""" IPy - class and tools for handling of IPv4 and IPv6 addresses and networks. See README file for learn how to use IPy. Further Information might be available at: http://software.inl.fr/trac/trac.cgi/wiki/IPy """ # $HeadURL: https://svn.inl.fr/inl-svn/src/tools/ipy/tags/IPy-0.70/IPy.py $ # $Id: IPy.py 19309 2009-10-29 10:21:13Z haypo $ __rcsid__ = '$Id: IPy.py 19309 2009-10-29 10:21:13Z haypo $' __version__ = '0.70' import types # Definition of the Ranges for IPv4 IPs # this should include www.iana.org/assignments/ipv4-address-space # and www.iana.org/assignments/multicast-addresses IPv4ranges = { '0': 'PUBLIC', # fall back '00000000': 'PRIVATE', # 0/8 '00001010': 'PRIVATE', # 10/8 '01111111': 'PRIVATE', # 127.0/8 '1': 'PUBLIC', # fall back '1010100111111110': 'PRIVATE', # 169.254/16 '101011000001': 'PRIVATE', # 172.16/12 '1100000010101000': 'PRIVATE', # 192.168/16 '11011111': 'RESERVED', # 223/8 '111': 'RESERVED' # 224/3 } # Definition of the Ranges for IPv6 IPs # see also www.iana.org/assignments/ipv6-address-space, # www.iana.org/assignments/ipv6-tla-assignments, # www.iana.org/assignments/ipv6-multicast-addresses, # www.iana.org/assignments/ipv6-anycast-addresses IPv6ranges = { '00000000': 'RESERVED', # ::/8 '00000001': 'UNASSIGNED', # 100::/8 '0000001': 'NSAP', # 200::/7 '0000010': 'IPX', # 400::/7 '0000011': 'UNASSIGNED', # 600::/7 '00001': 'UNASSIGNED', # 800::/5 '0001': 'UNASSIGNED', # 1000::/4 '0010000000000000': 'RESERVED', # 2000::/16 Reserved '0010000000000001': 'ASSIGNABLE', # 2001::/16 Sub-TLA Assignments [RFC2450] '00100000000000010000000': 'ASSIGNABLE IANA', # 2001:0000::/29 - 2001:01F8::/29 IANA '00100000000000010000001': 'ASSIGNABLE APNIC', # 2001:0200::/29 - 2001:03F8::/29 APNIC '00100000000000010000010': 'ASSIGNABLE ARIN', # 2001:0400::/29 - 2001:05F8::/29 ARIN '00100000000000010000011': 'ASSIGNABLE RIPE', # 2001:0600::/29 - 2001:07F8::/29 RIPE NCC '0010000000000010': '6TO4', # 2002::/16 "6to4" [RFC3056] '0011111111111110': '6BONE', # 3FFE::/16 6bone Testing [RFC2471] '0011111111111111': 'RESERVED', # 3FFF::/16 Reserved '010': 'GLOBAL-UNICAST', # 4000::/3 '011': 'UNASSIGNED', # 6000::/3 '100': 'GEO-UNICAST', # 8000::/3 '101': 'UNASSIGNED', # A000::/3 '110': 'UNASSIGNED', # C000::/3 '1110': 'UNASSIGNED', # E000::/4 '11110': 'UNASSIGNED', # F000::/5 '111110': 'UNASSIGNED', # F800::/6 '1111110': 'UNASSIGNED', # FC00::/7 '111111100': 'UNASSIGNED', # FE00::/9 '1111111010': 'LINKLOCAL', # FE80::/10 '1111111011': 'SITELOCAL', # FEC0::/10 '11111111': 'MULTICAST', # FF00::/8 '0' * 96: 'IPV4COMP', # ::/96 '0' * 80 + '1' * 16: 'IPV4MAP', # ::FFFF:0:0/96 '0' * 128: 'UNSPECIFIED', # ::/128 '0' * 127 + '1': 'LOOPBACK' # ::1/128 } class IPint: """Handling of IP addresses returning integers. Use class IP instead because some features are not implemented for IPint.""" def __init__(self, data, ipversion=0, make_net=0): """Create an instance of an IP object. Data can be a network specification or a single IP. IP addresses can be specified in all forms understood by parseAddress(). The size of a network can be specified as /prefixlen a.b.c.0/24 2001:658:22a:cafe::/64 -lastIP a.b.c.0-a.b.c.255 2001:658:22a:cafe::-2001:658:22a:cafe:ffff:ffff:ffff:ffff /decimal netmask a.b.c.d/255.255.255.0 not supported for IPv6 If no size specification is given a size of 1 address (/32 for IPv4 and /128 for IPv6) is assumed. If make_net is True, an IP address will be transformed into the network address by applying the specified netmask. >>> print IP('127.0.0.0/8') 127.0.0.0/8 >>> print IP('127.0.0.0/255.0.0.0') 127.0.0.0/8 >>> print IP('127.0.0.0-127.255.255.255') 127.0.0.0/8 >>> print IP('127.0.0.1/255.0.0.0', make_net=True) 127.0.0.0/8 See module documentation for more examples. """ # Print no Prefixlen for /32 and /128 self.NoPrefixForSingleIp = 1 # Do we want prefix printed by default? see _printPrefix() self.WantPrefixLen = None netbits = 0 prefixlen = -1 # handling of non string values in constructor if type(data) == types.IntType or type(data) == types.LongType: self.ip = long(data) if ipversion == 0: if self.ip < 0x100000000L: ipversion = 4 else: ipversion = 6 if ipversion == 4: prefixlen = 32 elif ipversion == 6: prefixlen = 128 else: raise ValueError, "only IPv4 and IPv6 