"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports._tr_align = exports._tr_tally = exports._tr_flush_block = exports._tr_stored_block = exports._tr_init = undefined; var _common = require("../utils/common.js"); var utils = _interopRequireWildcard(_common); function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } /* Public constants ==========================================================*/ /* ===========================================================================*/ //var Z_FILTERED = 1; //var Z_HUFFMAN_ONLY = 2; //var Z_RLE = 3; var Z_FIXED = 4; //var Z_DEFAULT_STRATEGY = 0; /* Possible values of the data_type field (though see inflate()) */ var Z_BINARY = 0; var Z_TEXT = 1; //var Z_ASCII = 1; // = Z_TEXT var Z_UNKNOWN = 2; /*============================================================================*/ function zero(buf) { var len = buf.length;while (--len >= 0) { buf[len] = 0; } } // From zutil.h var STORED_BLOCK = 0; var STATIC_TREES = 1; var DYN_TREES = 2; /* The three kinds of block type */ var MIN_MATCH = 3; var MAX_MATCH = 258; /* The minimum and maximum match lengths */ // From deflate.h /* =========================================================================== * Internal compression state. */ var LENGTH_CODES = 29; /* number of length codes, not counting the special END_BLOCK code */ var LITERALS = 256; /* number of literal bytes 0..255 */ var L_CODES = LITERALS + 1 + LENGTH_CODES; /* number of Literal or Length codes, including the END_BLOCK code */ var D_CODES = 30; /* number of distance codes */ var BL_CODES = 19; /* number of codes used to transfer the bit lengths */ var HEAP_SIZE = 2 * L_CODES + 1; /* maximum heap size */ var MAX_BITS = 15; /* All codes must not exceed MAX_BITS bits */ var Buf_size = 16; /* size of bit buffer in bi_buf */ /* =========================================================================== * Constants */ var MAX_BL_BITS = 7; /* Bit length codes must not exceed MAX_BL_BITS bits */ var END_BLOCK = 256; /* end of block literal code */ var REP_3_6 = 16; /* repeat previous bit length 3-6 times (2 bits of repeat count) */ var REPZ_3_10 = 17; /* repeat a zero length 3-10 times (3 bits of repeat count) */ var REPZ_11_138 = 18; /* repeat a zero length 11-138 times (7 bits of repeat count) */ /* eslint-disable comma-spacing,array-bracket-spacing */ var extra_lbits = /* extra bits for each length code */ [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0]; var extra_dbits = /* extra bits for each distance code */ [0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13]; var extra_blbits = /* extra bits for each bit length code */ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7]; var bl_order = [16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15]; /* eslint-enable comma-spacing,array-bracket-spacing */ /* The lengths of the bit length codes are sent in order of decreasing * probability, to avoid transmitting the lengths for unused bit length codes. */ /* =========================================================================== * Local data. These are initialized only once. */ // We pre-fill arrays with 0 to avoid uninitialized gaps var DIST_CODE_LEN = 512; /* see definition of array dist_code below */ // !!!! Use flat array insdead of structure, Freq = i*2, Len = i*2+1 var static_ltree = new Array((L_CODES + 2) * 2); zero(static_ltree); /* The static literal tree. Since the bit lengths are imposed, there is no * need for the L_CODES extra codes used during heap construction. However * The codes 286 and 287 are needed to build a canonical tree (see _tr_init * below). */ var static_dtree = new Array(D_CODES * 2); zero(static_dtree); /* The static distance tree. (Actually a trivial tree since all codes use * 5 bits.) */ var _dist_code = new Array(DIST_CODE_LEN); zero(_dist_code); /* Distance codes. The first 256 values correspond to the distances * 3 .. 