/*
 * powercom.c - model specific routines for following units:
 *  -Trust 425/625
 *  -Powercom
 *  -Advice Partner/King PR750
 *    See http://www.advice.co.il/product/inter/ups.html for its specifications.
 *    This model is based on PowerCom (www.powercom.com) models.
 *  -Socomec Sicon Egys 420
 *  -OptiUPS VS 575C
 *
 * Copyrights:
 * (C) 2015 Arnaud Quette <ArnaudQuette@Eaton.com>
 * (C) 2013 Florian Bruhin <nut@the-compiler.org>
 * (C) 2002 Simon Rozman <simon@rozman.net>
 * (C) 1999  Peter Bieringer <pb@bieringer.de>
 *                              
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *                            
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *    
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 * 
 * rev 0.7: Alexey Sidorov <alexsid@altlinux.org>
 * - add Powercom's Black Knight Pro model support ( BNT-400/500/600/800/801/1000/1200/1500/2000AP 220-240V )
 *
 * rev 0.8: Alexey Sidorov <alexsid@altlinux.org>
 * - add Powercom's King Pro model support ( KIN-425/525/625/800/1000/1200/1500/1600/2200/3000/5000AP[-RM] 100-120,200-240 V)
 *
 * rev 0.9: Alexey Sidorov <alexsid@altlinux.org>
 * - add Powercom's Imperial model support ( IMP-xxxAP, IMD-xxxAP )
 *
 * rev 0.10: Alexey Sidorov <alexsid@altlinux.org>
 * - fix wrong detection KIN-2200AP
 * - use ser_set_dtr/ser_set_rts
 *
 * rev 0.11: Alexey Sidorov <alexsid@altlinux.org>
 * - move variables from .h to .c file (thanks Michael Tokarev for bugreport)
 * - fix string comparison (thanks Michael Tokarev for bugreport & Charles Lepple for patch)
 * - added BNT-other, for BNT 100-120V models (I havn't specs for it)
 *
 * Tested on: BNT-1200AP
 *
 * Known bugs:
 * - strange battery level on BNT1200AP in online mode( & may be on other models)
 * - i don't know how connect to IMP|IMD USB
 * - i havn't specs for BNT 100-120V models. Add BNT-other type for it
 *
 * rev 0.13: Keven Ates <atescomp@gmail.com>
 * - Modified functions to work for BNT-other 100-120V models.
 * - Modified BNT-other type defaults to work for the BNT 1500A 120VA model.
 * - Documented the type[] values purpose in a condensed format.
 * - BNT-other can be used to perform a complete user override of values for all PowerCom models, detected or not.
 *
 * Tested on: BNT-1500A
 *
 * rev 0.14: Florian Bruhin (The Compiler) <nut@the-compiler.org>
 * - Added support for OptiUPS VS 575C
 *   This probably also works with others, but I don't have their model numbers.
 *
 * rev 0.15: VSE NN <metanoite@rambler.ru>
 * - Fixed UPS type assignment for Powercom Imperial USB series manufactured since 2009.
 *
 * Tested on: IMP-625AP
 *
 * rev 0.16: Arnaud Quette
 * - Fixed the processing of input/output voltages for KIN models
 *   (https://github.com/networkupstools/nut/issues/187)
 *
 */ 

#include "main.h"
#include "serial.h"
#include "powercom.h"
#include "math.h"

#define DRIVER_NAME		"PowerCom protocol UPS driver"
#define DRIVER_VERSION	"0.17"

/* driver description structure */
upsdrv_info_t	upsdrv_info = {
	DRIVER_NAME,
	DRIVER_VERSION,
	"Simon Rozman <simon@rozman.net>\n" \
	"Peter Bieringer <pb@bieringer.de>\n" \
	"Alexey Sidorov <alexsid@altlinux.org>\n" \
	"Florian Bruhin <nut@the-compiler.org>\n" \
	"Arnaud Quette <ArnaudQuette@Eaton.com>",
	DRV_STABLE,
	{ NULL }
};

#define NUM_OF_SUBTYPES              (sizeof (types) / sizeof (*types))

/* general constants */
enum general {
	MAX_NUM_OF_BYTES_FROM_UPS = 16
};

/* variables used by module */
static unsigned char raw_data[MAX_NUM_OF_BYTES_FROM_UPS]; /* raw data reveived from UPS */
static unsigned int linevoltage = 230U; /* line voltage, can be defined via command line option */
static const char *manufacturer = "PowerCom";
static const char *modelname    = "Unknown";
static const char *serialnumber = "Unknown";
static unsigned int type = 0;


/* forward declaration of functions used to setup flow control */
static void dtr0rts1 (void);
static void no_flow_control (void);

