1
0
Fork 0
mirror of https://github.com/retspen/webvirtcloud synced 2024-11-01 03:54:15 +00:00

Merge pull request #239 from catborise/master

Updating chartjs and some others
This commit is contained in:
Anatoliy Guskov 2019-05-24 22:20:24 +03:00 committed by GitHub
commit e05fa2354b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
10 changed files with 420 additions and 288 deletions

View file

@ -80,7 +80,7 @@
<h3 class="page-header">{% trans "Performance" %}</h3>
<div class="panel panel-success">
<div class="panel-heading">
<h3 class="panel-title"><i class="fa fa-long-arrow-right"></i> {% trans "CPU utilization" %}</h3>
<h3 class="panel-title"><i class="fa fa-long-arrow-right"></i> {% trans "CPU Utilization" %}</h3>
</div>
<div class="panel-body">
<div class="flot-chart">
@ -92,7 +92,7 @@
</div>
<div class="panel panel-info">
<div class="panel-heading">
<h3 class="panel-title"><i class="fa fa-long-arrow-right"></i> {% trans "RAM utilization" %}</h3>
<h3 class="panel-title"><i class="fa fa-long-arrow-right"></i> {% trans "RAM Utilization" %}</h3>
</div>
<div class="panel-body">
<div class="flot-chart">
@ -106,66 +106,128 @@
</div>
{% endblock %}
{% block script %}
<script src="{% static "js/Chart.min.js" %}"></script>
<script src="{% static "js/Chart.bundle.min.js" %}"></script>
<script>
var cpuLineData = {
labels : [0, 0, 0, 0, 0],
datasets : [
{
fillColor: "rgba(241,72,70,0.5)",
strokeColor: "rgba(241,72,70,1)",
pointColor : "rgba(241,72,70,1)",
pointStrokeColor : "#fff",
pointHighlightFill : "#fff",
pointHighlightStroke : "rgba(220,220,220,1)",
data : [0, 0, 0, 0, 0]
}
]
}
var cpu_ctx = document.getElementById("cpuChart").getContext("2d");
var cpuChart = new Chart(cpu_ctx).Line(cpuLineData, {
animation: false,
pointDotRadius: 2,
scaleLabel: "<%=value%> %",
scaleOverride: true,
scaleSteps: 5,
scaleStepWidth: 20,
scaleStartValue: 0,
responsive: true
var cpuChart = new Chart(cpu_ctx, {
type: 'line',
data: {
datasets : [{
label: 'Usage',
backgroundColor: "rgba(241,72,70,0.5)",
pointRadius: 2,
}]
},
options: {
responsive: true,
legend: {
display: false
},
scales: {
xAxes:[{
offset: false,
ticks: {
beginAtZero: false,
autoSkip: true,
maxTicksLimit: 10,
maxRotation: 0,
minRotation: 0,
stepSize: 10,
},
}],
yAxes: [{
ticks: {
max: 100,
min: 0,
stepSize: 20,
callback: function(value, index, values) {
return value + ' %';
}
},
}],
},
tooltips: {
callbacks: {
label: function (tooltipItem, chart) {
var label = chart.datasets[tooltipItem.datasetIndex].label || '';
if (label) {
label += ': ';
}
return label += tooltipItem.yLabel + ' %';
}
}
}
}
});
var memLineData = {
labels : [0, 0, 0, 0, 0],
datasets : [
{
fillColor : "rgba(249,134,33,0.5)",
strokeColor : "rgba(249,134,33,1)",
pointColor : "rgba(249,134,33,1)",
pointStrokeColor : "#fff",
pointHighlightFill : "#fff",
pointHighlightStroke : "rgba(151,187,205,1)",
data : [0, 0, 0, 0, 0]
var mem_ctx = document.getElementById("memChart").getContext("2d");
var memChart = new Chart(mem_ctx, {
type: 'line',
data: {
datasets: [{
pointRadius: 2,
}]
},
options: {
responsive: true,
legend: {
display: false
},
scales: {
xAxes:[{
offset: false,
ticks: {
beginAtZero: false,
autoSkip: true,
maxTicksLimit: 10,
maxRotation: 0,
minRotation: 0
}
}],
yAxes: [{
ticks:{
suggestedMin: 0,
suggestedMax: 100,
callback: function(value, index, values) {
return value + ' MB';
}
},
}],
},
tooltips: {
callbacks: {
label: function (tooltipItem, chart) {
var label = chart.datasets[tooltipItem.datasetIndex].label || '';
if (label) {
label += ': ';
}
return label += tooltipItem.yLabel + ' MB';
}
}
}
]
}
var mem_ctx = $("#memChart").get(0).getContext("2d");
var memChart = new Chart(mem_ctx).Line(memLineData, {
animation: false,
pointDotRadius: 2,
scaleLabel: "<%=value%> Mb",
responsive: true
}
});
window.setInterval(function graph_usage() {
$.getJSON('{% url 'compute_graph' compute_id %}', function (data) {
cpuChart.scale.xLabels = data.timeline;
memChart.scale.xLabels = data.timeline;
for (var i = 0; i < 5; i++) {
cpuChart.datasets[0].points[i].value = data.cpudata[i];
memChart.datasets[0].points[i].value = data.memdata[i];
cpuChart.data.labels.push(data.timeline);
memChart.data.labels.push(data.timeline);
cpuChart.data.datasets[0].data.push(data.cpudata);
if (cpuChart.data.datasets[0].data.length > 10){
cpuChart.data.labels.shift();
cpuChart.data.datasets[0].data.shift();
}
memChart.options.scales.yAxes[0].ticks.max = parseInt(data.memdata.total / 1048576);
memChart.options.scales.yAxes[0].ticks.stepSize = parseInt(data.memdata.total / (1048576 * 5));
memChart.data.datasets[0].data.push(parseInt(data.memdata.usage / 1048576));
if (memChart.data.datasets[0].data.length > 10){
memChart.data.labels.shift();
memChart.data.datasets[0].data.shift();
}
cpuChart.update();
memChart.update();
});

