strtod(dstate_getinfo("input.voltage"), NULL);
vo = strtod(dstate_getinfo("output.voltage"), NULL);
if (vo < 0.5 * vi) {
upsdebugx(2, "%s: output voltage too low", __func__);
return -1;
}
if (vo < 0.95 * vi) {
val = "TRIM";
} else if (vo < 1.05 * vi) {
int prot = strtol(dstate_getinfo("ups.firmware.aux")+1, NULL, 10);
if (!prot || prot == 8) { /* ups.alarm */
if (!strcasecmp(item->info_type, "ups.alarm"))
val = "UPS is in AVR Mode.";
} else { /* ups.status */
if (!strcasecmp(item->info_type, "ups.status"))
val = "BYPASS";
}
} else if (vo < 1.5 * vi) {
val = "BOOST";
} else {
upsdebugx(2, "%s: output voltage too high", __func__);
return -1;
}
}
break;
case 68: /* UPS Fault - ups.alarm */
if (item->value[0] == 1) {
item_t *faultitem;
for (faultitem = voltronic_qx2nut; faultitem->info_type != NULL; faultitem++) {
if (!faultitem->command)
continue;
if (!strcasecmp(faultitem->command, "QFS\r")) {
faultitem->qxflags &= ~QX_FLAG_SKIP;
break;
}
}
val = "UPS Fault!";
}
break;
/* case 69: *//* unknown */
/* break;*/
case 70: /* Test in Progress - ups.status */
if (item->value[0] == '1')
val = "CAL";
else
val = "!CAL";
break;
case 71: /* Shutdown Active - ups.status */
if (item->value[0] == '1')
val = "FSD";
else
val = "!FSD";
break;
case 72: /* Beeper status - ups.beeper.status */
/* The UPS has the ability to enable/disable the alarm (from UPS capability) */
if (alarm_control) {
const char *beeper = dstate_getinfo("ups.beeper.status");
if (!beeper || strcasecmp(beeper, "disabled")) {
if (item->value[0] == '0') /* Beeper On */
val = "enabled";
else
val = "muted";
}
/* The UPS lacks the ability to enable/disable the alarm (from UPS capability) */
} else {
if (item->value[0] == '0') /* Beeper On */
val = "enabled";
else
val = "disabled";
}
break;
/* case 73: *//* unknown */
/* break;*/
/* case 74: *//* unknown */
/* break;*/
default:
/* Don't know what happened */
return -1;
}
snprintf(value, valuelen, "%s", val);
return 0;
}
/* Output power factor */
static int voltronic_output_powerfactor(item_t *item, char *value, size_t valuelen)
{
double opf;
if (strspn(item->value, "0123456789 .") != strlen(item->value)) {
upsdebugx(2, "%s: non numerical value [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
/* UPS report a value expressed in % so -> output.powerfactor*100 e.g. opf = 0,8 -> ups = 80 */
opf = strtod(item->value, NULL) * 0.01;
snprintf(value, valuelen, item->dfl, opf);
return 0;
}
/* UPS serial number */
static int voltronic_serial_numb(item_t *item, char *value, size_t valuelen)
{
/* If the UPS report a 00..0 serial we'll log it but we won't store it in device.serial */
if (strspn(item->value, "0") == strlen(item->value)) {
upslogx(LOG_INFO, "%s: UPS reported a non-significant serial [%s]", item->info_type, item->value);
return -1;
}
snprintf(value, valuelen, item->dfl, item->value);
return 0;
}
/* Outlet status */
static int voltronic_outlet(item_t *item, char *value, size_t valuelen)
{
const char *status, *switchable;
char number = item->info_type[7],
buf[SMALLBUF];
item_t *outlet_item;
switch (item->value[0])
{
case '1':
switchable = "yes";
status = "on";
break;
case '0':
switchable = "yes";
status = "off";
break;
default:
upsdebugx(2, "%s: invalid reply from the UPS [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
