nut/drivers/powercom.c

986 lines
33 KiB
C
Raw Normal View History

2010-03-25 23:20:59 +00:00
/*
* powercom.c - model specific routines for following units:
* -Trust 425/625
* -Powercom
* -Advice Partner/King PR750
* See http://www.advice.co.il/product/inter/ups.html for its specifications.
* This model is based on PowerCom (www.powercom.com) models.
* -Socomec Sicon Egys 420
*
* $Id: powercom.c 2336 2010-02-11 20:16:43Z adkorte-guest $
*
* Copyrights:
* (C) 2002 Simon Rozman <simon@rozman.net>
* (C) 1999 Peter Bieringer <pb@bieringer.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* rev 0.7: Alexey Sidorov <alexsid@altlinux.org>
* - add Powercom's Black Knight Pro model support ( BNT-400/500/600/800/801/1000/1200/1500/2000AP 220-240V )
*
* rev 0.8: Alexey Sidorov <alexsid@altlinux.org>
* - add Powercom's King Pro model support ( KIN-425/525/625/800/1000/1200/1500/1600/2200/3000/5000AP[-RM] 100-120,200-240 V)
*
* rev 0.9: Alexey Sidorov <alexsid@altlinux.org>
* - add Powercom's Imperial model support ( IMP-xxxAP, IMD-xxxAP )
*
* rev 0.10: Alexey Sidorov <alexsid@altlinux.org>
* - fix wrong detection KIN-2200AP
* - use ser_set_dtr/ser_set_rts
*
* rev 0.11: Alexey Sidorov <alexsid@altlinux.org>
* - move variables from .h to .c file (thanks Michael Tokarev for bugreport)
* - fix string comparison (thanks Michael Tokarev for bugreport & Charles Lepple for patch)
* - added BNT-other, for BNT 100-120V models (I havn't specs for it)
*
* Tested on: BNT-1200AP
*
* Known bugs:
* - strange battery level on BNT1200AP in online mode( & may be on other models)
* - i don't know how connect to IMP|IMD USB
* - i havn't specs for BNT 100-120V models. Add BNT-other type for it
*/
#include "main.h"
#include "serial.h"
#include "powercom.h"
#include "math.h"
#define DRIVER_NAME "PowerCom protocol UPS driver"
#define DRIVER_VERSION "0.12"
/* driver description structure */
upsdrv_info_t upsdrv_info = {
DRIVER_NAME,
DRIVER_VERSION,
"Simon Rozman <simon@rozman.net>\n" \
"Peter Bieringer <pb@bieringer.de>\n" \
"Alexey Sidorov <alexsid@altlinux.org>",
DRV_STABLE,
{ NULL }
};
#define NUM_OF_SUBTYPES (sizeof (types) / sizeof (*types))
/* general constants */
enum general {
MAX_NUM_OF_BYTES_FROM_UPS = 16
};
/* variables used by module */
static unsigned char raw_data[MAX_NUM_OF_BYTES_FROM_UPS]; /* raw data reveived from UPS */
static unsigned int linevoltage = 230U; /* line voltage, can be defined via command line option */
static const char *manufacturer = "PowerCom";
static const char *modelname = "Unknown";
static const char *serialnumber = "Unknown";
static unsigned int type = 0;
/* forward declaration of functions used to setup flow control */
static void dtr0rts1 (void);
static void no_flow_control (void);
/* struct defining types */
static struct type types[] = {
{
"Trust",
11,
{ "dtr0rts1", dtr0rts1 },
{ { 5U, 0U }, { 7U, 0U }, { 8U, 0U } },
{ { 0U, 10U }, 'n' },
{ 0.00020997, 0.00020928 },
{ 6.1343, -0.3808, 4.3110, 0.1811 },
{ 5.0000, 0.3268, -825.00, 4.5639, -835.82 },
{ 1.9216, -0.0977, 0.9545, 0.0000 },
},
{
"Egys",
16,
{ "no_flow_control", no_flow_control },
{ { 5U, 0x80U }, { 7U, 0U }, { 8U, 0U } },
{ { 0U, 10U }, 'n' },