supported" self._ipversion = ipversion self._prefixlen = prefixlen # handle IP instance as an parameter elif isinstance(data, IPint): self._ipversion = data._ipversion self._prefixlen = data._prefixlen self.ip = data.ip else: # TODO: refactor me! # splitting of a string into IP and prefixlen et. al. x = data.split('-') if len(x) == 2: # a.b.c.0-a.b.c.255 specification ? (ip, last) = x (self.ip, parsedVersion) = parseAddress(ip) if parsedVersion != 4: raise ValueError, "first-last notation only allowed for IPv4" (last, lastversion) = parseAddress(last) if lastversion != 4: raise ValueError, "last address should be IPv4, too" if last < self.ip: raise ValueError, "last address should be larger than first" size = last - self.ip netbits = _count1Bits(size) # make sure the broadcast is the same as the last ip # otherwise it will return /16 for something like: # 192.168.0.0-192.168.191.255 if IP('%s/%s' % (ip, 32 - netbits)).broadcast().int() != last: raise ValueError, \ "the range %s is not on a network boundary." % data elif len(x) == 1: x = data.split('/') # if no prefix is given use defaults if len(x) == 1: ip = x[0] prefixlen = -1 elif len(x) > 2: raise ValueError, "only one '/' allowed in IP Address" else: (ip, prefixlen) = x if prefixlen.find('.') != -1: # check if the user might have used a netmask like # a.b.c.d/255.255.255.0 (netmask, vers) = parseAddress(prefixlen) if vers != 4: raise ValueError, "netmask must be IPv4" prefixlen = _netmaskToPrefixlen(netmask) elif len(x) > 2: raise ValueError, "only one '-' allowed in IP Address" else: raise ValueError, "can't parse" (self.ip, parsedVersion) = parseAddress(ip) if ipversion == 0: ipversion = parsedVersion if prefixlen == -1: if ipversion == 4: prefixlen = 32 - netbits elif ipversion == 6: prefixlen = 128 - netbits else: raise ValueError, "only IPv4 and IPv6 supported" self._ipversion = ipversion self._prefixlen = int(prefixlen) if make_net: self.ip = self.ip & _prefixlenToNetmask(self._prefixlen, self._ipversion) if not _checkNetaddrWorksWithPrefixlen(self.ip, self._prefixlen, self._ipversion): raise ValueError, "%s has invalid prefix length (%s)" % (repr(self), self._prefixlen) def int(self): """Return the first / base / network addess as an (long) integer. The same as IP[0]. >>> "%X" % IP('10.0.0.0/8').int() 'A000000' """ return self.ip def version(self): """Return the IP version of this Object. >>> IP('10.0.0.0/8').version() 4 >>> IP('::1').version() 6 """ return self._ipversion def prefixlen(self): """Returns Network Prefixlen. >>> IP('10.0.0.0/8').prefixlen() 8 """ return self._prefixlen def net(self): """ Return the base (first) address of a network as an (long) integer. """ return self.int() def broadcast(self): """ Return the broadcast (last) address of a network as an (long) integer. The same as IP[-1].""" return self.int() + self.len() - 1 def _printPrefix(self, want): """Prints Prefixlen/Netmask. Not really. In fact it is our universal Netmask/Prefixlen printer. This is considered an internal function. want == 0 / None don't return anything 1.2.3.0 want == 1 /prefix 1.2.3.0/24 want == 2 /netmask 1.2.3.0/255.255.255.0 want == 3 -lastip 1.2.3.0-1.2.3.255 """ if (self._ipversion == 4 and self._prefixlen == 32) or \ (self._ipversion == 6 and self._prefixlen == 128): if self.NoPrefixForSingleIp: want = 0 if want == None: want = self.WantPrefixLen if want == None: want = 1 if want: if want == 2: # this should work with IP and IPint netmask = self.netmask() if type(netmask) != types.IntType \ and type(netmask) != types.LongType: netmask = netmask.int() return "/%s" % (intToIp(netmask, self._ipversion)) elif want == 3: return "-%s" % (intToIp(self.ip + self.len() - 1, self._ipversion)) else: # default return "/%d" % (self._prefixlen) else: return '' # We have different flavours to convert to: # strFullsize 127.0.0.1 2001:0658:022a:cafe:0200:c0ff:fe8d:08fa # strNormal 127.0.0.1 2001:658:22a:cafe:200:c0ff:fe8d:08fa # strCompressed 127.0.0.1 2001:658:22a:cafe::1 # strHex 0x7F000001L 0x20010658022ACAFE0200C0FFFE8D08FA # strDec 2130706433 42540616829182469433547974687817795834 def strBin(self, wantprefixlen=None): """Return a string representation as a binary value. >>> print IP('127.0.0.1').strBin() 01111111000000000000000000000001 """ if self._ipversion == 4: bits = 32 elif self._ipversion == 6: bits = 128 else: raise ValueError, "only IPv4 and IPv6 supported" if self.WantPrefixLen == None and wantprefixlen == None: wantprefixlen = 0 ret = _intToBin(self.ip) return '0' * (bits - len(ret)) + ret + self._printPrefix(wantprefixlen) def strCompressed(self, wantprefixlen=None): """Return a string representation in compressed format using '::' Notation. >>> IP('127.0.0.1').strCompressed() '127.0.0.1' >>> IP('2001:0658:022a:cafe:0200::1').strCompressed() '2001:658:22a:cafe:200::1' >>> IP('ffff:ffff:ffff:ffff:ffff:f:f:fffc/127').strCompressed() 'ffff:ffff:ffff:ffff:ffff:f:f:fffc/127' """ if self.WantPrefixLen == None and wantprefixlen == None: wantprefixlen = 1 if self._ipversion == 4: return self.strFullsize(wantprefixlen) else: if self.ip >> 32 == 0xffff: ipv4 = intToIp(self.ip & 0xffffffff, 4) text = "::ffff:" + ipv4 + self._printPrefix(wantprefixlen) return text # find the longest sequence of '0' hextets = [int(x, 16) for x in self.strFullsize(0).split(':')] # every element of followingzeros will contain the number of zeros # following the corresponding element of hextets followingzeros = [0] * 8 for i in range(len(hextets)): followingzeros[i] = _countFollowingZeros(hextets[i:]) # compressionpos is the position where we can start removing zeros compressionpos = followingzeros.index(max(followingzeros)) if max(followingzeros) > 1: # genererate string with the longest number of zeros cut out # now we need hextets as strings hextets = [x for x in self.strNormal(0).split(':')] while compressionpos < len(hextets) and hextets[compressionpos] == '0': del (hextets[compressionpos]) hextets.insert(compressionpos, '') if compressionpos + 1 >= len(hextets): hextets.append('') if compressionpos == 0: hextets = [''] + hextets return ':'.join(hextets) + self._printPrefix(wantprefixlen) else: return self.strNormal(0) + self._printPrefix(wantprefixlen) def strNormal(self, wantprefixlen=None): """Return a string representation in the usual format. >>> print IP('127.0.0.1').strNormal() 127.0.0.1 >>> print IP('2001:0658:022a:cafe:0200::1').strNormal() 2001:658:22a:cafe:200:0:0:1 """ if self.WantPrefixLen == None and wantprefixlen == None: wantprefixlen = 1 if self._ipversion == 4: ret = self.strFullsize(0) elif self._ipversion == 6: ret = ':'.join([hex(x)[2:] for x in [int(x, 16) for x in self.strFullsize(0).split(':')]]) else: raise ValueError, "only IPv4 and IPv6 supported" return ret + self._printPrefix(wantprefixlen) def strFullsize(self, wantprefixlen=None): """Return a string representation in the non-mangled format. >>> print IP('127.0.0.1').strFullsize() 127.0.0.1 >>> print IP('2001:0658:022a:cafe:0200::1').strFullsize() 2001:0658:022a:cafe:0200:0000:0000:0001 """ if self.WantPrefixLen == None and wantprefixlen == None: wantprefixlen = 1 return intToIp(self.ip, self._ipversion).lower() + self._printPrefix(wantprefixlen) def strHex(self, wantprefixlen=None): """Return a string representation in hex format in lower case. >>> IP('127.0.0.1').strHex() '0x7f000001' >>> IP('2001:0658:022a:cafe:0200::1').strHex() '0x20010658022acafe0200000000000001' """ if self.WantPrefixLen == None and wantprefixlen == None: wantprefixlen = 0 x = hex(self.ip) if x[-1] == 'L': x = x[:-1] return x.lower() + self._printPrefix(wantprefixlen) def strDec(self, wantprefixlen=None): """Return a string representation in decimal format. >>> print IP('127.0.0.1').strDec() 2130706433 >>> print IP('2001:0658:022a:cafe:0200::1').strDec() 42540616829182469433547762482097946625 """ if self.WantPrefixLen == None and wantprefixlen == None: wantprefixlen = 0 x = str(self.ip) if x[-1] == 'L': x = x[:-1] return x + self._printPrefix(wantprefixlen) def iptype(self): """Return a description of the IP type ('PRIVATE', 'RESERVERD', etc). >>> print IP('127.0.0.1').iptype() PRIVATE >>> print IP('192.168.1.1').iptype() PRIVATE >>> print IP('195.185.1.2').iptype() PUBLIC >>> print IP('::1').iptype() LOOPBACK >>> print IP('2001:0658:022a:cafe:0200::1').iptype() ASSIGNABLE RIPE The type information for IPv6 is out of sync with reality. """ # this could be greatly improved if self._ipversion == 4: iprange = IPv4ranges elif self._ipversion == 6: iprange = IPv6ranges else: raise