/* struct defining types
 * ---------------------
 * See powercom.h for detailed information and functions.
 *
 * The following type defaults use this definition:
 *
 *	"TypeID",
 *	ByteCount,
 *	{ "FlowControlString", FlowControlFuncPtr },
 *	{ { ValidationIndex, ValidationValue },
 *	  { ValidationIndex, ValidationValue },
 *	  { ValidationIndex, ValidationValue } },
 *	{ { DelayShutdownMinutes, DelayShutdownSeconds },
 *	  UseMinutesChar'y''n' },
 *	{ FrequencyFactor, FrequencyConstant },
 *	{ OfflineLoadFactor, OfflineLoadConstant,
 *	  OnlineLoadFactor, OnlineLoadConstant },
 *	{ OfflineBatteryFactor, OfflineLoad%Factor, OfflineBatteryConstant,
 *	  OnlineBatteryFactor, OnlineBatteryConstant },
 *	{ 240VoltageFactor, 240VoltageConstant,
 *	  120VoltageFactor, 120VoltageConstant },
 */
static struct type types[] = {
        {
                "Trust",
                11,
				{  "dtr0rts1", dtr0rts1 },
                { { 5U, 0U }, { 7U, 0U }, { 8U, 0U } },
                { { 0U, 10U }, 'n' },
                {  0.00020997, 0.00020928 },
                {  6.1343, -0.3808,  4.3110,  0.1811 },
                {  5.0000,  0.3268,  -825.00,  4.5639, -835.82 },
                {  1.9216, -0.0977,  0.9545,  0.0000 },
        },
        {
                "Egys",
                16,
				{  "no_flow_control", no_flow_control },
                { { 5U, 0x80U }, { 7U, 0U }, { 8U, 0U } },
                { { 0U, 10U }, 'n' },
                {  0.00020997, 0.00020928 },
                {  6.1343, -0.3808,  1.3333,  0.6667 },
                {  5.0000,  0.3268,  -825.00,  2.2105, -355.37 },
                {  1.9216, -0.0977,  0.9545,  0.0000 },
        },
        {
                "KP625AP",
                16,
				{  "dtr0rts1", dtr0rts1 },
                { { 5U, 0x80U }, { 7U, 0U }, { 8U, 0U } },
                { { 0U, 10U }, 'n' },
                {  0.00020997, 0.00020928 },
                {  6.1343, -0.3808,  4.3110,  0.1811 },
                {  5.0000,  0.3268,  -825.00,  4.5639, -835.82 },
                {  1.9216, -0.0977,  0.9545,  0.0000 },
        },
        {
                "IMP",
                16,
				{  "no_flow_control", no_flow_control },
                { { 5U, 0xFFU }, { 7U, 0U }, { 8U, 0U } },
                { { 1U, 30U }, 'y' },
                {  0.00020997, 0.00020928 },
                {  6.1343, -0.3808,  4.3110,  0.1811 },
                {  5.0000,  0.3268,  -825.00,  4.5639, -835.82 },
                {  1.9216, -0.0977,  0.9545,  0.0000 },
        },
        {
                "KIN",
                16,
				{  "no_flow_control", no_flow_control },
                { { 11U, 0x4bU }, { 8U, 0U }, { 8U, 0U } },
                { { 1U, 30U }, 'y' },
                {  0.00020997, 0.0 },
                {  6.1343, -0.3808,  1.075,  0.1811 },
                {  5.0000,  0.3268,  -825.00,  0.46511, 0 },
                {  1.9216, -0.0977,  0.82857,  0.0000 },
        },
        {
                "BNT",
                16,
				{  "no_flow_control", no_flow_control },
                { { 11U, 0x42U }, { 8U, 0U }, { 8U, 0U } },
                { { 1U, 30U }, 'y' },
                {  0.00020803, 0.0 },
                {  1.4474,     0.0,   0.8594,  0.0 },
                {  5.0000,  0.3268,  -825.00,  0.46511, 0 },
                {  1.9216, -0.0977,  0.82857,  0.0000 },
        },
        {
                "BNT-other",
                16,
				{  "no_flow_control", no_flow_control },
                { { 8U, 0U }, { 8U, 0U }, { 8U, 0U } },
                { { 1U, 30U }, 'y' },
                {  0.00027778, 0.0000 },
                {  1.0000,  0.0000,  1.0000,  0.0000 },
                {  1.0000,  0.0000,  0.0000,  1.0000,  0.0000 },
                {  2.0000,  0.0000,  2.0000,  0.0000 },
        },
        {
                "OPTI",
                16,
                {  "no_flow_control", no_flow_control },
                { { 5U, 0xFFU }, { 7U, 0U }, { 8U, 0U } },
                { { 1U, 30U }, 'y' },
                {  0.0000, 0.0000 },
                {  1.0000,  0.0000,  1.0000,  0.0000 },
                {  1.0000,  0.0000,  0.0000,  1.0000,  0.0000 },
                {  2.0000,  0.0000,  2.0000,  0.0000 },
        },
};

/* values for sending to UPS */
enum commands {
	SEND_DATA    = '\x01',
	BATTERY_TEST = '\x03',
	WAKEUP_TIME  = '\x04',
	RESTART	     = '\xb9',
	SHUTDOWN     = '\xba',
	COUNTER      = '\xbc'
};

/* location of data in received string */
enum data {
	UPS_LOAD         = 0U,
	BATTERY_CHARGE   = 1U,
	INPUT_VOLTAGE    = 2U,
	OUTPUT_VOLTAGE   = 3U,
	INPUT_FREQUENCY  = 4U,
	UPSVERSION       = 5U,
	OUTPUT_FREQUENCY = 6U,
	STATUS_A         = 9U,
	STATUS_B         = 10U,
	MODELNAME        = 11U,
	MODELNUMBER      = 12U
};

/* status bits */
enum status {
	SUMMARY       = 0U,
	MAINS_FAILURE = 1U,
	ONLINE        = 1U,
	FAULT         = 1U,
	LOW_BAT       = 2U,
	BAD_BAT       = 2U,
	TEST          = 4U,
	AVR_ON        = 8U,
	AVR_MODE      = 16U,
	SD_COUNTER    = 16U,
	OVERLOAD      = 32U,
	SHED_COUNTER  = 32U,
	DIS_NOLOAD    = 64U,
	SD_DISPLAY    = 128U,
	OFF           = 128U
};

unsigned int voltages[]={100,110,115,120,0,0,0,200,220,230,240,0,0,0,0,0};
unsigned int BNTmodels[]={0,400,500,600,800,801,1000,1200,1500,2000,0,0,0,0,0,0};
unsigned int KINmodels[]={0,425,500,525,625,800,1000,1200,1500,1600,2200,2200,2500,3000,5000,0};
unsigned int IMPmodels[]={0,425,525,625,825,1025,1200,1500,2000,0,0,0,0,0,0,0};
unsigned int OPTImodels[]={0,0,0,575,0,0,0,0,0,0,0,0,0,0,0,0};

/*
 * local used functions
 */

static void shutdown_halt(void)
{
	ser_send_char (upsfd, SHUTDOWN);
	if (types[type].shutdown_arguments.minutesShouldBeUsed != 'n') 
		ser_send_char (upsfd, types[type].shutdown_arguments.delay[0]);
	ser_send_char (upsfd, types[type].shutdown_arguments.delay[1]);
	upslogx(LOG_INFO, "Shutdown (stayoff) initiated.");
	exit (0);
}

static void shutdown_ret(void)
{
	ser_send_char (upsfd, RESTART);
	ser_send_char (upsfd, COUNTER);
	if (types[type].shutdown_arguments.minutesShouldBeUsed != 'n') 
		ser_send_char (upsfd, types[type].shutdown_arguments.delay[0]);
	ser_send_char (upsfd, types[type].shutdown_arguments.delay[1]);
	upslogx(LOG_INFO, "Shutdown (return) initiated.");
			
	exit (0);
}

/* registered instant commands */
static int instcmd (const char *cmdname, const char *extra)
{
	if (!strcasecmp(cmdname, "test.battery.start")) { 
	    ser_send_char (upsfd, BATTERY_TEST);
	    return STAT_INSTCMD_HANDLED;
    }
	if (!strcasecmp(cmdname, "shutdown.return")) { 
		shutdown_ret();
		return STAT_INSTCMD_HANDLED;
	}
	if (!strcasecmp(cmdname, "shutdown.stayoff")) {
		shutdown_halt(); 
		return STAT_INSTCMD_HANDLED;
	}

    upslogx(LOG_NOTICE, "instcmd: unknown command [%s]", cmdname);
    return STAT_INSTCMD_UNKNOWN;
}