{ 0.00020997, 0.00020928 },
{ 6.1343, -0.3808, 1.3333, 0.6667 },
{ 5.0000, 0.3268, -825.00, 2.2105, -355.37 },
{ 1.9216, -0.0977, 0.9545, 0.0000 },
},
{
"KP625AP",
16,
{ "dtr0rts1", dtr0rts1 },
{ { 5U, 0x80U }, { 7U, 0U }, { 8U, 0U } },
{ { 0U, 10U }, 'n' },
{ 0.00020997, 0.00020928 },
{ 6.1343, -0.3808, 4.3110, 0.1811 },
{ 5.0000, 0.3268, -825.00, 4.5639, -835.82 },
{ 1.9216, -0.0977, 0.9545, 0.0000 },
},
{
"IMP",
16,
{ "no_flow_control", no_flow_control },
{ { 5U, 0xFFU }, { 7U, 0U }, { 8U, 0U } },
{ { 1U, 30U }, 'y' },
{ 0.00020997, 0.00020928 },
{ 6.1343, -0.3808, 4.3110, 0.1811 },
{ 5.0000, 0.3268, -825.00, 4.5639, -835.82 },
{ 1.9216, -0.0977, 0.9545, 0.0000 },
},
{
"KIN",
16,
{ "no_flow_control", no_flow_control },
{ { 11U, 0x4bU }, { 8U, 0U }, { 8U, 0U } },
{ { 1U, 30U }, 'y' },
{ 0.00020997, 0.0 },
{ 6.1343, -0.3808, 1.075, 0.1811 },
{ 5.0000, 0.3268, -825.00, 0.46511, 0 },
{ 1.9216, -0.0977, 0.82857, 0.0000 },
},
{
"BNT",
16,
{ "no_flow_control", no_flow_control },
{ { 11U, 0x42U }, { 8U, 0U }, { 8U, 0U } },
{ { 1U, 30U }, 'y' },
{ 0.00020803, 0.0 },
{ 1.4474, 0.0, 0.8594, 0.0 },
{ 5.0000, 0.3268, -825.00, 0.46511, 0 },
{ 1.9216, -0.0977, 0.82857, 0.0000 },
},
{
"BNT-other",
16,
{ "no_flow_control", no_flow_control },
{ { 8U, 0U }, { 8U, 0U }, { 8U, 0U } },
{ { 1U, 30U }, 'y' },
{ 0.00020803, 0.0 },
{ 1.4474, 0.0, 0.8594, 0.0 },
{ 5.0000, 0.3268, -825.00, 0.46511, 0 },
{ 1.9216, -0.0977, 0.82857, 0.0000 },
},
};
/* values for sending to UPS */
enum commands {
SEND_DATA = '\x01',
BATTERY_TEST = '\x03',
WAKEUP_TIME = '\x04',
RESTART = '\xb9',
SHUTDOWN = '\xba',
COUNTER = '\xbc'
};
/* location of data in received string */
enum data {
UPS_LOAD = 0U,
BATTERY_CHARGE = 1U,
INPUT_VOLTAGE = 2U,
OUTPUT_VOLTAGE = 3U,
INPUT_FREQUENCY = 4U,
UPSVERSION = 5U,
OUTPUT_FREQUENCY = 6U,
STATUS_A = 9U,
STATUS_B = 10U,
MODELNAME = 11U,
MODELNUMBER = 12U
};
/* status bits */
enum status {
SUMMARY = 0U,
MAINS_FAILURE = 1U,
ONLINE = 1U,
FAULT = 1U,
LOW_BAT = 2U,
BAD_BAT = 2U,
TEST = 4U,
AVR_ON = 8U,
AVR_MODE = 16U,
SD_COUNTER = 16U,
OVERLOAD = 32U,
SHED_COUNTER = 32U,
DIS_NOLOAD = 64U,
SD_DISPLAY = 128U,
OFF = 128U
};
unsigned int voltages[]={100,110,115,120,0,0,0,200,220,230,240};
unsigned int BNTmodels[]={0,400,500,600,800,801,1000,1200,1500,2000};
unsigned int KINmodels[]={0,425,500,525,625,800,1000,1200,1500,1600,2200,2200,2500,3000,5000};
unsigned int IMPmodels[]={0,425,525,625,825,1025,1200,1500,2000};
/*
* local used functions
*/
static void shutdown_halt(void)
{
ser_send_char (upsfd, SHUTDOWN);
if (types[type].shutdown_arguments.minutesShouldBeUsed != 'n')
ser_send_char (upsfd, types[type].shutdown_arguments.delay[0]);
ser_send_char (upsfd, types[type].shutdown_arguments.delay[1]);
upslogx(LOG_INFO, "Shutdown (stayoff) initiated.");
exit (0);
}
static void shutdown_ret(void)
{
ser_send_char (upsfd, RESTART);
ser_send_char (upsfd, COUNTER);
if (types[type].shutdown_arguments.minutesShouldBeUsed != 'n')
ser_send_char (upsfd, types[type].shutdown_arguments.delay[0]);
ser_send_char (upsfd, types[type].shutdown_arguments.delay[1]);
upslogx(LOG_INFO, "Shutdown (return) initiated.");
exit (0);
}
/* registered instant commands */