ValueError, "only IPv4 and IPv6 supported" bits = self.strBin() for i in range(len(bits), 0, -1): if iprange.has_key(bits[:i]): return iprange[bits[:i]] return "unknown" def netmask(self): """Return netmask as an integer. >>> "%X" % IP('195.185.0.0/16').netmask().int() 'FFFF0000' """ # TODO: unify with prefixlenToNetmask? if self._ipversion == 4: locallen = 32 - self._prefixlen elif self._ipversion == 6: locallen = 128 - self._prefixlen else: raise ValueError, "only IPv4 and IPv6 supported" return ((2L ** self._prefixlen) - 1) << locallen def strNetmask(self): """Return netmask as an string. Mostly useful for IPv6. >>> print IP('195.185.0.0/16').strNetmask() 255.255.0.0 >>> print IP('2001:0658:022a:cafe::0/64').strNetmask() /64 """ # TODO: unify with prefixlenToNetmask? if self._ipversion == 4: locallen = 32 - self._prefixlen return intToIp(((2L ** self._prefixlen) - 1) << locallen, 4) elif self._ipversion == 6: locallen = 128 - self._prefixlen return "/%d" % self._prefixlen else: raise ValueError, "only IPv4 and IPv6 supported" def len(self): """Return the length of a subnet. >>> print IP('195.185.1.0/28').len() 16 >>> print IP('195.185.1.0/24').len() 256 """ if self._ipversion == 4: locallen = 32 - self._prefixlen elif self._ipversion == 6: locallen = 128 - self._prefixlen else: raise ValueError, "only IPv4 and IPv6 supported" return 2L ** locallen def __nonzero__(self): """All IPy objects should evaluate to true in boolean context. Ordinarily they do, but if handling a default route expressed as 0.0.0.0/0, the __len__() of the object becomes 0, which is used as the boolean value of the object. """ return 1 def __len__(self): """Return the length of a subnet. Called to implement the built-in function len(). It breaks with IPv6 Networks. Anybody knows how to fix this.""" # Python < 2.2 has this silly restriction which breaks IPv6 # how about Python >= 2.2 ... ouch - it persists! return int(self.len()) def __getitem__(self, key): """Called to implement evaluation of self[key]. >>> ip=IP('127.0.0.0/30') >>> for x in ip: ... print repr(x) ... IP('127.0.0.0') IP('127.0.0.1') IP('127.0.0.2') IP('127.0.0.3') >>> ip[2] IP('127.0.0.2') >>> ip[-1] IP('127.0.0.3') """ if type(key) != types.IntType and type(key) != types.LongType: raise TypeError if key < 0: if abs(key) <= self.len(): key = self.len() - abs(key) else: raise IndexError else: if key >= self.len(): raise IndexError return self.ip + long(key) def __contains__(self, item): """Called to implement membership test operators. Should return true if item is in self, false otherwise. Item can be other IP-objects, strings or ints. >>> IP('195.185.1.1').strHex() '0xc3b90101' >>> 0xC3B90101L in IP('195.185.1.0/24') 1 >>> '127.0.0.1' in IP('127.0.0.0/24') 1 >>> IP('127.0.0.0/24') in IP('127.0.0.0/25') 0 """ item = IP(item) if item.ip >= self.ip and item.ip < self.ip + self.len() - item.len() + 1: return 1 else: return 0 def overlaps(self, item): """Check if two IP address ranges overlap. Returns 0 if the two ranges don't overlap, 1 if the given range overlaps at the end and -1 if it does at the beginning. >>> IP('192.168.0.0/23').overlaps('192.168.1.0/24') 1 >>> IP('192.168.0.0/23').overlaps('192.168.1.255') 1 >>> IP('192.168.0.0/23').overlaps('192.168.2.0') 0 >>> IP('192.168.1.0/24').overlaps('192.168.0.0/23') -1 """ item = IP(item) if item.ip >= self.ip and item.ip < self.ip + self.len(): return 1 elif self.ip >= item.ip and self.ip < item.ip + item.len(): return -1 else: return 0 def __str__(self): """Dispatch to the prefered String Representation. Used to implement str(IP).""" return self.strCompressed() def __repr__(self): """Print a representation of the Object. Used to implement repr(IP). Returns a string which evaluates to an identical Object (without the wantprefixlen stuff - see module docstring. >>> print repr(IP('10.0.0.0/24')) IP('10.0.0.0/24') """ return ("IPint('%s')" % (self.strCompressed(1))) def __cmp__(self, other): """Called by comparison operations. Should return a negative integer if self < other, zero if self == other, a positive integer if self > other. Networks with different prefixlen are considered non-equal. Networks with the same prefixlen and differing addresses are considered non equal but are compared by