/* set DTR and RTS lines on a serial port to supply a passive
 * serial interface: DTR to 0 (-V), RTS to 1 (+V)
 */
static void dtr0rts1 (void)
{
	ser_set_dtr(upsfd, 0); 
	ser_set_rts(upsfd, 1); 
	upsdebugx(2, "DTR => 0, RTS => 1");
}

/* clear any flow control */
static void no_flow_control (void)
{
	struct termios tio;
	
	tcgetattr (upsfd, &tio);
	
	tio.c_iflag &= ~ (IXON | IXOFF);
	tio.c_cc[VSTART] = _POSIX_VDISABLE;
	tio.c_cc[VSTOP] = _POSIX_VDISABLE;
				
	upsdebugx(2, "Flow control disable");

	/* disable any flow control */
	tcsetattr(upsfd, TCSANOW, &tio);
}

/* sane check for returned buffer */
static int validate_raw_data (void)
{
	int i = 0, 
    num_of_tests = 
		sizeof types[0].validation / sizeof types[0].validation[0];
	
	for (i = 0;
		 i < num_of_tests  && 
		   raw_data[
		        types[type].validation[i].index_of_byte] ==
          		       types[type].validation[i].required_value;
		 i++)  ;
	return (i < num_of_tests) ? 1 : 0;
}

/* get info from ups */
static int ups_getinfo(void)
{
	int	i, c;
	
	/* send trigger char to UPS */
	if (ser_send_char (upsfd, SEND_DATA) != 1) {
		upslogx(LOG_NOTICE, "writing error");
		dstate_datastale();
		return 0;
	} else {
		upsdebugx(5, "Num of bytes requested for reading from UPS: %d", types[type].num_of_bytes_from_ups);

		c = ser_get_buf_len(upsfd, raw_data,
			types[type].num_of_bytes_from_ups, 3, 0);
	
		if (c != types[type].num_of_bytes_from_ups) {
			upslogx(LOG_NOTICE, "data receiving error (%d instead of %d bytes)", c, types[type].num_of_bytes_from_ups);
			dstate_datastale();
			return 0;
		} else
			upsdebugx(5, "Num of bytes received from UPS: %d", c);

	};

	/* optional dump of raw data */
	if (nut_debug_level > 4) {
		/* FIXME: use upsdebug_hex() ? */
		printf("Raw data from UPS:\n");
		for (i = 0; i < types[type].num_of_bytes_from_ups; i++) {
	 		printf("%2d 0x%02x (%c)\n", i, raw_data[i], raw_data[i]>=0x20 ? raw_data[i] : ' ');
		};
	};

	/* validate raw data for correctness */
	if (validate_raw_data() != 0) {
		upslogx(LOG_NOTICE, "data receiving error (validation check)");
		dstate_datastale();
		return 0;
	};
	return 1;
}

static float input_voltage(void)
{
	unsigned int model;
	float tmp=0.0;
			
	if ( !strcmp(types[type].name, "BNT") && raw_data[MODELNUMBER]%16 > 7 ) {
		tmp=2.2*raw_data[INPUT_VOLTAGE]-24;
	} else if ( !strcmp(types[type].name, "KIN")) {
		model=KINmodels[raw_data[MODELNUMBER]/16];
		/* Process input voltage, according to line voltage and model rating */
		if (linevoltage < 200) {
			if (model <= 625) {
				tmp = 0.89 * raw_data[INPUT_VOLTAGE] + 6.18;
			} else if ((model >= 800) && (model < 2000)) {
				tmp = 1.61 * raw_data[INPUT_VOLTAGE] / 2.0;
			} else {
				tmp = 1.625 * raw_data[INPUT_VOLTAGE] / 2.0;
			}
		}
		if (linevoltage >= 200) {
			if (model <= 625) {
				tmp = 1.79 * raw_data[INPUT_VOLTAGE] + 3.35;
			} else if ((model >= 800) && (model < 2000)) {
				tmp = 1.61 * raw_data[INPUT_VOLTAGE];
			} else {
				tmp = 1.625 * raw_data[INPUT_VOLTAGE];
			}
		}
	} else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI")) {
		tmp=raw_data[INPUT_VOLTAGE]*2.0;
	} else {
	    tmp=linevoltage >= 220 ?
			types[type].voltage[0] * raw_data[INPUT_VOLTAGE] + types[type].voltage[1] :
			types[type].voltage[2] * raw_data[INPUT_VOLTAGE] + types[type].voltage[3];
	}
	if (tmp<0) tmp=0.0;
	return tmp;
}

static float output_voltage(void)
{
	float tmp,rdatax,rdatay,rdataz,boostdata;
	unsigned int statINV = 0,statAVR = 0,statAVRMode = 0,model,t;
	static float datax1[]={0,1.0,1.0,1.0,1.0,0.945,0.945,0.945,0.127,0.127,0.945,0.945,0.945,0.256};
	static float datay1[]={0,0.85,0.85,0.85,0.88,0.9,0.9,0.9,6.6,6.6,0.87,0.87,0.87,3.29};
	static float dataz1[]={0,1.03,0.78,0.78,0.72,0.55,0.55,0.55,0.5,0.5,0.43,0.43,0.43,0.3};
	static float datax2[]={0,1.0,1.0,1.0,1.0,1.89,1.89,1.89,0.127,0.127,1.89,1.89,1.89,0.256};
	static float datay2[]={0,1.73,1.74,1.74,1.77,0.9,0.9,0.9,13.204,13.204,0.88,0.88,0.88,6.645};
	static float dataz2[]={0,1.15,0.9,0.9,0.75,1.1,1.1,1.1,0.8,0.8,0.86,0.86,0.86,0.7};