static int instcmd (const char *cmdname, const char *extra)
{
if (!strcasecmp(cmdname, "test.battery.start")) {
ser_send_char (upsfd, BATTERY_TEST);
return STAT_INSTCMD_HANDLED;
}
if (!strcasecmp(cmdname, "shutdown.return")) {
shutdown_ret();
return STAT_INSTCMD_HANDLED;
}
if (!strcasecmp(cmdname, "shutdown.stayoff")) {
shutdown_halt();
return STAT_INSTCMD_HANDLED;
}
upslogx(LOG_NOTICE, "instcmd: unknown command [%s]", cmdname);
return STAT_INSTCMD_UNKNOWN;
}
/* set DTR and RTS lines on a serial port to supply a passive
* serial interface: DTR to 0 (-V), RTS to 1 (+V)
*/
static void dtr0rts1 (void)
{
ser_set_dtr(upsfd, 0);
ser_set_rts(upsfd, 1);
upsdebugx(2, "DTR => 0, RTS => 1");
}
/* clear any flow control */
static void no_flow_control (void)
{
struct termios tio;
tcgetattr (upsfd, &tio);
tio.c_iflag &= ~ (IXON | IXOFF);
tio.c_cc[VSTART] = _POSIX_VDISABLE;
tio.c_cc[VSTOP] = _POSIX_VDISABLE;
upsdebugx(2, "Flow control disable");
/* disable any flow control */
tcsetattr(upsfd, TCSANOW, &tio);
}
/* sane check for returned buffer */
static int validate_raw_data (void)
{
int i = 0,
num_of_tests =
sizeof types[0].validation / sizeof types[0].validation[0];
for (i = 0;
i < num_of_tests &&
raw_data[
types[type].validation[i].index_of_byte] ==
types[type].validation[i].required_value;
i++) ;
return (i < num_of_tests) ? 1 : 0;
}
/* get info from ups */
static int ups_getinfo(void)
{
int i, c;
/* send trigger char to UPS */
if (ser_send_char (upsfd, SEND_DATA) != 1) {
upslogx(LOG_NOTICE, "writing error");
dstate_datastale();
return 0;
} else {
upsdebugx(5, "Num of bytes requested for reading from UPS: %d", types[type].num_of_bytes_from_ups);
c = ser_get_buf_len(upsfd, raw_data,
types[type].num_of_bytes_from_ups, 3, 0);
if (c != types[type].num_of_bytes_from_ups) {
upslogx(LOG_NOTICE, "data receiving error (%d instead of %d bytes)", c, types[type].num_of_bytes_from_ups);
dstate_datastale();
return 0;
} else
upsdebugx(5, "Num of bytes received from UPS: %d", c);
};
/* optional dump of raw data */
if (nut_debug_level > 4) {
printf("Raw data from UPS:\n");
for (i = 0; i < types[type].num_of_bytes_from_ups; i++) {
printf("%2d 0x%02x (%c)\n", i, raw_data[i], raw_data[i]>=0x20 ? raw_data[i] : ' ');
};
};
/* validate raw data for correctness */
if (validate_raw_data() != 0) {
upslogx(LOG_NOTICE, "data receiving error (validation check)");
dstate_datastale();
return 0;
};
return 1;
}
static float input_voltage(void)
{
unsigned int model;
float tmp=0.0;
if ( !strcmp(types[type].name, "BNT") && raw_data[MODELNUMBER]%16 > 7 ) {
tmp=2.2*raw_data[INPUT_VOLTAGE]-24;
} else if ( !strcmp(types[type].name, "KIN")) {
model=KINmodels[raw_data[MODELNUMBER]/16];
if (model<=625){
tmp=1.79*raw_data[INPUT_VOLTAGE]+3.35;
} else if (model<2000){
tmp=1.61*raw_data[INPUT_VOLTAGE];
} else {
tmp=1.625*raw_data[INPUT_VOLTAGE];
}
} else if ( !strcmp(types[type].name, "IMP")) {
tmp=raw_data[INPUT_VOLTAGE]*2.0;
} else {
tmp=linevoltage >= 220 ?
types[type].voltage[0] * raw_data[INPUT_VOLTAGE] + types[type].voltage[1] :
types[type].voltage[2] * raw_data[INPUT_VOLTAGE] + types[type].voltage[3];
}
if (tmp<0) tmp=0.0;
return tmp;
}
static float output_voltage(void)
{
float tmp,rdatax,rdatay,rdataz,boostdata;