View file

@ -1,5 +1,6 @@
import time
import json
from django.utils import timezone
from django.http import HttpResponse, HttpResponseRedirect
from django.core.urlresolvers import reverse
from django.shortcuts import render, get_object_or_404
@ -172,59 +173,25 @@ def compute_graph(request, compute_id):
:param request:
:return:
"""
points = 5
datasets = {}
cookies = {}
compute = get_object_or_404(Compute, pk=compute_id)
current_time = time.strftime("%H:%M:%S")
try:
conn = wvmHostDetails(compute.hostname,
compute.login,
compute.password,
compute.type)
current_time = timezone.now().strftime("%H:%M:%S")
cpu_usage = conn.get_cpu_usage()
mem_usage = conn.get_memory_usage()
conn.close()
except libvirtError:
cpu_usage = 0
mem_usage = 0
cpu_usage = {'usage': 0}
mem_usage = {'usage': 0}
try:
cookies['cpu'] = request.COOKIES['cpu']
cookies['mem'] = request.COOKIES['mem']
cookies['timer'] = request.COOKIES['timer']
except KeyError:
cookies['cpu'] = None
cookies['mem'] = None
if not cookies['cpu'] or not cookies['mem']:
datasets['cpu'] = [0] * points
datasets['mem'] = [0] * points
datasets['timer'] = [0] * points
else:
datasets['cpu'] = eval(cookies['cpu'])
datasets['mem'] = eval(cookies['mem'])
datasets['timer'] = eval(cookies['timer'])
datasets['timer'].append(current_time)
datasets['cpu'].append(int(cpu_usage['usage']))
datasets['mem'].append(int(mem_usage['usage']) / 1048576)
if len(datasets['timer']) > points:
datasets['timer'].pop(0)
if len(datasets['cpu']) > points:
datasets['cpu'].pop(0)
if len(datasets['mem']) > points:
datasets['mem'].pop(0)
data = json.dumps({'cpudata': datasets['cpu'], 'memdata': datasets['mem'], 'timeline': datasets['timer']})
data = json.dumps({'cpudata': cpu_usage['usage'],
'memdata': mem_usage,
'timeline': current_time})
response = HttpResponse()
response['Content-Type'] = "text/javascript"
response.cookies['cpu'] = datasets['cpu']
response.cookies['timer'] = datasets['timer']
response.cookies['mem'] = datasets['mem']
response.write(data)
return response

View file

@ -1,7 +1,7 @@
Django==1.11.17
Django==1.11.20
websockify==0.8.0
gunicorn==19.9.0
lxml==4.2.5
libvirt-python==4.10.0
pytz
rwlock