258, the last 256 values correspond to the top 8 bits of * the 15 bit distances. */ var _length_code = new Array(MAX_MATCH - MIN_MATCH + 1); zero(_length_code); /* length code for each normalized match length (0 == MIN_MATCH) */ var base_length = new Array(LENGTH_CODES); zero(base_length); /* First normalized length for each code (0 = MIN_MATCH) */ var base_dist = new Array(D_CODES); zero(base_dist); /* First normalized distance for each code (0 = distance of 1) */ function StaticTreeDesc(static_tree, extra_bits, extra_base, elems, max_length) { this.static_tree = static_tree; /* static tree or NULL */ this.extra_bits = extra_bits; /* extra bits for each code or NULL */ this.extra_base = extra_base; /* base index for extra_bits */ this.elems = elems; /* max number of elements in the tree */ this.max_length = max_length; /* max bit length for the codes */ // show if `static_tree` has data or dummy - needed for monomorphic objects this.has_stree = static_tree && static_tree.length; } var static_l_desc; var static_d_desc; var static_bl_desc; function TreeDesc(dyn_tree, stat_desc) { this.dyn_tree = dyn_tree; /* the dynamic tree */ this.max_code = 0; /* largest code with non zero frequency */ this.stat_desc = stat_desc; /* the corresponding static tree */ } function d_code(dist) { return dist < 256 ? _dist_code[dist] : _dist_code[256 + (dist >>> 7)]; } /* =========================================================================== * Output a short LSB first on the stream. * IN assertion: there is enough room in pendingBuf. */ function put_short(s, w) { // put_byte(s, (uch)((w) & 0xff)); // put_byte(s, (uch)((ush)(w) >> 8)); s.pending_buf[s.pending++] = w & 0xff; s.pending_buf[s.pending++] = w >>> 8 & 0xff; } /* =========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ function send_bits(s, value, length) { if (s.bi_valid > Buf_size - length) { s.bi_buf |= value << s.bi_valid & 0xffff; put_short(s, s.bi_buf); s.bi_buf = value >> Buf_size - s.bi_valid; s.bi_valid += length - Buf_size; } else { s.bi_buf |= value << s.bi_valid & 0xffff; s.bi_valid += length; } } function send_code(s, c, tree) { send_bits(s, tree[c * 2] /*.Code*/, tree[c * 2 + 1] /*.Len*/); } /* =========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ function bi_reverse(code, len) { var res = 0; do { res |= code & 1; code >>>= 1; res <<= 1; } while (--len > 0); return res >>> 1; } /* =========================================================================== * Flush the bit buffer, keeping at most 7 bits in it. */ function bi_flush(s) { if (s.bi_valid === 16) { put_short(s, s.bi_buf); s.bi_buf = 0; s.bi_valid = 0; } else if (s.bi_valid >= 8) { s.pending_buf[s.pending++] = s.bi_buf & 0xff; s.bi_buf >>= 8; s.bi_valid -= 8; } } /* =========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ function gen_bitlen(s, desc) // deflate_state *s; // tree_desc *desc; /* the tree descriptor */ { var tree = desc.dyn_tree; var max_code = desc.max_code; var stree = desc.stat_desc.static_tree; var has_stree = desc.stat_desc.has_stree; var extra = desc.stat_desc.extra_bits; var base = desc.stat_desc.extra_base; var max_length = desc.stat_desc.max_length; var h; /* heap index */ var n, m; /* iterate over the tree elements */ var bits; /* bit length */ var xbits; /* extra bits */ var f; /* frequency */ var overflow = 0; /* number of elements with bit length too large */ for (bits = 0; bits <= MAX_BITS; bits++) { s.bl_count[bits] = 0; } /* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[s.heap[s.heap_max] * 2 + 1] /*.Len*/ = 0; /* root of the heap */ for (h = s.heap_max + 1; h < HEAP_SIZE; h++) { n = s.heap[h]; bits = tree[tree[n * 2 + 1] /*.Dad*/ * 2 + 1] /*.Len*/ + 1; if (bits > max_length) { bits = max_length; overflow++; } tree[n * 2 + 1] /*.Len*/ = bits; /* We overwrite tree[n].Dad which is no longer needed */ if (n > max_code) { continue; } /* not a leaf node */ s.bl_count[bits]++; xbits = 0; if (n >= base) { xbits = extra[n - base]; } f = tree[n * 2] /*.Freq*/; s.opt_len += f * (bits + xbits); if (has_stree) { s.static_len += f * (stree[n * 2 + 1] /*.Len*/ + xbits); } } if (overflow === 0) { return; } // Trace((stderr,"\nbit length overflow\n")); /* This happens for example on obj2 and pic of the Calgary corpus */ /* Find the first bit length which could increase: */ do { bits = max_length - 1; while (s.bl_count[bits] === 0) { bits--; } s.bl_count[bits]--; /* move one leaf down the tree */ s.bl_count[bits + 1] += 2; /* move one overflow item as its brother */ s.bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while (overflow > 0); /* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for (bits = max_length; bits !== 0; bits--) { n = s.bl_count[bits]; while (n !== 0) { m = s.heap[--h]; if (m > max_code) { continue; } if (tree[m * 2 + 1] /*.Len*/ !== bits) { // Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); s.opt_len += (bits - tree[m * 2 + 1] /*.Len*/) * tree[m * 2] /*.Freq*/; tree[m * 2 + 1] /*.Len*/ = bits; } n--; } } } /* =========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ function gen_codes(tree, max_code, bl_count) // ct_data *tree; /* the tree to decorate */ // int max_code; /* largest code with non zero frequency */ // ushf *bl_count; /* number of codes at each bit length */ { var next_code = new Array(MAX_BITS + 1); /* next code value for each bit length */ var code = 0; /* running code value */ var bits; /* bit index */ var n; /* code index */ /* The distribution counts are first used to generate the code values * without bit reversal. */ for (bits = 1; bits <= MAX_BITS; bits++) { next_code[bits] = code = code + bl_count[bits - 1] << 1; } /* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ //Assert (code + bl_count[MAX_BITS]-1 == (1< length code (0..28) */ length = 0; for (code = 0; code < LENGTH_CODES - 1; code++) { base_length[code] = length; for (n = 0; n < 1 << extra_lbits[code]; n++) { _length_code[length++] = code; } } //Assert (length == 256, "tr_static_init: length != 256"); /* Note that the length 255 (match length 258) can be represented * in two different ways: code 284 + 5 bits or code 285, so we * overwrite length_code[255] to use the best encoding: */ _length_code[length - 1] = code; /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ dist = 0; for (code = 0; code < 16; code++) { base_dist[code] = dist; for (n = 0; n < 1 << extra_dbits[code]; n++) { _dist_code[dist++] = code; } } //Assert (dist == 256, "tr_static_init: dist != 256"); dist >>= 7; /* from now on, all distances are divided by 128 */ for (; code < D_CODES; code++) { base_dist[code] = dist << 7; for (n = 0; n < 1 << extra_dbits[code] - 7; n++) { _dist_code[256 + dist++] = code; } } //Assert (dist == 256, "tr_static_init: 256+dist != 512"); /* Construct the codes of the static literal tree */ for (bits = 0; bits <= MAX_BITS; bits++) { bl_count[bits] = 0; } n = 0; while (n <= 143) { static_ltree[n * 2 + 1] /*.Len*/ = 8; n++; bl_count[8]++; } while (n <= 255) { static_ltree[n * 2 + 1] /*.Len*/ = 9; n++; bl_count[9]++; } while (n <= 279) { static_ltree[n * 2 + 1] /*.Len*/ = 7; n++; bl_count[7]++; } while (n <= 287) { static_ltree[n * 2 + 1] /*.Len*/ = 8; n++; bl_count[8]++; } /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ gen_codes(static_ltree, L_CODES + 1, bl_count); /* The static distance tree is