unsigned int statINV = 0,statAVR = 0,statAVRMode = 0,model,t;
static float datax[]={0,1.0,1.0,1.0,1.0,1.89,1.89,1.89,0.127,0.127,1.89,1.89,1.89,0.256};
static float datay[]={0,1.73,1.74,1.74,1.77,0.9,0.9,0.9,13.204,13.204,0.88,0.88,0.88,6.645};
static float dataz[]={0,1.15,0.9,0.9,0.75,1.1,1.1,1.1,0.8,0.8,0.86,0.86,0.86,0.7};
if ( !strcmp(types[type].name, "BNT") || !strcmp(types[type].name, "KIN")) {
statINV=raw_data[STATUS_A] & ONLINE;
statAVR=raw_data[STATUS_A] & AVR_ON;
statAVRMode=raw_data[STATUS_A] & AVR_MODE;
}
if ( !strcmp(types[type].name, "BNT") && raw_data[MODELNUMBER]%16 > 7 ) {
if (statINV==0) {
if (statAVR==0){
tmp=2.2*raw_data[OUTPUT_VOLTAGE]-24;
} else {
if (statAVRMode > 0)
tmp=(2.2*raw_data[OUTPUT_VOLTAGE]-24)*31/27;
else
tmp=(2.22*raw_data[OUTPUT_VOLTAGE]-24)*27/31;
}
} else {
t=raw_data[OUTPUT_FREQUENCY]/2;
tmp=(1.965*raw_data[15])*(1.965*raw_data[15])*(t-raw_data[OUTPUT_VOLTAGE])/t;
if (tmp>0)
tmp=sqrt(tmp);
else
tmp=0.0;
}
} else if ( !strcmp(types[type].name, "KIN")) {
model=KINmodels[raw_data[MODELNUMBER]/16];
if (statINV==0) {
if (statAVR==0) {
if (model<=625)
tmp=1.79*raw_data[OUTPUT_VOLTAGE]+3.35;
else if (model<2000)
tmp=1.61*raw_data[OUTPUT_VOLTAGE];
else
tmp=1.625*raw_data[OUTPUT_VOLTAGE];
} else {
if (statAVRMode > 0){
if (model<=525)
tmp=2.07*raw_data[OUTPUT_VOLTAGE];
else if (model==625)
tmp=2.07*raw_data[OUTPUT_VOLTAGE]+5;
else if (model<2000)
tmp=1.87*raw_data[OUTPUT_VOLTAGE];
else
tmp=1.87*raw_data[OUTPUT_VOLTAGE];
} else {
if (model<=625)
tmp=1.571*raw_data[OUTPUT_VOLTAGE];
else if (model<2000)
tmp=1.37*raw_data[OUTPUT_VOLTAGE];
else
tmp=1.4*raw_data[OUTPUT_VOLTAGE];
}
}
} else {
rdatax=datax[raw_data[MODELNUMBER]/16];
rdatay=datay[raw_data[MODELNUMBER]/16];
rdataz=dataz[raw_data[MODELNUMBER]/16];
boostdata=1.0+statAVR*20.0/135.0;
t=raw_data[OUTPUT_FREQUENCY]/2;
tmp=0;
if (model>625){
tmp=(raw_data[BATTERY_CHARGE]*rdatax)*(raw_data[BATTERY_CHARGE]*rdatax)*
(t-raw_data[OUTPUT_VOLTAGE])/t;
if (tmp>0)
tmp=sqrt(tmp)*rdatay*boostdata-raw_data[UPS_LOAD]*rdataz*boostdata;
} else {
tmp=(raw_data[BATTERY_CHARGE]*rdatax-raw_data[UPS_LOAD]*rdataz)*
(raw_data[BATTERY_CHARGE]*rdatax-raw_data[UPS_LOAD]*rdataz)*
(t-raw_data[OUTPUT_VOLTAGE])/t;
if (tmp>0)
tmp=sqrt(tmp)*rdatay;
}
}
} else if ( !strcmp(types[type].name, "IMP")) {
tmp=raw_data[OUTPUT_VOLTAGE]*2.0;
} else {
tmp= linevoltage >= 220 ?
types[type].voltage[0] * raw_data[OUTPUT_VOLTAGE] +
types[type].voltage[1] :
types[type].voltage[2] * raw_data[OUTPUT_VOLTAGE] +
types[type].voltage[3];
}
if (tmp<0) tmp=0.0;
return tmp;
}
static float input_freq(void)
{
if ( !strncmp(types[type].name, "BNT",3) || !strcmp(types[type].name, "KIN"))
return 4807.0/raw_data[INPUT_FREQUENCY];
else if ( !strcmp(types[type].name, "IMP"))
return raw_data[INPUT_FREQUENCY];
return raw_data[INPUT_FREQUENCY] ?
1.0 / (types[type].freq[0] *
raw_data[INPUT_FREQUENCY] +
types[type].freq[1]) : 0;
}
static float output_freq(void)
{
if ( !strncmp(types[type].name, "BNT",3) || !strcmp(types[type].name, "KIN"))
return 4807.0/raw_data[OUTPUT_FREQUENCY];
else if ( !strcmp(types[type].name, "IMP"))
return raw_data[OUTPUT_FREQUENCY];
return raw_data[OUTPUT_FREQUENCY] ?