if (strstr(item->info_type, "switchable")) {
snprintf(value, valuelen, item->dfl, switchable);
} else if (strstr(item->info_type, "status")) {
snprintf(value, valuelen, item->dfl, status);
} else {
/* Don't know what happened */
return -1;
}
/* Unskip outlet.n.delay.shutdown */
snprintf(buf, sizeof(buf), "outlet.%c.delay.shutdown", number);
outlet_item = find_nut_info(buf, QX_FLAG_SEMI_STATIC, 0);
/* Don't know what happened*/
if (!outlet_item)
return -1;
outlet_item->qxflags &= ~QX_FLAG_SKIP;
/* Unskip outlet.n.load.on */
snprintf(buf, sizeof(buf), "outlet.%c.load.on", number);
outlet_item = find_nut_info(buf, QX_FLAG_CMD, 0);
/* Don't know what happened*/
if (!outlet_item)
return -1;
outlet_item->qxflags &= ~QX_FLAG_SKIP;
/* Unskip outlet.n.load.off */
snprintf(buf, sizeof(buf), "outlet.%c.load.off", number);
outlet_item = find_nut_info(buf, QX_FLAG_CMD, 0);
/* Don't know what happened*/
if (!outlet_item)
return -1;
outlet_item->qxflags &= ~QX_FLAG_SKIP;
return 0;
}
/* Outlet delay time */
static int voltronic_outlet_delay(item_t *item, char *value, size_t valuelen)
{
char number = item->info_type[7],
buf[SMALLBUF];
double val;
item_t *setvar_item;
if (strspn(item->value, "0123456789 .") != strlen(item->value)) {
upsdebugx(2, "%s: non numerical value [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
/* UPS reports minutes, NUT expects seconds */
val = strtod(item->value, NULL) * 60;
snprintf(value, valuelen, item->dfl, val);
/* Unskip outlet.n.delay.shutdown setvar */
snprintf(buf, sizeof(buf), "outlet.%c.delay.shutdown", number);
setvar_item = find_nut_info(buf, QX_FLAG_SETVAR, 0);
/* Don't know what happened*/
if (!setvar_item)
return -1;
setvar_item->qxflags &= ~QX_FLAG_SKIP;
return 0;
}
/* *SETVAR* Outlet delay time */
static int voltronic_outlet_delay_set(item_t *item, char *value, size_t valuelen)
{
int delay = strtol(value, NULL, 10);
/* From seconds to minute */
delay = delay / 60;
snprintf(value, valuelen, item->command, delay);
return 0;
}
/* Type of battery */
static int voltronic_p31b(item_t *item, char *value, size_t valuelen)
{
int val;
if ((item->value[0] != '0') || (strspn(item->value+1, "012") != 1)) {
upsdebugx(2, "%s: invalid battery type reported by the UPS [%s]", __func__, item->value);
return -1;
}
val = strtol(item->value, NULL, 10);
snprintf(value, valuelen, item->dfl, item->info_rw[val].value);
return 0;
}
/* *SETVAR* Type of battery */
static int voltronic_p31b_set(item_t *item, char *value, size_t valuelen)
{
int i;
for (i = 0; strlen(item->info_rw[i].value) > 0; i++) {
if (!strcasecmp(item->info_rw[i].value, value))
break;
}
/* At this point value should already be checked against enum so this shouldn't happen.. however.. */
if (i >= (int)(sizeof(item->info_rw) / sizeof(item->info_rw[0]))) {
upslogx(LOG_ERR, "%s: value [%s] out of range", item->info_type, value);
return -1;
}
snprintf(value, valuelen, "%d", i);
return voltronic_process_setvar(item, value, valuelen);
}
/* *NONUT* Actual device grid working range type for P31 UPSes */
static int voltronic_p31g(item_t *item, char *value, size_t valuelen)
{
int val;
if ((item->value[0] != '0') || (strspn(item->value+1, "01") != 1)) {
upsdebugx(2, "%s: invalid device grid working range reported by the UPS [%s]", __func__, item->value);
return -1;
}
val = strtol(item->value, NULL, 10);