trivial: */ for (n = 0; n < D_CODES; n++) { static_dtree[n * 2 + 1] /*.Len*/ = 5; static_dtree[n * 2] /*.Code*/ = bi_reverse(n, 5); } // Now data ready and we can init static trees static_l_desc = new StaticTreeDesc(static_ltree, extra_lbits, LITERALS + 1, L_CODES, MAX_BITS); static_d_desc = new StaticTreeDesc(static_dtree, extra_dbits, 0, D_CODES, MAX_BITS); static_bl_desc = new StaticTreeDesc(new Array(0), extra_blbits, 0, BL_CODES, MAX_BL_BITS); //static_init_done = true; } /* =========================================================================== * Initialize a new block. */ function init_block(s) { var n; /* iterates over tree elements */ /* Initialize the trees. */ for (n = 0; n < L_CODES; n++) { s.dyn_ltree[n * 2] /*.Freq*/ = 0; } for (n = 0; n < D_CODES; n++) { s.dyn_dtree[n * 2] /*.Freq*/ = 0; } for (n = 0; n < BL_CODES; n++) { s.bl_tree[n * 2] /*.Freq*/ = 0; } s.dyn_ltree[END_BLOCK * 2] /*.Freq*/ = 1; s.opt_len = s.static_len = 0; s.last_lit = s.matches = 0; } /* =========================================================================== * Flush the bit buffer and align the output on a byte boundary */ function bi_windup(s) { if (s.bi_valid > 8) { put_short(s, s.bi_buf); } else if (s.bi_valid > 0) { //put_byte(s, (Byte)s->bi_buf); s.pending_buf[s.pending++] = s.bi_buf; } s.bi_buf = 0; s.bi_valid = 0; } /* =========================================================================== * Copy a stored block, storing first the length and its * one's complement if requested. */ function copy_block(s, buf, len, header) //DeflateState *s; //charf *buf; /* the input data */ //unsigned len; /* its length */ //int header; /* true if block header must be written */ { bi_windup(s); /* align on byte boundary */ if (header) { put_short(s, len); put_short(s, ~len); } // while (len--) { // put_byte(s, *buf++); // } utils.arraySet(s.pending_buf, s.window, buf, len, s.pending); s.pending += len; } /* =========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ function smaller(tree, n, m, depth) { var _n2 = n * 2; var _m2 = m * 2; return tree[_n2] /*.Freq*/ < tree[_m2] /*.Freq*/ || tree[_n2] /*.Freq*/ === tree[_m2] /*.Freq*/ && depth[n] <= depth[m]; } /* =========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ function pqdownheap(s, tree, k) // deflate_state *s; // ct_data *tree; /* the tree to restore */ // int k; /* node to move down */ { var v = s.heap[k]; var j = k << 1; /* left son of k */ while (j <= s.heap_len) { /* Set j to the smallest of the two sons: */ if (j < s.heap_len && smaller(tree, s.heap[j + 1], s.heap[j], s.depth)) { j++; } /* Exit if v is smaller than both sons */ if (smaller(tree, v, s.heap[j], s.depth)) { break; } /* Exchange v with the smallest son */ s.heap[k] = s.heap[j]; k = j; /* And continue down the tree, setting j to the left son of k */ j <<= 1; } s.heap[k] = v; } // inlined manually // var SMALLEST = 1; /* =========================================================================== * Send the block data compressed using the given Huffman trees */ function compress_block(s, ltree, dtree) // deflate_state *s; // const ct_data *ltree; /* literal tree */ // const ct_data *dtree; /* distance tree */ { var dist; /* distance of matched string */ var lc; /* match length or unmatched char (if dist == 0) */ var lx = 0; /* running index in l_buf */ var code; /* the code to send */ var extra; /* number of extra bits to send */ if (s.last_lit !== 0) { do { dist = s.pending_buf[s.d_buf + lx * 2] << 8 | s.pending_buf[s.d_buf + lx * 2 + 1]; lc = s.pending_buf[s.l_buf + lx]; lx++; if (dist === 0) { send_code(s, lc, ltree); /* send a literal byte */ //Tracecv(isgraph(lc), (stderr," '%c' ", lc)); } else { /* Here, lc is the match length - MIN_MATCH */ code = _length_code[lc]; send_code(s, code + LITERALS + 1, ltree); /* send the length code */ extra = extra_lbits[code]; if (extra !