1.0 / (types[type].freq[0] *
raw_data[OUTPUT_FREQUENCY] +
types[type].freq[1]) : 0;
}
static float load_level(void)
{
unsigned int statINV,model,voltage;
int load425[]={99,88,84,80,84,84,84,86,86,81,76};
int load525[]={127,113,106,100,106,106,106,109,109,103,97};
int load625[]={131,115,107,103,107,107,107,110,110,105,99};
int load2k[] ={94,94,94,94,94,94,94,120,120,115,110};
int load425i[]={60,54,51,48,51,51,51,53,53,50,48};
int load525i[]={81,72,67,62,67,67,67,65,65,62,59};
int load625i[]={79,70,67,64,67,67,67,65,65,61,58};
int load2ki[] ={84,77,74,70,74,74,74,77,77,74,70};
int load400[]={1,1,1,1,1,1,1,1,88,83,87};
int load500[]={1,1,1,1,1,1,1,1,108,103,98};
int load600[]={1,1,1,1,1,1,1,1,128,123,118};
int load400i[]={1,1,1,1,1,1,1,1,54,52,49};
int load500i[]={1,1,1,1,1,1,1,1,66,64,61};
int load600i[]={1,1,1,1,1,1,1,1,86,84,81};
int load801i[]={1,1,1,1,1,1,1,1,44,42,40};
int load1000i[]={1,1,1,1,1,1,1,1,56,54,52};
int load1200i[]={1,1,1,1,1,1,1,1,76,74,72};
if ( !strcmp(types[type].name, "BNT") && raw_data[MODELNUMBER]%16 > 7 ) {
statINV=raw_data[STATUS_A] & ONLINE;
voltage=raw_data[MODELNUMBER]%16;
model=BNTmodels[raw_data[MODELNUMBER]/16];
if (statINV==0){
if (model==400 || model==801)
return raw_data[UPS_LOAD]*110.0/load400[voltage];
else if (model==600 || model==1200)
return raw_data[UPS_LOAD]*110.0/load600[voltage];
else
return raw_data[UPS_LOAD]*110.0/load500[voltage];
} else {
switch (model) {
case 400: return raw_data[UPS_LOAD]*110.0/load400i[voltage];
case 500:
case 800: return raw_data[UPS_LOAD]*110.0/load500i[voltage];
case 600: return raw_data[UPS_LOAD]*110.0/load600i[voltage];
case 801: return raw_data[UPS_LOAD]*110.0/load801i[voltage];
case 1200: return raw_data[UPS_LOAD]*110.0/load1200i[voltage];
case 1000:
case 1500:
case 2000: return raw_data[UPS_LOAD]*110.0/load1000i[voltage];
}
}
} else if (!strcmp(types[type].name, "KIN")) {
statINV=raw_data[STATUS_A] & ONLINE;
voltage=raw_data[MODELNUMBER]%16;
model=KINmodels[raw_data[MODELNUMBER]/16];
if (statINV==0){
if (model==425) return raw_data[UPS_LOAD]*110.0/load425[voltage];
if (model==525) return raw_data[UPS_LOAD]*110.0/load525[voltage];
if (model==625) return raw_data[UPS_LOAD]*110.0/load625[voltage];
if (model<2000) return raw_data[UPS_LOAD]*1.13;
if (model>=2000) return raw_data[UPS_LOAD]*110.0/load2k[voltage];
} else {
if (model==425) return raw_data[UPS_LOAD]*110.0/load425i[voltage];
if (model==525) return raw_data[UPS_LOAD]*110.0/load525i[voltage];
if (model==625) return raw_data[UPS_LOAD]*110.0/load625i[voltage];
if (model<2000) return raw_data[UPS_LOAD]*1.66;
if (model>=2000) return raw_data[UPS_LOAD]*110.0/load2ki[voltage];
}
} else if ( !strcmp(types[type].name, "IMP")) {
return raw_data[UPS_LOAD];
}
return raw_data[STATUS_A] & MAINS_FAILURE ?
types[type].loadpct[0] * raw_data[UPS_LOAD] +
types[type].loadpct[1] :
types[type].loadpct[2] * raw_data[UPS_LOAD] +
types[type].loadpct[3];
}
static float batt_level(void)
{
int bat0,bat29,bat100,model;
float battval;
if ( !strncmp(types[type].name, "BNT",3) ) {
bat0=157;
bat29=165;
bat100=193;
battval=(raw_data[UPS_LOAD])/4+raw_data[BATTERY_CHARGE];
if (battval<=bat0)
return 0.0;
if (battval>bat0 && battval<=bat29)
return (battval-bat0)*30.0/(bat29-bat0);
if (battval>bat29 && battval<=bat100)
return 30.0+(battval-bat29)*70.0/(bat100-bat29);
return 100.0;
}
if ( !strcmp(types[type].name, "KIN")) {
model=KINmodels[raw_data[MODELNUMBER]/16];
if (model>=800 && model<=2000){
battval=(raw_data[BATTERY_CHARGE]-165.0)*2.6;
if (raw_data[STATUS_A] & ONLINE)
return battval+raw_data[UPS_LOAD];
if (battval>7)
return battval-6;
return battval;
} else if (model<=625){
battval=raw_data[UPS_LOAD]/4.0+raw_data[BATTERY_CHARGE];
bat0=169;
bat29=176;
bat100=204;
} else {
battval=raw_data[UPS_LOAD]/4.0-raw_data[UPS_LOAD]/32.0+raw_data[BATTERY_CHARGE];
bat0=175;
bat29=182;
bat100=209;
}
if (battval<=bat0)
return 0;
if (battval>bat0 && battval<=bat29)
return (battval-bat0)*30.0/(bat29-bat0);
if (battval>bat29 && battval<=bat100)
return 30.0+(battval-bat29)*70.0/(bat100-bat29);
return 100;
}
if ( !strcmp(types[type].name, "IMP"))
return raw_data[BATTERY_CHARGE];
return raw_data[STATUS_A] & ONLINE ?