View file

@ -1230,6 +1230,18 @@
</div>
</div>
</div>
<div class="panel panel-default">
<div class="panel-heading">
<h3 class="panel-title"><i class="fa fa-long-arrow-right"></i> {% trans "Memory Usage" %}</h3>
</div>
<div class="panel-body">
<div class="flot-chart">
<div class="flot-chart-content" id="flot-moving-line-chart" style="padding: 0px; position: relative;">
<canvas id="memChart" width="735" height="160"></canvas>
</div>
</div>
</div>
</div>
{% for net in networks %}
<div class="panel panel-info">
<div class="panel-heading">
@ -1332,7 +1344,6 @@
$.each(data['vols'], function(i, item) {
$("#vols").append('<option value=' + item +'>' + item + '</option>');
})
});
@ -1568,136 +1579,274 @@ $(document).ready(function () {
});
});
</script>
<script src="{% static "js/Chart.min.js" %}"></script>
<script src="{% static "js/Chart.bundle.min.js" %}"></script>
<script>
$('#chartgraphs').on('shown.bs.tab', function (event) {
var cpuLineData = {
labels : [0, 0, 0, 0, 0],
datasets : [
{
fillColor: "rgba(44,127,184,0.5)",
strokeColor: "rgba(44,127,184,1)",
pointColor: "rgba(44,127,184,1)",
pointStrokeColor: "#fff",
data: [0, 0, 0, 0, 0]
}
]
};
var diskLineData = {
labels : [0, 0, 0, 0, 0],
datasets : [
{
fillColor: "rgba(127,205,187,0.5)",
strokeColor: "rgba(127,205,187,1)",
pointColor: "rgba(127,205,187,1)",
pointStrokeColor: "#fff",
data: [0, 0, 0, 0, 0],
label: "Read"
},
{
fillColor: "rgba(44,127,184,0.5)",
strokeColor: "rgba(44,127,184,1)",
pointColor: "rgba(44,127,184,1)",
pointStrokeColor: "#fff",
data: [0, 0, 0, 0, 0],
label: "Write"
},
]
};
var netLineData = {
labels : [0, 0, 0, 0, 0],
datasets : [
{
fillColor: "rgba(127,205,187,0.5)",
strokeColor: "rgba(127,205,187,1)",
pointColor: "rgba(127,205,187,1)",
pointStrokeColor: "#fff",
data: [0, 0, 0, 0, 0],
label: "Inbound"
},
{
fillColor: "rgba(44,127,184,0.5)",
strokeColor: "rgba(44,127,184,1)",
pointColor: "rgba(44,127,184,1)",
pointStrokeColor: "#fff",
data: [0, 0, 0, 0, 0],
label: "Outbound"
},
]
};
var cpuOpt = {
animation: false,
pointDotRadius: 2,
scaleLabel: "<%=value%> %",
tooltipTemplate: "<%=value%> %",
scaleShowGridLines : false,
scaleOverride: true,
scaleSteps: 5,
scaleStepWidth: 20,
scaleStartValue: 0,
responsive: true
};
var diskOpt = {
animation: false,
pointDotRadius: 2,
scaleLabel: "<%=value%> Mb/s",
multiTooltipTemplate: "<%=datasetLabel%> - <%=value%> Mb/s",
scaleShowGridLines : false,
responsive: true
};
var netOpt = {
animation: false,
pointDotRadius: 2,
scaleLabel: "<%=value%> Mbps",
multiTooltipTemplate: "<%=datasetLabel%> - <%=value%> Mbps",
scaleShowGridLines : false,
responsive: true,
};
var cpu_ctx = $("#cpuChart").get(0).getContext("2d");
var cpuChart = new Chart(cpu_ctx).Line(cpuLineData, cpuOpt);
var cpuChart = new Chart(cpu_ctx, {
type: 'line',
data: {
datasets : [{
backgroundColor: "rgba(44,127,184,0.5)",
label: "Usage"
}]
},
options: {
responsive: true,
legend: {
display: false
},
scales: {
xAxes:[{
offset: false,
ticks: {
beginAtZero: false,
autoSkip: true,
maxTicksLimit: 10,
maxRotation: 0,
minRotation: 0,
stepSize: 10,