their base address integer value to aid sorting of IP objects. The version of Objects is not put into consideration. >>> IP('10.0.0.0/24') > IP('10.0.0.0') 1 >>> IP('10.0.0.0/24') < IP('10.0.0.0') 0 >>> IP('10.0.0.0/24') < IP('12.0.0.0/24') 1 >>> IP('10.0.0.0/24') > IP('12.0.0.0/24') 0 """ # Im not really sure if this is "the right thing to do" if self._prefixlen < other.prefixlen(): return (other.prefixlen() - self._prefixlen) elif self._prefixlen > other.prefixlen(): # Fixed bySamuel Krempp : # The bug is quite obvious really (as 99% bugs are once # spotted, isn't it ? ;-) Because of precedence of # multiplication by -1 over the substraction, prefixlen # differences were causing the __cmp__ function to always # return positive numbers, thus the function was failing # the basic assumptions for a __cmp__ function. # Namely we could have (a > b AND b > a), when the # prefixlen of a and b are different. (eg let # a=IP("1.0.0.0/24"); b=IP("2.0.0.0/16");) thus, anything # could happen when launching a sort algorithm.. # everything's in order with the trivial, attached patch. return (self._prefixlen - other.prefixlen()) * -1 else: if self.ip < other.ip: return -1 elif self.ip > other.ip: return 1 elif self._ipversion != other._ipversion: # IP('0.0.0.0'), IP('::/0') return cmp(self._ipversion, other._ipversion) else: return 0 def __hash__(self): """Called for the key object for dictionary operations, and by the built-in function hash(). Should return a 32-bit integer usable as a hash value for dictionary operations. The only required property is that objects which compare equal have the same hash value >>> IP('10.0.0.0/24').__hash__() -167772185 """ thehash = int(-1) ip = self.ip while ip > 0: thehash = thehash ^ (ip & 0x7fffffff) ip = ip >> 32 thehash = thehash ^ self._prefixlen return int(thehash) class IP(IPint): """Class for handling IP addresses and networks.""" def net(self): """Return the base (first) address of a network as an IP object. The same as IP[0]. >>> IP('10.0.0.0/8').net() IP('10.0.0.0') """ return IP(IPint.net(self), ipversion=self._ipversion) def broadcast(self): """Return the broadcast (last) address of a network as an IP object. The same as IP[-1]. >>> IP('10.0.0.0/8').broadcast() IP('10.255.255.255') """ return IP(IPint.broadcast(self)) def netmask(self): """Return netmask as an IP object. >>> IP('10.0.0.0/8').netmask() IP('255.0.0.0') """ return IP(IPint.netmask(self)) def reverseNames(self): """Return a list with values forming the reverse lookup. >>> IP('213.221.113.87/32').reverseNames() ['87.113.221.213.in-addr.arpa.'] >>> IP('213.221.112.224/30').reverseNames() ['224.112.221.213.in-addr.arpa.', '225.112.221.213.in-addr.arpa.', '226.112.221.213.in-addr.arpa.', '227.112.221.213.in-addr.arpa.'] >>> IP('127.0.0.0/24').reverseNames() ['0.0.127.in-addr.arpa.'] >>> IP('127.0.0.0/23').reverseNames() ['0.0.127.in-addr.arpa.', '1.0.127.in-addr.arpa.'] >>> IP('127.0.0.0/16').reverseNames() ['0.127.in-addr.arpa.'] >>> IP('127.0.0.0/15').reverseNames() ['0.127.in-addr.arpa.', '1.127.in-addr.arpa.'] >>> IP('128.0.0.0/8').reverseNames() ['128.in-addr.arpa.'] >>> IP('128.0.0.0/7').reverseNames() ['128.in-addr.arpa.', '129.in-addr.arpa.'] >>> IP('::1:2').reverseNames() ['2.0.0.0.1.ip6.arpa.'] """ if self._ipversion == 4: ret = [] # TODO: Refactor. Add support for IPint objects if self.len() < 2 ** 8: for x in self: ret.append(x.reverseName()) elif self.len() < 2 ** 16L: for i in range(0, self.len(), 2 ** 8): ret.append(self[i].reverseName()[2:]) elif self.len() < 2 ** 24L: for i in range(0, self.len(), 2 ** 16): ret.append(self[i].reverseName()[4:]) else: for i in range(0, self.len(), 2 ** 24): ret.append(self[i].reverseName()[6:]) return ret elif self._ipversion == 6: s = hex(self.ip)[2:].lower() if s[-1] == 'l': s = s[:-1] if self._prefixlen % 4 != 0: raise NotImplementedError, "can't create IPv6 reverse names at sub nibble level" s = list(s) s.reverse() s = '.'