types[type].battpct[0] * raw_data[BATTERY_CHARGE] +
types[type].battpct[1] * load_level() + types[type].battpct[2] :
types[type].battpct[3] * raw_data[BATTERY_CHARGE] +
types[type].battpct[4];
}
/*
* global used functions
*/
/* update information */
void upsdrv_updateinfo(void)
{
char val[32];
if (!ups_getinfo()){
return;
}
/* input.frequency */
upsdebugx(3, "input.frequency (raw data): [raw: %u]",
raw_data[INPUT_FREQUENCY]);
dstate_setinfo("input.frequency", "%02.2f", input_freq());
upsdebugx(2, "input.frequency: %s", dstate_getinfo("input.frequency"));
/* output.frequency */
upsdebugx(3, "output.frequency (raw data): [raw: %u]",
raw_data[OUTPUT_FREQUENCY]);
dstate_setinfo("output.frequency", "%02.2f", output_freq());
upsdebugx(2, "output.frequency: %s", dstate_getinfo("output.frequency"));
/* ups.load */
upsdebugx(3, "ups.load (raw data): [raw: %u]",
raw_data[UPS_LOAD]);
dstate_setinfo("ups.load", "%03.1f", load_level());
upsdebugx(2, "ups.load: %s", dstate_getinfo("ups.load"));
/* battery.charge */
upsdebugx(3, "battery.charge (raw data): [raw: %u]",
raw_data[BATTERY_CHARGE]);
dstate_setinfo("battery.charge", "%03.1f", batt_level());
upsdebugx(2, "battery.charge: %s", dstate_getinfo("battery.charge"));
/* input.voltage */
upsdebugx(3, "input.voltage (raw data): [raw: %u]",
raw_data[INPUT_VOLTAGE]);
dstate_setinfo("input.voltage", "%03.1f",input_voltage());
upsdebugx(2, "input.voltage: %s", dstate_getinfo("input.voltage"));
/* output.voltage */
upsdebugx(3, "output.voltage (raw data): [raw: %u]",
raw_data[OUTPUT_VOLTAGE]);
dstate_setinfo("output.voltage", "%03.1f",output_voltage());
upsdebugx(2, "output.voltage: %s", dstate_getinfo("output.voltage"));
status_init();
*val = 0;
if (!(raw_data[STATUS_A] & MAINS_FAILURE)) {
!(raw_data[STATUS_A] & OFF) ?
status_set("OL") : status_set("OFF");
} else {
status_set("OB");
}
if (raw_data[STATUS_A] & LOW_BAT) status_set("LB");
if (raw_data[STATUS_A] & AVR_ON) {
input_voltage() < linevoltage ?
status_set("BOOST") : status_set("TRIM");
}
if (raw_data[STATUS_A] & OVERLOAD) status_set("OVER");
if (raw_data[STATUS_B] & BAD_BAT) status_set("RB");
if (raw_data[STATUS_B] & TEST) status_set("TEST");
status_commit();
upsdebugx(2, "STATUS: %s", dstate_getinfo("ups.status"));
dstate_dataok();
}
/* shutdown UPS */
void upsdrv_shutdown(void)
{
/* power down the attached load immediately */
printf("Forced UPS shutdown (and wait for power)...\n");
shutdown_ret();
}
/* initialize UPS */
void upsdrv_initups(void)
{
int tmp,model = 0;
unsigned int i;
static char buf[20];
/* check manufacturer name from arguments */
if (getval("manufacturer") != NULL)
manufacturer = getval("manufacturer");
/* check model name from arguments */
if (getval("modelname") != NULL)
modelname = getval("modelname");
/* check serial number from arguments */
if (getval("serialnumber") != NULL)
serialnumber = getval("serialnumber");
/* get and check type */
if (getval("type") != NULL) {
for (i = 0;
i < NUM_OF_SUBTYPES && strcmp(types[i].name, getval("type"));
i++) ;
if (i >= NUM_OF_SUBTYPES) {
printf("Given UPS type '%s' isn't valid!\n", getval("type"));
exit (1);
}
type = i;
};
/* check line voltage from arguments */
if (getval("linevoltage") != NULL) {
tmp = atoi(getval("linevoltage"));
if (! ( (tmp >= 200 && tmp <= 240) || (tmp >= 100 && tmp <= 120) ) ) {
printf("Given line voltage '%d' is out of range (100-120 or 200-240 V)\n", tmp);
exit (1);
};
linevoltage = (unsigned int) tmp;
};
if (getval("numOfBytesFromUPS") != NULL) {
tmp = atoi(getval("numOfBytesFromUPS"));
if (! (tmp > 0 && tmp <= MAX_NUM_OF_BYTES_FROM_UPS) ) {
printf("Given numOfBytesFromUPS '%d' is out of range (1 to %d)\n",
tmp, MAX_NUM_OF_BYTES_FROM_UPS);
exit (1);
};
types[type].num_of_bytes_from_ups = (unsigned char) tmp;
}
if (getval("methodOfFlowControl") != NULL) {
for (i = 0;
i < NUM_OF_SUBTYPES &&
strcmp(types[i].flowControl.name,
getval("methodOfFlowControl"));
i++) ;
if (i >= NUM_OF_SUBTYPES) {
printf("Given methodOfFlowControl '%s' isn't valid!\n",
getval("methodOfFlowControl"));
exit (1);
};
types[type].flowControl = types[i].flowControl;
}