},
}],
yAxes: [{
ticks: {
suggestedMax: 100,
suggestedMin: 0,
stepSize: 20,
callback: function(value, index, values) {
return value + ' %';
}
},
}],
},
tooltips: {
callbacks: {
label: function (tooltipItem, chart) {
var label = chart.datasets[tooltipItem.datasetIndex].label || '';
if (label) {
label += ': ';
}
return label += tooltipItem.yLabel + ' %';
}
}
}
}
});
var mem_ctx = $("#memChart").get(0).getContext("2d");
var memChart = new Chart(mem_ctx, {
type: 'line',
data: {
datasets : [{
label: "Usage"
}]
},
options: {
responsive: true,
legend: {
display: false
},
scales: {
xAxes:[{
offset: false,
ticks: {
beginAtZero: false,
autoSkip: true,
maxTicksLimit: 10,
maxRotation: 0,
minRotation: 0,
stepSize: 10,
},
}],
yAxes: [{
ticks: {
suggestedMax: 100,
suggestedMin: 0,
stepSize: 20,
callback: function(value, index, values) {
return value + ' MB';
}
},
}],
},
tooltips: {
callbacks: {
label: function (tooltipItem, chart) {
var label = chart.datasets[tooltipItem.datasetIndex].label || '';
if (label) {
label += '(RSS): ';
}
return label += tooltipItem.yLabel + ' MB';
}
}
}
}
});
var diskChart = {};
{% for disk in disks %}
var disk_ctx_{{ disk.dev }} = $("#blk{{ disk.dev }}Chart").get(0).getContext("2d");
diskChart['{{ disk.dev }}'] = new Chart(disk_ctx_{{ disk.dev }}).Line(diskLineData, diskOpt);
diskChart['{{ disk.dev }}'] = new Chart(disk_ctx_{{ disk.dev }}, {
type: 'line',
data: {
datasets : [{
backgroundColor: "rgba(127,205,187,0.5)",
label: "Read"
},
{
backgroundColor: "rgba(44,127,184,0.5)",
label: "Write"
}]
},
options: {
responsive: true,
legend: {
display: false
},
scales: {
xAxes:[{
offset: false,
ticks: {
beginAtZero: false,
autoSkip: true,
maxTicksLimit: 10,
maxRotation: 0,
minRotation: 0,
stepSize: 10,
},
}],
yAxes: [{
ticks: {
suggestedmax: 100,
suggestedMin: 0,
callback: function(value, index, values) {
return value + ' Mb/s';
}
},
}],
},
tooltips: {
callbacks: {
label: function (tooltipItem, chart) {
var label = chart.datasets[tooltipItem.datasetIndex].label || '';
if (label) {
label += ': ';
}
return label += tooltipItem.yLabel + ' Mb/s';
}
}
}
}
});
{% endfor %}
var netChart = {};
{% for net in networks %}
var net_ctx_{{ forloop.counter0 }} = $("#netEth{{ forloop.counter0 }}Chart").get(0).getContext("2d");
netChart['{{ forloop.counter0 }}'] = new Chart(net_ctx_{{ forloop.counter0 }}).Line(netLineData, netOpt);
netChart['{{ forloop.counter0 }}'] = new Chart(net_ctx_{{ forloop.counter0 }}, {
type: 'line',
data: {
datasets : [
{
backgroundColor: "rgba(127,205,187,0.5)",
label: "Inbound"
},
{
backgroundColor: "rgba(44,127,184,0.5)",
label: "Outbound"
}]
},
options: {
responsive: true,
legend: {
display: false
},
scales: {
xAxes:[{
offset: false,
ticks: {
beginAtZero: false,
autoSkip: true,
maxTicksLimit: 10,
maxRotation: 0,
minRotation: 0,
stepSize: 10,
},
}],
yAxes: [{
ticks: {
suggestedMax: 100,
suggestedMin: 0,
callback: function(value, index, values) {
return value + ' Mbps';
}
},
}],
},
tooltips: {
callbacks: {
label: function (tooltipItem, chart) {
var label = chart.datasets[tooltipItem.datasetIndex].label || '';