== 0) { lc -= base_length[code]; send_bits(s, lc, extra); /* send the extra length bits */ } dist--; /* dist is now the match distance - 1 */ code = d_code(dist); //Assert (code < D_CODES, "bad d_code"); send_code(s, code, dtree); /* send the distance code */ extra = extra_dbits[code]; if (extra !== 0) { dist -= base_dist[code]; send_bits(s, dist, extra); /* send the extra distance bits */ } } /* literal or match pair ? */ /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ //Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, // "pendingBuf overflow"); } while (lx < s.last_lit); } send_code(s, END_BLOCK, ltree); } /* =========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length * and corresponding code. The length opt_len is updated; static_len is * also updated if stree is not null. The field max_code is set. */ function build_tree(s, desc) // deflate_state *s; // tree_desc *desc; /* the tree descriptor */ { var tree = desc.dyn_tree; var stree = desc.stat_desc.static_tree; var has_stree = desc.stat_desc.has_stree; var elems = desc.stat_desc.elems; var n, m; /* iterate over heap elements */ var max_code = -1; /* largest code with non zero frequency */ var node; /* new node being created */ /* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ s.heap_len = 0; s.heap_max = HEAP_SIZE; for (n = 0; n < elems; n++) { if (tree[n * 2] /*.Freq*/ !== 0) { s.heap[++s.heap_len] = max_code = n; s.depth[n] = 0; } else { tree[n * 2 + 1] /*.Len*/ = 0; } } /* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while (s.heap_len < 2) { node = s.heap[++s.heap_len] = max_code < 2 ? ++max_code : 0; tree[node * 2] /*.Freq*/ = 1; s.depth[node] = 0; s.opt_len--; if (has_stree) { s.static_len -= stree[node * 2 + 1] /*.Len*/; } /* node is 0 or 1 so it does not have extra bits */ } desc.max_code = max_code; /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for (n = s.heap_len >> 1 /*int /2*/; n >= 1; n--) { pqdownheap(s, tree, n); } /* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ node = elems; /* next internal node of the tree */ do { //pqremove(s, tree, n); /* n = node of least frequency */ /*** pqremove ***/ n = s.heap[1 /*SMALLEST*/]; s.heap[1 /*SMALLEST*/] = s.heap[s.heap_len--]; pqdownheap(s, tree, 1 /*SMALLEST*/); /***/ m = s.heap[1 /*SMALLEST*/]; /* m = node of next least frequency */ s.heap[--s.heap_max] = n; /* keep the nodes sorted by frequency */ s.heap[--s.heap_max] = m; /* Create a new node father of n and m */ tree[node * 2] /*.Freq*/ = tree[n * 2] /*.Freq*/ + tree[m * 2] /*.Freq*/; s.depth[node] = (s.depth[n] >= s.depth[m] ? s.depth[n] : s.depth[m]) + 1; tree[n * 2 + 1] /*.Dad*/ = tree[m * 2 + 1] /*.Dad*/ = node; /* and insert the new node in the heap */ s.heap[1 /*SMALLEST*/] = node++; pqdownheap(s, tree, 1 /*SMALLEST*/); } while (s.heap_len >= 2); s.heap[--s.heap_max] = s.heap[1 /*SMALLEST*/]; /* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ gen_bitlen(s, desc); /* The field len is now set, we can generate the bit codes */ gen_codes(tree, max_code, s.bl_count); } /* =========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. */ function scan_tree(s, tree, max_code) // deflate_state *s; // ct_data *tree; /* the tree to be scanned */ // int max_code; /* and its largest code of non zero frequency */ { var n; /* iterates over all tree elements */ var prevlen = -1; /* last emitted length */ var curlen; /* length of current code */ var nextlen = tree[0 * 2 + 1] /*.Len*/; /* length of next code */ var count = 0; /* repeat count of the current code */ var max_count = 7; /* max repeat count */ var min_count = 4; /* min repeat count */ if (nextlen === 0) { max_count = 138; min_count = 3; } tree[(max_code + 1) * 2 + 1] /*.Len*/ = 0xffff; /* guard */ for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1] /*.Len*/; if (++count < max_count && curlen === nextlen) { continue; } else if (count < min_count) { s.bl_tree[curlen * 2] /*.Freq*/ += count; } else if (curlen !