.join(s) first_nibble_index = int(32 - (self._prefixlen / 4)) * 2 return ["%s.ip6.arpa." % s[first_nibble_index:]] else: raise ValueError, "only IPv4 and IPv6 supported" def reverseName(self): """Return the value for reverse lookup/PTR records as RFC 2317 look alike. RFC 2317 is an ugly hack which only works for sub-/24 e.g. not for /23. Do not use it. Better set up a zone for every address. See reverseName for a way to achieve that. >>> print IP('195.185.1.1').reverseName() 1.1.185.195.in-addr.arpa. >>> print IP('195.185.1.0/28').reverseName() 0-15.1.185.195.in-addr.arpa. >>> IP('::1:2').reverseName() '2.0.0.0.1.ip6.arpa.' """ if self._ipversion == 4: s = self.strFullsize(0) s = s.split('.') s.reverse() first_byte_index = int(4 - (self._prefixlen / 8)) if self._prefixlen % 8 != 0: nibblepart = "%s-%s" % ( s[3 - (self._prefixlen / 8)], intToIp(self.ip + self.len() - 1, 4).split('.')[-1]) if nibblepart[-1] == 'l': nibblepart = nibblepart[:-1] nibblepart += '.' else: nibblepart = "" s = '.'.join(s[first_byte_index:]) return "%s%s.in-addr.arpa." % (nibblepart, s) elif self._ipversion == 6: s = hex(self.ip)[2:].lower() if s[-1] == 'l': s = s[:-1] if self._prefixlen % 4 != 0: nibblepart = "%s-%s" % (s[self._prefixlen:], hex(self.ip + self.len() - 1)[2:].lower()) if nibblepart[-1] == 'l': nibblepart = nibblepart[:-1] nibblepart += '.' else: nibblepart = "" s = list(s) s.reverse() s = '.'.join(s) first_nibble_index = int(32 - (self._prefixlen / 4)) * 2 return "%s%s.ip6.arpa." % (nibblepart, s[first_nibble_index:]) else: raise ValueError, "only IPv4 and IPv6 supported" def make_net(self, netmask): """Transform a single IP address into a network specification by applying the given netmask. Returns a new IP instance. >>> print IP('127.0.0.1').make_net('255.0.0.0') 127.0.0.0/8 """ if '/' in str(netmask): raise ValueError, "invalid netmask (%s)" % netmask return IP('%s/%s' % (self, netmask), make_net=True) def __getitem__(self, key): """Called to implement evaluation of self[key]. >>> ip=IP('127.0.0.0/30') >>> for x in ip: ... print str(x) ... 127.0.0.0 127.0.0.1 127.0.0.2 127.0.0.3 >>> print str(ip[2]) 127.0.0.2 >>> print str(ip[-1]) 127.0.0.3 """ return IP(IPint.__getitem__(self, key)) def __repr__(self): """Print a representation of the Object. >>> IP('10.0.0.0/8') IP('10.0.0.0/8') """ return ("IP('%s')" % (self.strCompressed(1))) def __add__(self, other): """Emulate numeric objects through network aggregation""" if self.prefixlen() != other.prefixlen(): raise ValueError, "Only networks with the same prefixlen can be added." if self.prefixlen < 1: raise ValueError, "Networks with a prefixlen longer than /1 can't be added." if self.version() != other.version(): raise ValueError, "Only networks with the same IP version can be added." if self > other: # fixed by Skinny Puppy return other.__add__(self) else: ret = IP(self.int()) ret._prefixlen = self.prefixlen() - 1 return ret def _parseAddressIPv6(ipstr): """ Internal function used by parseAddress() to parse IPv6 address with ':'. >>> _parseAddressIPv6('::') 0L >>> _parseAddressIPv6('::1') 1L >>> _parseAddressIPv6('0:0:0:0:0:0:0:1') 1L >>> _parseAddressIPv6('0:0:0::0:0:1') 1L >>> _parseAddressIPv6('0:0:0:0:0:0:0:0') 0L >>> _parseAddressIPv6('0:0:0::0:0:0') 0L >>> _parseAddressIPv6('FEDC:BA98:7654:3210:FEDC:BA98:7654:3210') 338770000845734292534325025077361652240L >>> _parseAddressIPv6('1080:0000:0000:0000:0008:0800:200C:417A') 21932261930451111902915077091070067066L >>> _parseAddressIPv6('1080:0:0:0:8:800:200C:417A') 21932261930451111902915077091070067066L >>> _parseAddressIPv6('1080:0::8:800:200C:417A') 21932261930451111902915077091070067066L >>> _parseAddressIPv6('1080::8:800:200C:417A') 21932261930451111902915077091070067066L >>> _parseAddressIPv6('FF01:0:0:0:0:0:0:43') 338958331222012082418099330867817087043L >>> _parseAddressIPv6('FF01:0:0::0:0:43') 338958331222012082418099330867817087043L >>> _parseAddressIPv6('FF01::43') 338958331222012082418099330867817087043L >>> _parseAddressIPv6('0:0:0:0:0:0:13.1.68.3') 218186755L >>> _parseAddressIPv6('::13.1.68.3') 218186755L >>> _parseAddressIPv6('0:0:0:0:0:FFFF:129.144.52.38') 281472855454758L >>> _parseAddressIPv6('::FFFF:129.144.52.38') 281472855454758L >>> _parseAddressIPv6('1080:0:0:0:8:800:200C:417A') 21932261930451111902915077091070067066L >>> _parseAddressIPv6('1080::8:800:200C:417A') 21932261930451111902915077091070067066L >>> _parseAddressIPv6('::1:2:3:4:5:6') 1208962713947218704138246L >>> _parseAddressIPv6('1:2:3:4:5:6::') 5192455318486707404433266432802816L """ # Split string into a