if (label) {
label += ': ';
}
return label += tooltipItem.yLabel + ' Mbps';
}
}
}
}
});
{% endfor %}
window.setInterval(function graph_usage() {
$.getJSON('{% url 'inst_graph' compute_id vname %}', function (data) {
cpuChart.scale.xLabels = data.timeline;
for (var i = 0; i < data.cpudata.length; i++) {
cpuChart.datasets[0].points[i].value = data.cpudata[i];
cpuChart.data.labels.push(data.timeline);
cpuChart.data.datasets[0].data.push(data.cpudata);
if (cpuChart.data.datasets[0].data.length > 10){
cpuChart.data.labels.shift();
cpuChart.data.datasets[0].data.shift();
}
cpuChart.update();
for (var j = 0; j < data.blkdata.length; j++) {
diskChart[data.blkdata[j].dev].scale.xLabels = data.timeline;
memChart.data.labels.push(data.timeline);
for (var i = 0; i < data.blkdata[j].data[0].length; i++) {
diskChart[data.blkdata[j].dev].datasets[0].points[i].label = 'Time: ' + data.timeline[i];
diskChart[data.blkdata[j].dev].datasets[0].points[i].value = data.blkdata[j].data[0][i];
diskChart[data.blkdata[j].dev].datasets[1].points[i].value = data.blkdata[j].data[1][i];
memChart.options.scales.yAxes[0].ticks.max = parseInt(data.memdata.total / 1024);
memChart.options.scales.yAxes[0].ticks.stepSize = parseInt(data.memdata.total / (1024 * 5));
memChart.data.datasets[0].data.push(data.memdata.used / 1024);
if (memChart.data.datasets[0].data.length > 10){
memChart.data.labels.shift();
memChart.data.datasets[0].data.shift();
}
memChart.update();
for (let j = 0; j < data.blkdata.length; j++) {
diskChart[data.blkdata[j].dev].data.labels.push(data.timeline);
diskChart[data.blkdata[j].dev].data.datasets[0].data.push(data.blkdata[0].data[0]);
diskChart[data.blkdata[j].dev].data.datasets[1].data.push(data.blkdata[0].data[1]);
if (diskChart[data.blkdata[j].dev].data.datasets[0].data.length > 10){
diskChart[data.blkdata[j].dev].data.labels.shift();
diskChart[data.blkdata[j].dev].data.datasets[0].data.shift();
diskChart[data.blkdata[j].dev].data.datasets[1].data.shift();
}
diskChart[data.blkdata[j].dev].update();
}
for (var j = 0; j < data.netdata.length; j++) {
netChart[data.netdata[j].dev].scale.xLabels = data.timeline;
for (let j = 0; j < data.netdata.length; j++) {
netChart[data.netdata[j].dev].data.labels.push(data.timeline);
for (var i = 0; i < data.netdata[j].data[0].length; i++) {
netChart[data.netdata[j].dev].datasets[0].points[i].label = 'Time: ' + data.timeline[i];
netChart[data.netdata[j].dev].datasets[0].points[i].value = data.netdata[j].data[0][i];
netChart[data.netdata[j].dev].datasets[1].points[i].value = data.netdata[j].data[1][i];
netChart[data.netdata[j].dev].data.datasets[0].data.push(data.netdata[0].data[0]);
netChart[data.netdata[j].dev].data.datasets[1].data.push(data.netdata[0].data[1]);
if (netChart[data.netdata[j].dev].data.datasets[0].data.length > 10){
netChart[data.netdata[j].dev].data.labels.shift();
netChart[data.netdata[j].dev].data.datasets[0].data.shift();
netChart[data.netdata[j].dev].data.datasets[1].data.shift();
}
netChart[data.netdata[j].dev].update();
}
});