	if ( !strcmp(types[type].name, "BNT") || !strcmp(types[type].name, "KIN")) {
		statINV=raw_data[STATUS_A] & ONLINE;
		statAVR=raw_data[STATUS_A] & AVR_ON;
		statAVRMode=raw_data[STATUS_A] & AVR_MODE;
	}
	if ( !strcmp(types[type].name, "BNT") && raw_data[MODELNUMBER]%16 > 7 ) {
		if (statINV==0) {
			if (statAVR==0){
				tmp=2.2*raw_data[OUTPUT_VOLTAGE]-24;
			} else {
				if (statAVRMode > 0)
					tmp=(2.2*raw_data[OUTPUT_VOLTAGE]-24)*31/27;
				else
					tmp=(2.22*raw_data[OUTPUT_VOLTAGE]-24)*27/31;
			}
		} else {
			t=raw_data[OUTPUT_FREQUENCY]/2;
			tmp=(1.965*raw_data[15])*(1.965*raw_data[15])*(t-raw_data[OUTPUT_VOLTAGE])/t;
			if (tmp>0)
				tmp=sqrt(tmp);
			else
				tmp=0.0;
		}
	} else if ( !strcmp(types[type].name, "KIN")) {
		model=KINmodels[raw_data[MODELNUMBER]/16];
		if (statINV == 0) {
			if (statAVR == 0) {
				// FIXME: miss test "if (iUPS == 1) {"
				if (linevoltage >= 200) {
					if (linevoltage <= 625)
						tmp = 1.79*raw_data[OUTPUT_VOLTAGE] + 3.35;
					else if (model<2000)
						tmp = 1.61*raw_data[OUTPUT_VOLTAGE];
					else
						tmp = 1.625*raw_data[OUTPUT_VOLTAGE];
				} else {
					if (linevoltage <= 625)
						tmp = 0.89 * raw_data[OUTPUT_VOLTAGE] + 6.18;
					else if (model<2000)
						tmp = 1.61 * raw_data[OUTPUT_VOLTAGE] / 2.0;
					else
						tmp = 1.625 * raw_data[OUTPUT_VOLTAGE] / 2.0;
				}
			}
			else if (statAVR == 1) {
				// FIXME: miss test "if ((iUPS == 1) || (iUPS == 13)) {"
				if (linevoltage >= 200) {
					if (model <= 525)
						tmp = 2.07 * raw_data[OUTPUT_VOLTAGE];
					else if (model == 625)
						tmp = 2.07 * raw_data[OUTPUT_VOLTAGE]+5;
					else if (model < 2000)
						tmp = 1.87 * raw_data[OUTPUT_VOLTAGE];
					else
						tmp = 1.87 * raw_data[OUTPUT_VOLTAGE];
				} else {
					if (model <= 625)
						tmp = 2.158 * raw_data[OUTPUT_VOLTAGE] / 2.0;
					else if (model < 2000)
						tmp = 1.842 * raw_data[OUTPUT_VOLTAGE] / 2.0;
					else
						tmp = 1.875 * raw_data[OUTPUT_VOLTAGE] / 2.0;
				}
			} else {
				// FIXME: miss test "if ((iUPS == 1) || (iUPS == 13)) {"
				if (linevoltage >= 200) {
					if (model == 625)
						tmp = 1.571 * raw_data[OUTPUT_VOLTAGE];
					else if (model < 2000)
						tmp = 1.37 * raw_data[OUTPUT_VOLTAGE];
					else
						tmp = 1.4 * raw_data[OUTPUT_VOLTAGE];
				} else {
					if (model <= 625)
						tmp = 1.635 * raw_data[OUTPUT_VOLTAGE] / 2.0;
					else if (model < 2000)
						tmp = 1.392 * raw_data[OUTPUT_VOLTAGE] / 2.0;
					else
						tmp = 1.392 * raw_data[OUTPUT_VOLTAGE] / 2.0;
				}
			}
		} else {
			// FIXME: miss test "if ((iUPS == 1) && (T != 0))"
			if (linevoltage < 200) {
				rdatax = datax1[raw_data[MODELNUMBER]/16];
				rdatay = datay1[raw_data[MODELNUMBER]/16];
				rdataz = dataz1[raw_data[MODELNUMBER]/16];
			} else {
				rdatax = datax2[raw_data[MODELNUMBER]/16];
				rdatay = datay2[raw_data[MODELNUMBER]/16];
				rdataz = dataz2[raw_data[MODELNUMBER]/16+1];
			}

			boostdata = 1.0 + statAVR * 20.0 / 135.0;
			t = raw_data[OUTPUT_FREQUENCY]/2;
			tmp = 0;
			if (model > 625){
				tmp=(raw_data[BATTERY_CHARGE]*rdatax)*(raw_data[BATTERY_CHARGE]*rdatax)*
					(t-raw_data[OUTPUT_VOLTAGE])/t;
				if (tmp>0)
					tmp=sqrt(tmp)*rdatay*boostdata-raw_data[UPS_LOAD]*rdataz*boostdata;
			} else {
				tmp=(raw_data[BATTERY_CHARGE]*rdatax-raw_data[UPS_LOAD]*rdataz)*
					(raw_data[BATTERY_CHARGE]*rdatax-raw_data[UPS_LOAD]*rdataz)*
					(t-raw_data[OUTPUT_VOLTAGE])/t;
				if (tmp>0)
					tmp=sqrt(tmp)*rdatay;
			}
			// FIXME: may miss a last processing with ErrorVal = 5 | 10
		}
	} else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI")) {
		tmp=raw_data[OUTPUT_VOLTAGE]*2.0;
	} else {
		tmp= linevoltage >= 220 ?
			types[type].voltage[0] * raw_data[OUTPUT_VOLTAGE] +
			                                types[type].voltage[1] :
			types[type].voltage[2] * raw_data[OUTPUT_VOLTAGE] +
			                                types[type].voltage[3];
	}
	if (tmp<0) tmp=0.0;
	return tmp;
}

static float input_freq(void)
{
	if ( !strcmp(types[type].name, "BNT") || !strcmp(types[type].name, "KIN"))
		return 4807.0/raw_data[INPUT_FREQUENCY];
	else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI"))
		return raw_data[INPUT_FREQUENCY];
	return raw_data[INPUT_FREQUENCY] ? 
		1.0 / (types[type].freq[0] *
                raw_data[INPUT_FREQUENCY] +
                        types[type].freq[1]) : 0;
}

static float output_freq(void)
{
	if ( !strcmp(types[type].name, "BNT") || !strcmp(types[type].name, "KIN"))
		return 4807.0/raw_data[OUTPUT_FREQUENCY];
	else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI"))
		return raw_data[OUTPUT_FREQUENCY];
	return raw_data[OUTPUT_FREQUENCY] ? 
		1.0 / (types[type].freq[0] *
                raw_data[OUTPUT_FREQUENCY] +
                        types[type].freq[1]) : 0;
}