if (getval("validationSequence") &&
sscanf(getval("validationSequence"),
"{{%u,%x},{%u,%x},{%u,%x}}",
&types[type].validation[0].index_of_byte,
&types[type].validation[0].required_value,
&types[type].validation[1].index_of_byte,
&types[type].validation[1].required_value,
&types[type].validation[2].index_of_byte,
&types[type].validation[2].required_value
) < 6
) {
printf("Given validationSequence '%s' isn't valid!\n",
getval("validationSequence"));
exit (1);
}
if (getval("shutdownArguments") &&
sscanf(getval("shutdownArguments"), "{{%u,%u},%c}",
&types[type].shutdown_arguments.delay[0],
&types[type].shutdown_arguments.delay[1],
&types[type].shutdown_arguments.minutesShouldBeUsed
) < 3
) {
printf("Given shutdownArguments '%s' isn't valid!\n",
getval("shutdownArguments"));
exit (1);
}
if (getval("frequency") &&
sscanf(getval("frequency"), "{%f,%f}",
&types[type].freq[0], &types[type].freq[1]
) < 2
) {
printf("Given frequency '%s' isn't valid!\n",
getval("frequency"));
exit (1);
}
if (getval("loadPercentage") &&
sscanf(getval("loadPercentage"), "{%f,%f,%f,%f}",
&types[type].loadpct[0], &types[type].loadpct[1],
&types[type].loadpct[2], &types[type].loadpct[3]
) < 4
) {
printf("Given loadPercentage '%s' isn't valid!\n",
getval("loadPercentage"));
exit (1);
}
if (getval("batteryPercentage") &&
sscanf(getval("batteryPercentage"), "{%f,%f,%f,%f,%f}",
&types[type].battpct[0], &types[type].battpct[1],
&types[type].battpct[2], &types[type].battpct[3],
&types[type].battpct[4]
) < 5
) {
printf("Given batteryPercentage '%s' isn't valid!\n",
getval("batteryPercentage"));
exit (1);
}
if (getval("voltage") &&
sscanf(getval("voltage"), "{%f,%f,%f,%f}",
&types[type].voltage[0], &types[type].voltage[1],
&types[type].voltage[2], &types[type].voltage[3]
) < 4
) {
printf("Given voltage '%s' isn't valid!\n", getval("voltage"));
exit (1);
}
/* open serial port */
upsfd = ser_open(device_path);
ser_set_speed(upsfd, device_path, B1200);
/* setup flow control */
types[type].flowControl.setup_flow_control();
if (!strncmp(types[type].name, "BNT",3) || !strcmp(types[type].name, "KIN") || !strcmp(types[type].name, "IMP")){
if (!ups_getinfo()) return;
if (raw_data[UPSVERSION]==0xFF){
types[type].name="IMP";
model=IMPmodels[raw_data[MODELNUMBER]/16];
}
if (raw_data[MODELNAME]==0x42){
if (!strcmp(types[type].name, "BNT-other"))
types[type].name="BNT-other";
else
types[type].name="BNT";
model=BNTmodels[raw_data[MODELNUMBER]/16];
}
if (raw_data[MODELNAME]==0x4B){
types[type].name="KIN";
model=KINmodels[raw_data[MODELNUMBER]/16];
}
linevoltage=voltages[raw_data[MODELNUMBER]%16];
snprintf(buf,sizeof(buf),"%s-%dAP",types[type].name,model);
modelname=buf;
upsdebugx(1,"Detected: %s , %dV",modelname,linevoltage);
if (ser_send_char (upsfd, BATTERY_TEST) != 1) {
upslogx(LOG_NOTICE, "writing error");
dstate_datastale();
return;
}
}
upsdebugx(1, "Values of arguments:");
upsdebugx(1, " manufacturer : '%s'", manufacturer);
upsdebugx(1, " model name : '%s'", modelname);
upsdebugx(1, " serial number : '%s'", serialnumber);
upsdebugx(1, " line voltage : '%u'", linevoltage);
upsdebugx(1, " type : '%s'", types[type].name);
upsdebugx(1, " number of bytes from UPS: '%u'",
types[type].num_of_bytes_from_ups);
upsdebugx(1, " method of flow control : '%s'",
types[type].flowControl.name);
upsdebugx(1, " validation sequence: '{{%u,%#x},{%u,%#x},{%u,%#x}}'",
types[type].validation[0].index_of_byte,
types[type].validation[0].required_value,
types[type].validation[1].index_of_byte,
types[type].validation[1].required_value,
types[type].validation[2].index_of_byte,
types[type].validation[2].required_value);
upsdebugx(1, " shutdown arguments: '{{%u,%u},%c}'",
types[type].shutdown_arguments.delay[0],
types[type].shutdown_arguments.delay[1],
types[type].shutdown_arguments.minutesShouldBeUsed);
if ( strcmp(types[type].name, "KIN") && strcmp(types[type].name, "BNT") && strcmp(types[type].name, "IMP")) {
upsdebugx(1, " frequency calculation coefficients: '{%f,%f}'",
types[type].freq[0], types[type].freq[1]);
upsdebugx(1, " load percentage calculation coefficients: "
"'{%f,%f,%f,%f}'",