View file

@ -1040,24 +1040,13 @@ def inst_graph(request, compute_id, vname):
:param request:
:return:
"""
datasets = {}
json_blk = []
datasets_blk = {}
json_net = []
datasets_net = {}
cookies = {}
points = 5
current_time = time.strftime("%H:%M:%S")
compute = get_object_or_404(Compute, pk=compute_id)
response = HttpResponse()
response['Content-Type'] = "text/javascript"
def check_points(dataset):
if len(dataset) > points:
dataset.pop(0)
return dataset
try:
conn = wvmInstance(compute.hostname,
compute.login,
@ -1065,71 +1054,24 @@ def inst_graph(request, compute_id, vname):
compute.type,
vname)
cpu_usage = conn.cpu_usage()
mem_usage = conn.mem_usage()
blk_usage = conn.disk_usage()
net_usage = conn.net_usage()
conn.close()
try:
cookies['cpu'] = request.COOKIES['cpu']
cookies['blk'] = request.COOKIES['blk']
cookies['net'] = request.COOKIES['net']
cookies['timer'] = request.COOKIES['timer']
except KeyError:
cookies['cpu'] = cookies['blk'] = cookies['net'] = None
if not cookies['cpu']:
datasets['timer'] = datasets['cpu'] = [0] * points
else:
datasets['cpu'] = eval(cookies['cpu'])
datasets['timer'] = eval(cookies['timer'])
datasets['timer'].append(current_time)
datasets['cpu'].append(int(cpu_usage['cpu']))
datasets['timer'] = check_points(datasets['timer'])
datasets['cpu'] = check_points(datasets['cpu'])
current_time = time.strftime("%H:%M:%S")
for blk in blk_usage:
if not cookies['blk']:
datasets_rd = datasets_wr = [0] * points
else:
datasets['blk'] = eval(cookies['blk'])
datasets_rd = datasets['blk'][blk['dev']][0]
datasets_wr = datasets['blk'][blk['dev']][1]
datasets_rd.append(int(blk['rd']) / 1048576)
datasets_wr.append(int(blk['wr']) / 1048576)
datasets_rd = check_points(datasets_rd)
datasets_wr = check_points(datasets_wr)
json_blk.append({'dev': blk['dev'], 'data': [datasets_rd, datasets_wr]})
datasets_blk[blk['dev']] = [datasets_rd, datasets_wr]
json_blk.append({'dev': blk['dev'], 'data': [int(blk['rd']) / 1048576, int(blk['wr']) / 1048576]})
for net in net_usage:
if not cookies['net']:
datasets_tx = datasets_rx = [0] * points
else:
datasets['net'] = eval(cookies['net'])
datasets_rx = datasets['net'][net['dev']][0]
datasets_tx = datasets['net'][net['dev']][1]
json_net.append({'dev': net['dev'], 'data': [int(net['rx']) / 1048576, int(net['tx']) / 1048576]})
datasets_rx.append(int(net['rx']) / 1048576)
datasets_tx.append(int(net['tx']) / 1048576)
data = json.dumps({'cpudata': int(cpu_usage['cpu']),
'memdata': mem_usage,
'blkdata': json_blk,
'netdata': json_net,
'timeline': current_time})
datasets_rx = check_points(datasets_rx)
datasets_tx = check_points(datasets_tx)
json_net.append({'dev': net['dev'], 'data': [datasets_rx, datasets_tx]})
datasets_net[net['dev']] = [datasets_rx, datasets_tx]
data = json.dumps({'cpudata': datasets['cpu'], 'blkdata': json_blk,
'netdata': json_net, 'timeline': datasets['timer']})
response.cookies['cpu'] = datasets['cpu']
response.cookies['timer'] = datasets['timer']
response.cookies['blk'] = datasets_blk
response.cookies['net'] = datasets_net
except libvirtError:
data = json.dumps({'error': 'Error 500'})

7
static/js/Chart.bundle.min.js vendored Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

4
static/js/jquery.js vendored

File diff suppressed because one or more lines are too long

View file

@ -16,17 +16,17 @@ class wvmHostDetails(wvmConnect):
"""
Function return memory usage on node.
"""
get_all_mem = self.wvm.getInfo()[1] * 1048576
get_freemem = self.wvm.getMemoryStats(-1, 0)
if type(get_freemem) == dict:
free = (get_freemem.values()[0] +
get_freemem.values()[2] +
get_freemem.values()[3]) * 1024
percent = (100 - ((free * 100) / get_all_mem))
usage = (get_all_mem - free)
mem_usage = {'usage': usage, 'percent': percent}
all_mem = self.wvm.getInfo()[1] * 1048576
freemem = self.wvm.getMemoryStats(-1, 0)
if type(freemem) == dict:
free = (freemem.values()[0] +
freemem.values()[2] +
freemem.values()[3]) * 1024
percent = (100 - ((free * 100) / all_mem))
usage = (all_mem - free)
mem_usage = {'total': all_mem, 'usage': usage, 'percent': percent}
else:
mem_usage = {'usage': None, 'percent': None}
mem_usage = {'total': None, 'usage': None, 'percent': None}
return mem_usage
def get_cpu_usage(self):

View file

@ -526,6 +526,22 @@ class wvmInstance(wvmConnect):
cpu_usage['cpu'] = 0
return cpu_usage
def mem_usage(self):
mem_usage = {}
if self.get_status() == 1:
mem_stats = self.instance.memoryStats()
rss = mem_stats['rss'] if mem_stats['rss'] else 0
total = mem_stats['actual'] if mem_stats['actual'] else 0
available = total - rss
if available < 0: available = 0
mem_usage['used'] = rss
mem_usage['total'] = total
else:
mem_usage['used'] = 0
mem_usage['total'] = 0
return mem_usage
def disk_usage(self):
devices = []
dev_usage = []