static float load_level(void)
{
	unsigned int statINV,model,voltage;
	int load425[]={99,88,84,80,84,84,84,86,86,81,76};
	int load525[]={127,113,106,100,106,106,106,109,109,103,97};
	int load625[]={131,115,107,103,107,107,107,110,110,105,99};
	int load2k[] ={94,94,94,94,94,94,94,120,120,115,110};
	int load425i[]={60,54,51,48,51,51,51,53,53,50,48};
	int load525i[]={81,72,67,62,67,67,67,65,65,62,59};
	int load625i[]={79,70,67,64,67,67,67,65,65,61,58};
	int load2ki[] ={84,77,74,70,74,74,74,77,77,74,70};
	int load400[]={1,1,1,1,1,1,1,1,88,83,87};
	int load500[]={1,1,1,1,1,1,1,1,108,103,98};
	int load600[]={1,1,1,1,1,1,1,1,128,123,118};
	int load400i[]={1,1,1,1,1,1,1,1,54,52,49};
	int load500i[]={1,1,1,1,1,1,1,1,66,64,61};
	int load600i[]={1,1,1,1,1,1,1,1,86,84,81};
	int load801i[]={1,1,1,1,1,1,1,1,44,42,40};
	int load1000i[]={1,1,1,1,1,1,1,1,56,54,52};
	int load1200i[]={1,1,1,1,1,1,1,1,76,74,72};
	
	if ( !strcmp(types[type].name, "BNT") && raw_data[MODELNUMBER]%16 > 7 ) {
		statINV=raw_data[STATUS_A] & ONLINE;
		voltage=raw_data[MODELNUMBER]%16;
		model=BNTmodels[raw_data[MODELNUMBER]/16];
		if (statINV==0){
			if (model==400 || model==801)
				return raw_data[UPS_LOAD]*110.0/load400[voltage];
			else if (model==600 || model==1200)
				return raw_data[UPS_LOAD]*110.0/load600[voltage];
			else
				return raw_data[UPS_LOAD]*110.0/load500[voltage];
		} else {
			switch (model) {
				case 400: return raw_data[UPS_LOAD]*110.0/load400i[voltage];
				case 500:
				case 800: return raw_data[UPS_LOAD]*110.0/load500i[voltage];
				case 600: return raw_data[UPS_LOAD]*110.0/load600i[voltage];
				case 801: return raw_data[UPS_LOAD]*110.0/load801i[voltage];
				case 1200: return raw_data[UPS_LOAD]*110.0/load1200i[voltage];
				case 1000:
				case 1500:
				case 2000: return raw_data[UPS_LOAD]*110.0/load1000i[voltage];
			}
		}
	} else if (!strcmp(types[type].name, "KIN")) {
		statINV=raw_data[STATUS_A] & ONLINE;
		voltage=raw_data[MODELNUMBER]%16;
		model=KINmodels[raw_data[MODELNUMBER]/16];
		if (statINV==0){
			if (model==425) return raw_data[UPS_LOAD]*110.0/load425[voltage];
			if (model==525) return raw_data[UPS_LOAD]*110.0/load525[voltage];
			if (model==625) return raw_data[UPS_LOAD]*110.0/load625[voltage];
			if (model<2000) return raw_data[UPS_LOAD]*1.13;
			if (model>=2000) return raw_data[UPS_LOAD]*110.0/load2k[voltage];
		} else {
			if (model==425) return raw_data[UPS_LOAD]*110.0/load425i[voltage];
			if (model==525) return raw_data[UPS_LOAD]*110.0/load525i[voltage];
			if (model==625) return raw_data[UPS_LOAD]*110.0/load625i[voltage];
			if (model<2000) return raw_data[UPS_LOAD]*1.66;
			if (model>=2000) return raw_data[UPS_LOAD]*110.0/load2ki[voltage];
		}
	} else if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI")) {
		return raw_data[UPS_LOAD];
	}
	return raw_data[STATUS_A] & MAINS_FAILURE ?
		types[type].loadpct[0] * raw_data[UPS_LOAD] +
									types[type].loadpct[1] :
		types[type].loadpct[2] * raw_data[UPS_LOAD] +
									types[type].loadpct[3];
}

static float batt_level(void)
{
	int bat0,bat29,bat100,model;
	float battval;
	
	if ( !strcmp(types[type].name, "BNT") ) {
		bat0=157;
		bat29=165;
		bat100=193;
		battval=(raw_data[UPS_LOAD])/4+raw_data[BATTERY_CHARGE];
		if (battval<=bat0)
			return 0.0;
		if (battval>bat0 && battval<=bat29)
			return (battval-bat0)*30.0/(bat29-bat0);
		if (battval>bat29 && battval<=bat100)
			return 30.0+(battval-bat29)*70.0/(bat100-bat29);
		return 100.0;
	}
	if ( !strcmp(types[type].name, "KIN")) {
		model=KINmodels[raw_data[MODELNUMBER]/16];
		if (model>=800 && model<=2000){
			battval=(raw_data[BATTERY_CHARGE]-165.0)*2.6;
			if (raw_data[STATUS_A] & ONLINE)
				return battval+raw_data[UPS_LOAD];
			if (battval>7)
				return battval-6;
			return battval;
		} else if (model<=625){
			battval=raw_data[UPS_LOAD]/4.0+raw_data[BATTERY_CHARGE];
			bat0=169;
			bat29=176;
			bat100=204;
		} else {
			battval=raw_data[UPS_LOAD]/4.0-raw_data[UPS_LOAD]/32.0+raw_data[BATTERY_CHARGE];
			bat0=175;
			bat29=182;
			bat100=209;
		}
		if (battval<=bat0)
			return 0;
		if (battval>bat0 && battval<=bat29)
			return (battval-bat0)*30.0/(bat29-bat0);
		if (battval>bat29 && battval<=bat100)
			return 30.0+(battval-bat29)*70.0/(bat100-bat29);
		return 100;
	}
	if ( !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI"))
		return raw_data[BATTERY_CHARGE];
	return raw_data[STATUS_A] & ONLINE ? /* Are we on battery power? */
		/* Yes */
		types[type].battpct[0] * raw_data[BATTERY_CHARGE] +
			types[type].battpct[1] * load_level() + types[type].battpct[2] :
		/* No */
		types[type].battpct[3] * raw_data[BATTERY_CHARGE] +
			types[type].battpct[4];
}