list, example: # '1080:200C::417A' => ['1080', '200C', '417A'] and fill_pos=2 # and fill_pos is the position of '::' in the list items = [] index = 0 fill_pos = None while index < len(ipstr): text = ipstr[index:] if text.startswith("::"): if fill_pos is not None: # Invalid IPv6, eg. '1::2::' raise ValueError("%r: Invalid IPv6 address: more than one '::'" % ipstr) fill_pos = len(items) index += 2 continue pos = text.find(':') if pos == 0: # Invalid IPv6, eg. '1::2:' raise ValueError("%r: Invalid IPv6 address" % ipstr) if pos != -1: items.append(text[:pos]) if text[pos:pos + 2] == "::": index += pos else: index += pos + 1 if index == len(ipstr): # Invalid IPv6, eg. '1::2:' raise ValueError("%r: Invalid IPv6 address" % ipstr) else: items.append(text) break if items and '.' in items[-1]: # IPv6 ending with IPv4 like '::ffff:192.168.0.1' if not (fill_pos <= len(items) - 1): # Invalid IPv6: 'ffff:192.168.0.1::' raise ValueError("%r: Invalid IPv6 address: '::' after IPv4" % ipstr) value = parseAddress(items[-1])[0] items = items[:-1] + ["%04x" % (value >> 16), "%04x" % (value & 0xffff)] # Expand fill_pos to fill with '0' # ['1','2'] with fill_pos=1 => ['1', '0', '0', '0', '0', '0', '0', '2'] if fill_pos is not None: diff = 8 - len(items) if diff <= 0: raise ValueError("%r: Invalid IPv6 address: '::' is not needed" % ipstr) items = items[:fill_pos] + ['0'] * diff + items[fill_pos:] # Here we have a list of 8 strings if len(items) != 8: # Invalid IPv6, eg. '1:2:3' raise ValueError("%r: Invalid IPv6 address: should have 8 hextets" % ipstr) # Convert strings to long integer value = 0L index = 0 for item in items: try: item = int(item, 16) error = not (0 <= item <= 0xFFFF) except ValueError: error = True if error: raise ValueError("%r: Invalid IPv6 address: invalid hexlet %r" % (ipstr, item)) value = (value << 16) + item index += 1 return value def parseAddress(ipstr): """ Parse a string and return the corresponding IP address (as integer) and a guess of the IP version. Following address formats are recognized: >>> parseAddress('0x0123456789abcdef') # IPv4 if <= 0xffffffff else IPv6 (81985529216486895L, 6) >>> parseAddress('123.123.123.123') # IPv4 (2071690107L, 4) >>> parseAddress('123.123') # 0-padded IPv4 (2071658496L, 4) >>> parseAddress('1080:0000:0000:0000:0008:0800:200C:417A') (21932261930451111902915077091070067066L, 6) >>> parseAddress('1080:0:0:0:8:800:200C:417A') (21932261930451111902915077091070067066L, 6) >>> parseAddress('1080:0::8:800:200C:417A') (21932261930451111902915077091070067066L, 6) >>> parseAddress('::1') (1L, 6) >>> parseAddress('::') (0L, 6) >>> parseAddress('0:0:0:0:0:FFFF:129.144.52.38') (281472855454758L, 6) >>> parseAddress('::13.1.68.3') (218186755L, 6) >>> parseAddress('::FFFF:129.144.52.38') (281472855454758L, 6) """ if ipstr.startswith('0x'): ret = long(ipstr[2:], 16) if ret > 0xffffffffffffffffffffffffffffffffL: raise ValueError, "%r: IP Address can't be bigger than 2^128" % (ipstr) if ret < 0x100000000L: return (ret, 4) else: return (ret, 6) if ipstr.find(':') != -1: return (_parseAddressIPv6(ipstr), 6) elif len(ipstr) == 32: # assume IPv6 in pure hexadecimal notation return (long(ipstr, 16), 6) elif ipstr.find('.') != -1 or (len(ipstr) < 4 and int(ipstr) < 256): # assume IPv4 ('127' gets interpreted as '127.0.0.0') bytes = ipstr.split('.') if len(bytes) > 4: raise ValueError, "IPv4 Address with more than 4 bytes" bytes += ['0'] * (4 - len(bytes)) bytes = [long(x) for x in bytes] for x in bytes: if x > 255 or x < 0: raise ValueError, "%r: single byte must be 0 <= byte < 256" % (ipstr) return ((bytes[0] << 24) + (bytes[1] << 16) + (bytes[2] << 8) + bytes[3], 4) else: # we try to interprete it as a decimal digit - # this ony works for numbers > 255 ... others # will be interpreted as IPv4 first byte ret = long(ipstr, 10) if ret > 0xffffffffffffffffffffffffffffffffL: raise ValueError, "IP Address can't be bigger than 2^128" if ret <= 0xffffffffL: return (ret, 4) else: return (ret, 6) def intToIp(ip, version): """Transform an integer string into an IP address.""" # just to be sure and hoping for Python 2.22 ip = long(ip) if ip < 0: raise ValueError, "IPs can't be negative: %d" % (ip) ret = '' if version == 4: if ip > 0xffffffffL: raise ValueError, "IPv4 Addresses