== 0) { if (curlen !== prevlen) { s.bl_tree[curlen * 2] /*.Freq*/++; } s.bl_tree[REP_3_6 * 2] /*.Freq*/++; } else if (count <= 10) { s.bl_tree[REPZ_3_10 * 2] /*.Freq*/++; } else { s.bl_tree[REPZ_11_138 * 2] /*.Freq*/++; } count = 0; prevlen = curlen; if (nextlen === 0) { max_count = 138; min_count = 3; } else if (curlen === nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } } } /* =========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ function send_tree(s, tree, max_code) // deflate_state *s; // ct_data *tree; /* the tree to be scanned */ // int max_code; /* and its largest code of non zero frequency */ { var n; /* iterates over all tree elements */ var prevlen = -1; /* last emitted length */ var curlen; /* length of current code */ var nextlen = tree[0 * 2 + 1] /*.Len*/; /* length of next code */ var count = 0; /* repeat count of the current code */ var max_count = 7; /* max repeat count */ var min_count = 4; /* min repeat count */ /* tree[max_code+1].Len = -1; */ /* guard already set */ if (nextlen === 0) { max_count = 138; min_count = 3; } for (n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1] /*.Len*/; if (++count < max_count && curlen === nextlen) { continue; } else if (count < min_count) { do { send_code(s, curlen, s.bl_tree); } while (--count !== 0); } else if (curlen !== 0) { if (curlen !== prevlen) { send_code(s, curlen, s.bl_tree); count--; } //Assert(count >= 3 && count <= 6, " 3_6?"); send_code(s, REP_3_6, s.bl_tree); send_bits(s, count - 3, 2); } else if (count <= 10) { send_code(s, REPZ_3_10, s.bl_tree); send_bits(s, count - 3, 3); } else { send_code(s, REPZ_11_138, s.bl_tree); send_bits(s, count - 11, 7); } count = 0; prevlen = curlen; if (nextlen === 0) { max_count = 138; min_count = 3; } else if (curlen === nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } } } /* =========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ function build_bl_tree(s) { var max_blindex; /* index of last bit length code of non zero freq */ /* Determine the bit length frequencies for literal and distance trees */ scan_tree(s, s.dyn_ltree, s.l_desc.max_code); scan_tree(s, s.dyn_dtree, s.d_desc.max_code); /* Build the bit length tree: */ build_tree(s, s.bl_desc); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */ /* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for (max_blindex = BL_CODES - 1; max_blindex >= 3; max_blindex--) { if (s.bl_tree[bl_order[max_blindex] * 2 + 1] /*.Len*/ !== 0) { break; } } /* Update opt_len to include the bit length tree and counts */ s.opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4; //Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", // s->opt_len, s->static_len)); return max_blindex; } /* =========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ function send_all_trees(s, lcodes, dcodes, blcodes) // deflate_state *s; // int lcodes, dcodes, blcodes; /* number of codes for each tree */ { var rank; /* index in bl_order */ //Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); //Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, // "too many codes"); //Tracev((stderr, "\nbl counts: ")); send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ send_bits(s, dcodes - 1, 5); send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ for (rank = 0; rank < blcodes; rank++) { //Tracev((stderr, "\nbl code %2d ", bl_order[rank])); send_bits(s, s.bl_tree[bl_order[rank] * 