/*
 * global used functions
 */

/* update information */
void upsdrv_updateinfo(void)
{
	char	val[32];
	
	if (!ups_getinfo()){
		return;
	}
	
	/* input.frequency */
	upsdebugx(3, "input.frequency   (raw data): [raw: %u]",
	                            raw_data[INPUT_FREQUENCY]);
	dstate_setinfo("input.frequency", "%02.2f", input_freq());
	upsdebugx(2, "input.frequency: %s", dstate_getinfo("input.frequency"));

	/* output.frequency */
	upsdebugx(3, "output.frequency   (raw data): [raw: %u]",
	                            raw_data[OUTPUT_FREQUENCY]);
	dstate_setinfo("output.frequency", "%02.2f", output_freq());
	upsdebugx(2, "output.frequency: %s", dstate_getinfo("output.frequency"));

	/* ups.load */	
	upsdebugx(3, "ups.load  (raw data): [raw: %u]",
	                            raw_data[UPS_LOAD]);
	dstate_setinfo("ups.load", "%03.1f", load_level());
	upsdebugx(2, "ups.load: %s", dstate_getinfo("ups.load"));

	/* battery.charge */
	upsdebugx(3, "battery.charge (raw data): [raw: %u]",
	                            raw_data[BATTERY_CHARGE]);
	dstate_setinfo("battery.charge", "%03.1f", batt_level());
	upsdebugx(2, "battery.charge: %s", dstate_getinfo("battery.charge"));

	/* input.voltage */	
	upsdebugx(3, "input.voltage (raw data): [raw: %u]",
	                            raw_data[INPUT_VOLTAGE]);
	dstate_setinfo("input.voltage", "%03.1f",input_voltage());
	upsdebugx(2, "input.voltage: %s", dstate_getinfo("input.voltage"));
	
	/* output.voltage */	
	upsdebugx(3, "output.voltage (raw data): [raw: %u]",
	                            raw_data[OUTPUT_VOLTAGE]);
	dstate_setinfo("output.voltage", "%03.1f",output_voltage());
	upsdebugx(2, "output.voltage: %s", dstate_getinfo("output.voltage"));

	status_init();
	
	*val = 0;
	if (!(raw_data[STATUS_A] & MAINS_FAILURE)) {
		!(raw_data[STATUS_A] & OFF) ? 
			status_set("OL") : status_set("OFF");
	} else {
		status_set("OB");
	}

	if (raw_data[STATUS_A] & LOW_BAT)  status_set("LB");

	if (raw_data[STATUS_A] & AVR_ON) {
		input_voltage() < linevoltage ? 
			status_set("BOOST") : status_set("TRIM");
	}

	if (raw_data[STATUS_A] & OVERLOAD)  status_set("OVER");

	if (raw_data[STATUS_B] & BAD_BAT)  status_set("RB");

	if (raw_data[STATUS_B] & TEST)  status_set("TEST");

	status_commit();

	upsdebugx(2, "STATUS: %s", dstate_getinfo("ups.status"));
	dstate_dataok();
}

/* shutdown UPS */
void upsdrv_shutdown(void)
{
	/* power down the attached load immediately */
	printf("Forced UPS shutdown (and wait for power)...\n");
	shutdown_ret();
}

/* initialize UPS */
void upsdrv_initups(void)
{
	int tmp,model = 0;
	unsigned int i;
	static char buf[20];

	/* check manufacturer name from arguments */
	if (getval("manufacturer") != NULL) 
		manufacturer = getval("manufacturer");
	
	/* check model name from arguments */
	if (getval("modelname") != NULL) 
		modelname = getval("modelname");
	
	/* check serial number from arguments */
	if (getval("serialnumber") != NULL) 
		serialnumber = getval("serialnumber");
	
	/* get and check type */
	if (getval("type") != NULL) {
		for (i = 0; 
			 i < NUM_OF_SUBTYPES  &&  strcmp(types[i].name, getval("type"));
			 i++) ;
		if (i >= NUM_OF_SUBTYPES) {
			printf("Given UPS type '%s' isn't valid!\n", getval("type"));
			exit (1);
		}
		type = i;	
	};
	
	/* check line voltage from arguments */
	if (getval("linevoltage") != NULL) {
		tmp = atoi(getval("linevoltage"));
		if (! ( (tmp >= 200 && tmp <= 240) || (tmp >= 100 && tmp <= 120) ) ) {
			printf("Given line voltage '%d' is out of range (100-120 or 200-240 V)\n", tmp);
			exit (1);
		};
		linevoltage = (unsigned int) tmp;
	};

	if (getval("numOfBytesFromUPS") != NULL) {
		tmp = atoi(getval("numOfBytesFromUPS"));
		if (! (tmp > 0 && tmp <= MAX_NUM_OF_BYTES_FROM_UPS) ) {
			printf("Given numOfBytesFromUPS '%d' is out of range (1 to %d)\n",
	               tmp, MAX_NUM_OF_BYTES_FROM_UPS);
			exit (1);
		};
		types[type].num_of_bytes_from_ups = (unsigned char) tmp;
	}

	if (getval("methodOfFlowControl") != NULL) {
		for (i = 0; 
			 i < NUM_OF_SUBTYPES  &&  
					strcmp(types[i].flowControl.name,
							getval("methodOfFlowControl"));
			 i++) ;
		if (i >= NUM_OF_SUBTYPES) {
			printf("Given methodOfFlowControl '%s' isn't valid!\n", 
					getval("methodOfFlowControl"));
			exit (1);
		};
		types[type].flowControl = types[i].flowControl;	
	}

	if (getval("validationSequence")  &&
            sscanf(getval("validationSequence"),
					"{{%u,%x},{%u,%x},{%u,%x}}",
			                &types[type].validation[0].index_of_byte,
			                &types[type].validation[0].required_value,
			                &types[type].validation[1].index_of_byte,
			                &types[type].validation[1].required_value,
			                &types[type].validation[2].index_of_byte,
			                &types[type].validation[2].required_value
			      ) < 6
	   ) {
		printf("Given validationSequence '%s' isn't valid!\n", 
								         getval("validationSequence"));
		exit (1);
	}

	if (getval("shutdownArguments")  &&
	    sscanf(getval("shutdownArguments"), "{{%u,%u},%c}",
	                &types[type].shutdown_arguments.delay[0],
	                &types[type].shutdown_arguments.delay[1],
	                &types[type].shutdown_arguments.minutesShouldBeUsed 
	          ) < 3
	   ) {
	    printf("Given shutdownArguments '%s' isn't valid!\n", 
								         getval("shutdownArguments"));
		exit (1);
	} 