can't be larger than 0xffffffff: %s" % (hex(ip)) for l in range(4): ret = str(ip & 0xffL) + '.' + ret ip = ip >> 8 ret = ret[:-1] elif version == 6: if ip > 0xffffffffffffffffffffffffffffffffL: raise ValueError, "IPv6 Addresses can't be larger than 0xffffffffffffffffffffffffffffffff: %s" % (hex(ip)) l = '0' * 32 + hex(ip)[2:-1] for x in range(1, 33): ret = l[-x] + ret if x % 4 == 0: ret = ':' + ret ret = ret[1:] else: raise ValueError, "only IPv4 and IPv6 supported" return ret def _ipVersionToLen(version): """Return number of bits in address for a certain IP version. >>> _ipVersionToLen(4) 32 >>> _ipVersionToLen(6) 128 >>> _ipVersionToLen(5) Traceback (most recent call last): File "", line 1, in ? File "IPy.py", line 1076, in _ipVersionToLen raise ValueError, "only IPv4 and IPv6 supported" ValueError: only IPv4 and IPv6 supported """ if version == 4: return 32 elif version == 6: return 128 else: raise ValueError, "only IPv4 and IPv6 supported" def _countFollowingZeros(l): """Return number of elements containing 0 at the beginning of the list.""" if len(l) == 0: return 0 elif l[0] != 0: return 0 else: return 1 + _countFollowingZeros(l[1:]) _BitTable = {'0': '0000', '1': '0001', '2': '0010', '3': '0011', '4': '0100', '5': '0101', '6': '0110', '7': '0111', '8': '1000', '9': '1001', 'a': '1010', 'b': '1011', 'c': '1100', 'd': '1101', 'e': '1110', 'f': '1111'} def _intToBin(val): """Return the binary representation of an integer as string.""" if val < 0: raise ValueError, "Only positive values allowed" s = hex(val).lower() ret = '' if s[-1] == 'l': s = s[:-1] for x in s[2:]: if __debug__: if not _BitTable.has_key(x): raise AssertionError, "hex() returned strange result" ret += _BitTable[x] # remove leading zeros while ret[0] == '0' and len(ret) > 1: ret = ret[1:] return ret def _count1Bits(num): """Find the highest bit set to 1 in an integer.""" ret = 0 while num > 0: num = num >> 1 ret += 1 return ret def _count0Bits(num): """Find the highest bit set to 0 in an integer.""" # this could be so easy if _count1Bits(~long(num)) would work as excepted num = long(num) if num < 0: raise ValueError, "Only positive Numbers please: %s" % (num) ret = 0 while num > 0: if num & 1 == 1: break num = num >> 1 ret += 1 return ret def _checkPrefix(ip, prefixlen, version): """Check the validity of a prefix Checks if the variant part of a prefix only has 0s, and the length is correct. >>> _checkPrefix(0x7f000000L, 24, 4) 1 >>> _checkPrefix(0x7f000001L, 24, 4) 0 >>> repr(_checkPrefix(0x7f000001L, -1, 4)) 'None' >>> repr(_checkPrefix(0x7f000001L, 33, 4)) 'None' """ # TODO: unify this v4/v6/invalid code in a function bits = _ipVersionToLen(version) if prefixlen < 0 or prefixlen > bits: return None if ip == 0: zbits = bits + 1 else: zbits = _count0Bits(ip) if zbits < bits - prefixlen: return 0 else: return 1 def _checkNetmask(netmask, masklen): """Checks if a netmask is expressable as a prefixlen.""" num = long(netmask) bits = masklen # remove zero bits at the end while (num & 1) == 0 and bits != 0: num = num >> 1 bits -= 1 if bits == 0: break # now check if the rest consists only of ones while bits > 0: if (num & 1) == 0: raise ValueError, "Netmask %s can't be expressed as an prefix." % (hex(netmask)) num = num >> 1 bits -= 1 def _checkNetaddrWorksWithPrefixlen(net, prefixlen, version): """Check if a base addess of a network is compatible with a prefixlen""" if net & _prefixlenToNetmask(prefixlen, version) == net: return 1 else: return 0 def _netmaskToPrefixlen(netmask): """Convert an Integer representing a netmask to a prefixlen. E.g. 0xffffff00 (255.255.255.0) returns 24 """ netlen = _count0Bits(netmask) masklen = _count1Bits(netmask) _checkNetmask(netmask, masklen) return masklen - netlen def _prefixlenToNetmask(prefixlen, version): """Return a mask of n bits as a long integer. From 'IP address conversion functions with the builtin socket module' by Alex Martelli http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66517 """ if prefixlen == 0: return 0 elif prefixlen < 0: raise ValueError, "Prefixlen must be > 0" return ((2L << prefixlen - 1) - 1) << (_ipVersionToLen(version) - prefixlen) if __name__ == "__main__": import doctest failure, nbtest = doctest.testmod() if failure: import sys sys.exit(1)