types[type].loadpct[0], types[type].loadpct[1],
types[type].loadpct[2], types[type].loadpct[3]);
upsdebugx(1, " battery percentage calculation coefficients: "
"'{%f,%f,%f,%f,%f}'",
types[type].battpct[0], types[type].battpct[1],
types[type].battpct[2], types[type].battpct[3],
types[type].battpct[4]);
upsdebugx(1, " voltage calculation coefficients: '{%f,%f}'",
types[type].voltage[2], types[type].voltage[3]);
}
}
/* display help */
void upsdrv_help(void)
{
printf("You must specify type in ups.conf\n");
printf("Type of UPS like 'Trust', 'Egys', 'KP625AP', 'IMP', 'KIN' or 'BNT' or 'BNT-other' (default: 'Trust')\n");
printf("BNT-other - it's a special type for BNT 100-120V models \n");
printf("You can additional cpecify next variables:\n");
printf(" shutdownArguments: The number of delay arguments and their values for the shutdown operation\n");
printf("Also, you can specify next variables (not work for 'IMP', 'KIN' or 'BNT', because detected automatically or known\n");
printf(" manufacturer: Specify manufacturer name (default: 'PowerCom')\n");
printf(" modelname: Specify model name, because it cannot detect automagically (default: Unknown)\n");
printf(" serialnumber: Specify serial number, because it cannot detect automatically (default: Unknown)\n");
printf(" linevoltage: Specify line voltage (110-120 or 220-240 V), if it cannot detect automatically (default: 230 V)\n");
printf(" numOfBytesFromUPS: The number of bytes in a UPS frame\n");
printf(" methodOfFlowControl: The flow control method engaged by the UPS\n");
printf(" validationSequence: 3 pairs to be used for validating the UPS\n");
printf(" voltage: A quad to convert the raw data to human readable voltage\n");
printf(" frequency: A pair to convert the raw data to human readable freqency\n");
printf(" batteryPercentage: A 5 tuple to convert the raw data to human readable battery percentage\n");
printf(" loadPercentage: A quad to convert the raw data to human readable load percentage\n");
return;
}
/* initialize information */
void upsdrv_initinfo(void)
{
/* write constant data for this model */
dstate_setinfo ("ups.mfr", "%s", manufacturer);
dstate_setinfo ("ups.model", "%s", modelname);
dstate_setinfo ("ups.serial", "%s", serialnumber);
dstate_setinfo ("ups.model.type", "%s", types[type].name);
dstate_setinfo ("input.voltage.nominal", "%u", linevoltage);
/* now add the instant commands */
dstate_addcmd ("test.battery.start");
dstate_addcmd ("shutdown.return");
dstate_addcmd ("shutdown.stayoff");
upsh.instcmd = instcmd;
}
/* define possible arguments */
void upsdrv_makevartable(void)
{
addvar(VAR_VALUE, "manufacturer", "Specify manufacturer name (default: 'PowerCom')");
addvar(VAR_VALUE, "linevoltage", "Specify line voltage (110-120 or 220-240 V), if it cannot detect automatically (default: 230 V)");
addvar(VAR_VALUE, "modelname", "Specify model name, because it cannot detect automagically (default: Unknown)");
addvar(VAR_VALUE, "serialnumber", "Specify serial number, because it cannot detect automatically (default: Unknown)");
addvar(VAR_VALUE, "type", "Type of UPS like 'Trust', 'Egys', 'KP625AP', 'IMP', 'KIN' or 'BNT' or 'BNT-other' (default: 'Trust')");
addvar(VAR_VALUE, "numOfBytesFromUPS", "The number of bytes in a UPS frame");
addvar(VAR_VALUE, "methodOfFlowControl", "The flow control method engaged by the UPS");
addvar(VAR_VALUE, "shutdownArguments", "The number of delay arguments and their values for the shutdown operation");
addvar(VAR_VALUE, "validationSequence", "3 pairs to be used for validating the UPS");
if ( strcmp(types[type].name, "KIN") && strcmp(types[type].name, "BNT") && strcmp(types[type].name, "IMP")) {
addvar(VAR_VALUE, "voltage", "A quad to convert the raw data to human readable voltage");
addvar(VAR_VALUE, "frequency", "A pair to convert the raw data to human readable freqency");
addvar(VAR_VALUE, "batteryPercentage", "A 5 tuple to convert the raw data to human readable battery percentage");
addvar(VAR_VALUE, "loadPercentage", "A quad to convert the raw data to human readable load percentage");
}
}
void upsdrv_cleanup(void)
{
ser_close(upsfd, device_path);
}