	if (getval("frequency")  &&
            sscanf(getval("frequency"), "{%f,%f}",
			                &types[type].freq[0], &types[type].freq[1]
	              ) < 2
	   ) {
		printf("Given frequency '%s' isn't valid!\n", 
										getval("frequency"));
		exit (1);
	}

	if (getval("loadPercentage")  && 
            sscanf(getval("loadPercentage"), "{%f,%f,%f,%f}",
	            &types[type].loadpct[0], &types[type].loadpct[1],
	            &types[type].loadpct[2], &types[type].loadpct[3]
	              ) < 4
	   ) {
		printf("Given loadPercentage '%s' isn't valid!\n", 
								         getval("loadPercentage"));
		exit (1);
	}

	if (getval("batteryPercentage")  && 
            sscanf(getval("batteryPercentage"), "{%f,%f,%f,%f,%f}",
	                &types[type].battpct[0], &types[type].battpct[1],
	                &types[type].battpct[2], &types[type].battpct[3],
	                &types[type].battpct[4]
	              ) < 5
	   ) {
		printf("Given batteryPercentage '%s' isn't valid!\n", 
								         getval("batteryPercentage"));
		exit (1);
	}

	if (getval("voltage")  &&
            sscanf(getval("voltage"), "{%f,%f,%f,%f}",
	            &types[type].voltage[0], &types[type].voltage[1],
	            &types[type].voltage[2], &types[type].voltage[3]
				  ) < 4
	   ) {
		printf("Given voltage '%s' isn't valid!\n", getval("voltage"));
		exit (1);
	}

	/* open serial port */
	upsfd = ser_open(device_path);
	ser_set_speed(upsfd, device_path, B1200);
	
	/* setup flow control */
	types[type].flowControl.setup_flow_control();

	/* Setup Model and LineVoltage */
	if (!strncmp(types[type].name, "BNT",3) || !strcmp(types[type].name, "KIN") || !strcmp(types[type].name, "IMP") || !strcmp(types[type].name, "OPTI")) {
		if (!ups_getinfo()) return;
		/* Give "BNT-other" a chance! */
		if (raw_data[MODELNAME]==0x42 || raw_data[MODELNAME]==0x4B || raw_data[MODELNAME]==0x4F){
			/* Give "IMP" a chance also! */
			if (raw_data[UPSVERSION]==0xFF){
				types[type].name="IMP";
				model=IMPmodels[raw_data[MODELNUMBER]/16];
			}
			else {
				model=BNTmodels[raw_data[MODELNUMBER]/16];
				if (!strcmp(types[type].name, "BNT-other"))
					types[type].name="BNT-other";
				else if (raw_data[MODELNAME]==0x42)
					types[type].name="BNT";
				else if (raw_data[MODELNAME]==0x4B){
					types[type].name="KIN";
					model=KINmodels[raw_data[MODELNUMBER]/16];
				} else if (raw_data[MODELNAME]==0x4F){
					types[type].name="OPTI";
					model=OPTImodels[raw_data[MODELNUMBER]/16];
				}
			}
		}
		else if (raw_data[UPSVERSION]==0xFF){
			types[type].name="IMP";
			model=IMPmodels[raw_data[MODELNUMBER]/16];
		}
		linevoltage=voltages[raw_data[MODELNUMBER]%16];
		if (!strcmp(types[type].name, "OPTI")) {
			snprintf(buf,sizeof(buf),"%s-%d",types[type].name,model);
		} else {
			snprintf(buf,sizeof(buf),"%s-%dAP",types[type].name,model);
		}
		if (!strcmp(modelname, "Unknown"))
			modelname=buf;
		upsdebugx(1,"Detected: %s , %dV",buf,linevoltage);
		if (ser_send_char (upsfd, BATTERY_TEST) != 1) {
			upslogx(LOG_NOTICE, "writing error");
			dstate_datastale();
			return;
		}
	}
	
	upsdebugx(1, "Values of arguments:");
	upsdebugx(1, " manufacturer            : '%s'", manufacturer);
	upsdebugx(1, " model name              : '%s'", modelname);
	upsdebugx(1, " serial number           : '%s'", serialnumber);
	upsdebugx(1, " line voltage            : '%u'", linevoltage);
	upsdebugx(1, " type                    : '%s'", types[type].name);
	upsdebugx(1, " number of bytes from UPS: '%u'", 
	                        types[type].num_of_bytes_from_ups);
	upsdebugx(1, " method of flow control  : '%s'", 
    	                    types[type].flowControl.name);
	upsdebugx(1, " validation sequence: '{{%u,%#x},{%u,%#x},{%u,%#x}}'",
			            types[type].validation[0].index_of_byte,
			            types[type].validation[0].required_value,
			            types[type].validation[1].index_of_byte,
			            types[type].validation[1].required_value,
			            types[type].validation[2].index_of_byte,
			            types[type].validation[2].required_value);
	upsdebugx(1, " shutdown arguments: '{{%u,%u},%c}'",
	                types[type].shutdown_arguments.delay[0],
	                types[type].shutdown_arguments.delay[1],
	                types[type].shutdown_arguments.minutesShouldBeUsed); 
	if ( strcmp(types[type].name, "KIN") && strcmp(types[type].name, "BNT") && strcmp(types[type].name, "IMP")) {
		upsdebugx(1, " frequency calculation coefficients: '{%f,%f}'",
								types[type].freq[0], types[type].freq[1]);
		upsdebugx(1, " load percentage calculation coefficients: "
					"'{%f,%f,%f,%f}'",
						types[type].loadpct[0], types[type].loadpct[1],
						types[type].loadpct[2], types[type].loadpct[3]);
		upsdebugx(1, " battery percentage calculation coefficients: " 
					"'{%f,%f,%f,%f,%f}'",
						types[type].battpct[0], types[type].battpct[1],
						types[type].battpct[2], types[type].battpct[3],
						types[type].battpct[4]);
		upsdebugx(1, " voltage calculation coefficients: '{%f,%f}'",
							types[type].voltage[2], types[type].voltage[3]);
	}