2 + 1] /*.Len*/, 3); } //Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); send_tree(s, s.dyn_ltree, lcodes - 1); /* literal tree */ //Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); send_tree(s, s.dyn_dtree, dcodes - 1); /* distance tree */ //Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); } /* =========================================================================== * Check if the data type is TEXT or BINARY, using the following algorithm: * - TEXT if the two conditions below are satisfied: * a) There are no non-portable control characters belonging to the * "black list" (0..6, 14..25, 28..31). * b) There is at least one printable character belonging to the * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). * - BINARY otherwise. * - The following partially-portable control characters form a * "gray list" that is ignored in this detection algorithm: * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). * IN assertion: the fields Freq of dyn_ltree are set. */ function detect_data_type(s) { /* black_mask is the bit mask of black-listed bytes * set bits 0..6, 14..25, and 28..31 * 0xf3ffc07f = binary 11110011111111111100000001111111 */ var black_mask = 0xf3ffc07f; var n; /* Check for non-textual ("black-listed") bytes. */ for (n = 0; n <= 31; n++, black_mask >>>= 1) { if (black_mask & 1 && s.dyn_ltree[n * 2] /*.Freq*/ !== 0) { return Z_BINARY; } } /* Check for textual ("white-listed") bytes. */ if (s.dyn_ltree[9 * 2] /*.Freq*/ !== 0 || s.dyn_ltree[10 * 2] /*.Freq*/ !== 0 || s.dyn_ltree[13 * 2] /*.Freq*/ !== 0) { return Z_TEXT; } for (n = 32; n < LITERALS; n++) { if (s.dyn_ltree[n * 2] /*.Freq*/ !== 0) { return Z_TEXT; } } /* There are no "black-listed" or "white-listed" bytes: * this stream either is empty or has tolerated ("gray-listed") bytes only. */ return Z_BINARY; } var static_init_done = false; /* =========================================================================== * Initialize the tree data structures for a new zlib stream. */ function _tr_init(s) { if (!static_init_done) { tr_static_init(); static_init_done = true; } s.l_desc = new TreeDesc(s.dyn_ltree, static_l_desc); s.d_desc = new TreeDesc(s.dyn_dtree, static_d_desc); s.bl_desc = new TreeDesc(s.bl_tree, static_bl_desc); s.bi_buf = 0; s.bi_valid = 0; /* Initialize the first block of the first file: */ init_block(s); } /* =========================================================================== * Send a stored block */ function _tr_stored_block(s, buf, stored_len, last) //DeflateState *s; //charf *buf; /* input block */ //ulg stored_len; /* length of input block */ //int last; /* one if this is the last block for a file */ { send_bits(s, (STORED_BLOCK << 1) + (last ? 1 : 0), 3); /* send block type */ copy_block(s, buf, stored_len, true); /* with header */ } /* =========================================================================== * Send one empty static block to give enough lookahead for inflate. * This takes 10 bits, of which 7 may remain in the bit buffer. */ function _tr_align(s) { send_bits(s, STATIC_TREES << 1, 3); send_code(s, END_BLOCK, static_ltree); bi_flush(s); } /* =========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ function _tr_flush_block(s, buf, stored_len, last) //DeflateState *s; //charf *buf; /* input block, or NULL if too old */ //ulg stored_len; /* length of input block */ //int last; /* one if this is the last block for a file */ { var opt_lenb, static_lenb; /* opt_len and static_len in bytes */ var max_blindex = 0; /* index of last bit length code of non zero freq */ /* Build the Huffman trees unless a stored block is forced */ if (s.level > 0) { /* Check if the file is binary or text */ if (s.strm.data_type === Z_UNKNOWN) { s.strm.data_type = detect_data_type(s); } /* Construct the literal and distance trees */ build_tree(s, s.l_desc); // Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, // s->static_len)); build_tree(s, s.d_desc); // Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, // s->static_len)); /* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */ /* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = build_bl_tree(s); /* Determine the best encoding. Compute the block lengths in bytes. */ opt_lenb = s.opt_len + 3 + 7 >>> 3; static_lenb = s.static_len + 3 + 7 >>> 3; // Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", // opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, // s->last_lit)); if (static_lenb <= opt_lenb) { opt_lenb = static_lenb; } } else { // Assert(buf != (char*)0, "lost buf"); opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ } if (stored_len + 4 <= opt_lenb && buf !== -1) { /* 4: two words for the lengths */ /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ _tr_stored_block(s, buf, stored_len, last); } else if (s.strategy === Z_FIXED || static_lenb === opt_lenb) { send_bits(s, (STATIC_TREES << 1) + (last ? 1 : 0), 3); compress_block(s, static_ltree, static_dtree); } else { send_bits(s, (DYN_TREES << 1) + (last ? 1 : 0), 3); send_all_trees(s, s.l_desc.max_code + 1, s.d_desc.max_code + 1, max_blindex + 1); compress_block(s, s.dyn_ltree, s.dyn_dtree); } // Assert (s->compressed_len == s->bits_sent, "bad compressed size"); /* The above check is made mod 2^32, for files larger than 512 MB * and uLong implemented on 32 bits. */ init_block(s); if (last) { bi_windup(s); } // Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, // s->compressed_len-7*last)); } /* =========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ function _tr_tally(s, dist, lc) // deflate_state *s; // unsigned dist; /* distance of matched string */ // unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ { //var out_length, in_length, dcode; s.pending_buf[s.d_buf + s.last_lit * 2] = dist >>> 8 & 0xff; s.pending_buf[s.d_buf + s.last_lit * 2 + 1] = dist & 0xff; s.pending_buf[s.l_buf + s.last_lit] = lc & 0xff; s.last_lit++; if (dist === 0) { /* lc is the unmatched char */ s.dyn_ltree[lc * 2] /*.Freq*/++; } else { s.matches++; /* Here, lc is the match length - MIN_MATCH */ dist--; /* dist = match distance - 1 */ //Assert((ush)dist < (ush)MAX_DIST(s) && // (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && // (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); s.dyn_ltree[(_length_code[lc] + LITERALS + 1) * 2] /*.Freq*/++; s.dyn_dtree[d_code(dist) * 2] /*.Freq*/++; } // (!) This block is disabled in zlib defailts, // don't enable it for binary compatibility //#ifdef TRUNCATE_BLOCK // /* Try to guess if it is profitable to stop the current block here */ // if ((s.last_lit & 0x1fff) === 0 && s.level > 2) { // /* Compute an upper bound for the compressed length */ // out_length = s.last_lit*8; // in_length = s.strstart - s.block_start; // // for (dcode = 0; dcode < D_CODES; dcode++) { // out_length += s.dyn_dtree[dcode*2]/*.Freq*/ * (5 + extra_dbits[dcode]); // } // out_length >>>= 3; // //Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", // // s->last_lit, in_length, out_length, // // 100L - out_length*100L/in_length)); // if (s.matches < (s.last_lit>>1)/*int /2*/ && out_length < (in_length>>1)/*int /2*/) { // return true; // } // } //#endif return s.last_lit === s.lit_bufsize - 1; /* We avoid equality with lit_bufsize because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ } exports._tr_init = _tr_init; exports._tr_stored_block = _tr_stored_block; exports._tr_flush_block = _tr_flush_block; exports._tr_tally = _tr_tally; exports._tr_align = _tr_align;