snprintf(value, valuelen, item->dfl, item->info_rw[val].value);
work_range_type = val;
return 0;
}
/* *SETVAR/NONUT* Device grid working range type for P31 UPSes */
static int voltronic_p31g_set(item_t *item, char *value, size_t valuelen)
{
int i;
for (i = 0; strlen(item->info_rw[i].value) > 0; i++) {
if (!strcasecmp(item->info_rw[i].value, value))
break;
}
/* At this point value should have been already checked against enum so this shouldn't happen.. however.. */
if (i >= (int)(sizeof(item->info_rw) / sizeof(item->info_rw[0]))) {
upslogx(LOG_ERR, "%s: value [%s] out of range", item->info_type, value);
return -1;
}
if (i == work_range_type) {
upslogx(LOG_INFO, "%s is already set to %s", item->info_type, item->info_rw[i].value);
return -1;
}
snprintf(value, valuelen, "%d", i);
return voltronic_process_setvar(item, value, valuelen);
}
/* *NONUT* UPS actual input/output phase angles */
static int voltronic_phase(item_t *item, char *value, size_t valuelen)
{
int angle;
if (strspn(item->value, "0123456789 .") != strlen(item->value)) {
upsdebugx(2, "%s: non numerical value [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
angle = strtol(item->value, NULL, 10);
if (!strcasecmp(item->info_type, "output_phase_angle")) {
output_phase_angle = angle;
/* User-provided value to change.. */
if (getval(item->info_type)) {
item_t *unskip;
/* Unskip output_phase_angle setvar */
unskip = find_nut_info(item->info_type, QX_FLAG_SETVAR, 0);
/* Don't know what happened */
if (!unskip)
return -1;
unskip->qxflags &= ~QX_FLAG_SKIP;
}
}
snprintf(value, valuelen, item->dfl, angle);
return 0;
}
/* *SETVAR/NONUT* Output phase angle */
static int voltronic_phase_set(item_t *item, char *value, size_t valuelen)
{
int i;
for (i = 0; strlen(item->info_rw[i].value) > 0; i++) {
if (!strcasecmp(item->info_rw[i].value, value))
break;
}
/* At this point value should have been already checked against enum so this shouldn't happen.. however.. */
if (i >= (int)(sizeof(item->info_rw) / sizeof(item->info_rw[0]))) {
upslogx(LOG_ERR, "%s: value [%s] out of range", item->info_type, value);
return -1;
}
if (strtol(item->info_rw[i].value, NULL, 10) == output_phase_angle) {
upslogx(LOG_INFO, "%s is already set to %s", item->info_type, item->info_rw[i].value);
return -1;
}
snprintf(value, valuelen, "%d", i);
return voltronic_process_setvar(item, value, valuelen);
}
/* *NONUT* UPS is master/slave in a system of UPSes in parallel */
static int voltronic_parallel(item_t *item, char *value, size_t valuelen)
{
char *type;
if (strlen(item->value) != strspn(item->value, "0123456789")) {
upsdebugx(2, "%s: non numerical value [%s: %s]", __func__, item->info_type, item->value);
return -1;
}
/* 001 for master UPS, 002 and 003 for slave UPSes */
switch (strtol(item->value, NULL, 10))
{
case 1:
type = "master";
break;
case 2:
case 3:
type = "slave";
break;
default:
upsdebugx(2, "%s: invalid reply from the UPS [%s]", __func__, item->value);
return -1;
}
snprintf(value, valuelen, "This UPS is *%s* in a system of UPSes in parallel", type);
return 0;
}
/* == Subdriver interface == */
subdriver_t voltronic_subdriver = {
VOLTRONIC_VERSION,
voltronic_claim,
voltronic_qx2nut,
NULL,
NULL,
voltronic_makevartable,
"ACK",
"(NAK\r",
#ifdef TESTING
voltronic_testing,
#endif /* TESTING */
};