}

/* display help */
void upsdrv_help(void)
{
	//               1         2         3         4         5         6         7         8
	//      12345678901234567890123456789012345678901234567890123456789012345678901234567890 MAX
	printf("\n");
	printf("Specify UPS information in the ups.conf file.\n");
	printf(" type:          Type of UPS: 'Trust','Egys','KP625AP','IMP','KIN','BNT',\n");
	printf("                 'BNT-other', 'OPTI' (default: 'Trust')\n");
	printf("                'BNT-other' is a special type intended for BNT 100-120V models,\n");
	printf("                 but can be used to override ALL models.\n");
	printf("You can additional specify these variables:\n");
	printf(" manufacturer:  Manufacturer name (default: 'PowerCom')\n");
	printf(" modelname:     Model name (default: 'Unknown' or autodetected)\n");
	printf(" serialnumber:  Serial number (default: Unknown)\n");
	printf(" shutdownArguments: 3 delay arguments for the shutdown operation:\n");
	printf("                 {{Minutes,Seconds},UseMinutes?}\n");
	printf("                where Minutes and Seconds are integer, UseMinutes? is either\n");
	printf("                 'y' or 'n'.\n");
	printf("You can specify these variables if not automagically detected for types\n");
	printf("                'IMP','KIN','BNT'\n");
	printf(" linevoltage:   Line voltage: 110-120 or 220-240 (default: 230)\n");
	printf(" numOfBytesFromUPS: Number of bytes in a UPS frame: 16 is common, 11 for 'Trust'\n");
	printf(" methodOfFlowControl: Flow control method for UPS:\n");
	printf("                'dtr0rts1', 'dtr1' or 'no_flow_control'\n");
	printf(" validationSequence: 3 pairs of validation values: {{I,V},{I,V},{I,V}}\n");
	printf("                where I is the index into BytesFromUPS (see numOfBytesFromUPS)\n");
	printf("                  and V is the value for the ByteIndex to match.\n");
	printf(" frequency:     Input & Output Frequency conversion values: {A, B}\n");
	printf("                 used in function: 1/(A*x+B)\n");
	printf("                If the raw value x IS the frequency, then A=1/(x^2), B=0\n");
	printf(" loadPercentage: Load conversion values for Battery and Line load: {BA,BB,LA,LB}\n");
	printf("                 used in function: A*x+B\n");
	printf("                If the raw value x IS the Load Percent, then A=1, B=0\n");
	printf(" batteryPercentage: Battery conversion values for Battery and Line power:\n");
	printf("                 {A,B,C,D,E}\n");
	printf("                 used in functions: (Battery) A*x+B*y+C, (Line) D*x+E\n");
	printf("                If the raw value x IS the Battery Percent, then\n");
	printf("                 A=1, B=0, C=0, D=1, E=0\n");
	printf(" voltage:       Voltage conversion values for 240 and 120 voltage:\n");
	printf("                 {240A,240B,120A,120B}\n");
	printf("                 used in function: A*x+B\n");
	printf("                If the raw value x IS HALF the Voltage, then A=2, B=0\n\n");

	printf("Example for BNT1500AP in ups.conf:\n");
	printf("[BNT1500AP]\n");
	printf("    driver = powercom\n");
	printf("    port = /dev/ttyS0\n");
	printf("    desc = \"PowerCom BNT 1500 AP\"\n");
	printf("    manufacturer = PowerCom\n");
	printf("    modelname = BNT1500AP\n");
	printf("    serialnumber = 13245678900\n");
	printf("    type = BNT-other\n");
	printf("#   linevoltage = 120\n");
	printf("#   numOfBytesFromUPS = 16\n");
	printf("#   methodOfFlowControl = no_flow_control\n");
	printf("#   validationSequence = {{8,0},{8,0},{8,0}}\n");
	printf("#   shutdownArguments = {{1,30},y}\n");
	printf("#   frequency = {0.00027778,0.0000}\n");
	printf("#   loadPercentage = {1.0000,0.0,1.0000,0.0}\n");
	printf("#   batteryPercentage = {1.0000,0.0000,0.0000,1.0000,0.0000}\n");
	printf("#   voltage = {2.0000,0.0000,2.0000,0.0000}\n");
	return;
}

/* initialize information */
void upsdrv_initinfo(void)
{
	/* write constant data for this model */
	dstate_setinfo ("ups.mfr", "%s", manufacturer);
	dstate_setinfo ("ups.model", "%s", modelname);
	dstate_setinfo ("ups.serial", "%s", serialnumber);
	dstate_setinfo ("ups.model.type", "%s", types[type].name);
	dstate_setinfo ("input.voltage.nominal", "%u", linevoltage);

	/* now add the instant commands */
    dstate_addcmd ("test.battery.start");
   	dstate_addcmd ("shutdown.return");
   	dstate_addcmd ("shutdown.stayoff");
	upsh.instcmd = instcmd;
}

/* define possible arguments */
void upsdrv_makevartable(void)
{
		//        1         2         3         4         5         6         7         8
		//2345678901234567890123456789012345678901234567890123456789012345678901234567890 MAX
	addvar(VAR_VALUE, "type",
		"Type of UPS: 'Trust','Egys','KP625AP','IMP','KIN','BNT','BNT-other','OPTI'\n"
		" (default: 'Trust')");
	addvar(VAR_VALUE, "manufacturer",
		"Manufacturer name (default: 'PowerCom')");
	addvar(VAR_VALUE, "modelname",
		"Model name [cannot be detected] (default: Unknown)");
	addvar(VAR_VALUE, "serialnumber",
		"Serial number [cannot be detected] (default: Unknown)");
	addvar(VAR_VALUE, "shutdownArguments",
		"Delay values for shutdown: Minutes, Seconds, UseMinutes?'y'or'n'");
	addvar(VAR_VALUE, "linevoltage",
		"Line voltage 110-120 or 220-240 V (default: 230)");
	addvar(VAR_VALUE, "numOfBytesFromUPS",
		"The number of bytes in a UPS frame");
	addvar(VAR_VALUE, "methodOfFlowControl",
		"Flow control method for UPS: 'dtr0rts1' or 'no_flow_control'");
	addvar(VAR_VALUE, "validationSequence",
		"Validation values: ByteIndex, ByteValue x 3");
	if ( strcmp(types[type].name, "KIN") && strcmp(types[type].name, "BNT") && strcmp(types[type].name, "IMP")) {
		addvar(VAR_VALUE, "frequency",
			"Frequency conversion values: FreqFactor, FreqConst");
		addvar(VAR_VALUE, "loadPercentage",
			"Load conversion values: OffFactor, OffConst, OnFactor, OnConst");
		addvar(VAR_VALUE, "batteryPercentage",
			"Battery conversion values: OffFactor, LoadFactor, OffConst, OnFactor, OnConst");
		addvar(VAR_VALUE, "voltage",
			"Voltage conversion values: 240VFactor, 240VConst, 120VFactor, 120VConst");
	}
}

void upsdrv_cleanup(void)
{
	ser_close(upsfd, device_path);
}