1657 lines
49 KiB
C
1657 lines
49 KiB
C
/*
|
|
net_packet.c -- Handles in- and outgoing VPN packets
|
|
Copyright (C) 1998-2005 Ivo Timmermans,
|
|
2000-2016 Guus Sliepen <guus@tinc-vpn.org>
|
|
2010 Timothy Redaelli <timothy@redaelli.eu>
|
|
2010 Brandon Black <blblack@gmail.com>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License along
|
|
with this program; if not, write to the Free Software Foundation, Inc.,
|
|
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
#include "system.h"
|
|
|
|
#ifdef HAVE_ZLIB
|
|
#include <zlib.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_LZO
|
|
#include LZO1X_H
|
|
#endif
|
|
|
|
#include "cipher.h"
|
|
#include "conf.h"
|
|
#include "connection.h"
|
|
#include "crypto.h"
|
|
#include "digest.h"
|
|
#include "device.h"
|
|
#include "ethernet.h"
|
|
#include "ipv4.h"
|
|
#include "ipv6.h"
|
|
#include "graph.h"
|
|
#include "logger.h"
|
|
#include "net.h"
|
|
#include "netutl.h"
|
|
#include "protocol.h"
|
|
#include "route.h"
|
|
#include "utils.h"
|
|
#include "xalloc.h"
|
|
|
|
#ifndef MAX
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
#endif
|
|
|
|
/* The minimum size of a probe is 14 bytes, but since we normally use CBC mode
|
|
encryption, we can add a few extra random bytes without increasing the
|
|
resulting packet size. */
|
|
#define MIN_PROBE_SIZE 18
|
|
|
|
int keylifetime = 0;
|
|
int edgeupdateinterval = 0;
|
|
int slpdinterval = 0;
|
|
#ifdef HAVE_LZO
|
|
static char lzo_wrkmem[LZO1X_999_MEM_COMPRESS > LZO1X_1_MEM_COMPRESS ? LZO1X_999_MEM_COMPRESS : LZO1X_1_MEM_COMPRESS];
|
|
#endif
|
|
|
|
static void send_udppacket(node_t *, vpn_packet_t *);
|
|
|
|
unsigned replaywin = 32;
|
|
bool localdiscovery = true;
|
|
bool udp_discovery = true;
|
|
int udp_discovery_keepalive_interval = 10;
|
|
int udp_discovery_interval = 2;
|
|
int udp_discovery_timeout = 30;
|
|
|
|
#define MAX_SEQNO 1073741824
|
|
|
|
static void try_fix_mtu(node_t *n) {
|
|
if(n->mtuprobes < 0)
|
|
return;
|
|
|
|
if(n->mtuprobes == 20 || n->minmtu >= n->maxmtu) {
|
|
if(n->minmtu > n->maxmtu)
|
|
n->minmtu = n->maxmtu;
|
|
else
|
|
n->maxmtu = n->minmtu;
|
|
n->mtu = n->minmtu;
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Fixing MTU of %s (%s) to %d after %d probes", n->name, n->hostname, n->mtu, n->mtuprobes);
|
|
n->mtuprobes = -1;
|
|
}
|
|
}
|
|
|
|
static void udp_probe_timeout_handler(void *data) {
|
|
node_t *n = data;
|
|
if(!n->status.udp_confirmed)
|
|
return;
|
|
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Too much time has elapsed since last UDP ping response from %s (%s), stopping UDP communication", n->name, n->hostname);
|
|
n->status.udp_confirmed = false;
|
|
n->maxrecentlen = 0;
|
|
n->mtuprobes = 0;
|
|
n->minmtu = 0;
|
|
n->maxmtu = MTU;
|
|
}
|
|
|
|
static void send_udp_probe_reply(node_t *n, vpn_packet_t *packet, length_t len) {
|
|
if(!n->status.sptps && !n->status.validkey) {
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Trying to send UDP probe reply to %s (%s) but we don't have his key yet", n->name, n->hostname);
|
|
return;
|
|
}
|
|
|
|
/* Type 2 probe replies were introduced in protocol 17.3 */
|
|
if ((n->options >> 24) >= 3) {
|
|
DATA(packet)[0] = 2;
|
|
uint16_t len16 = htons(len);
|
|
memcpy(DATA(packet) + 1, &len16, 2);
|
|
packet->len = MIN_PROBE_SIZE;
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Sending type 2 probe reply length %u to %s (%s)", len, n->name, n->hostname);
|
|
|
|
} else {
|
|
/* Legacy protocol: n won't understand type 2 probe replies. */
|
|
DATA(packet)[0] = 1;
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Sending type 1 probe reply length %u to %s (%s)", len, n->name, n->hostname);
|
|
}
|
|
|
|
/* Temporarily set udp_confirmed, so that the reply is sent
|
|
back exactly the way it came in. */
|
|
|
|
bool udp_confirmed = n->status.udp_confirmed;
|
|
n->status.udp_confirmed = true;
|
|
send_udppacket(n, packet);
|
|
n->status.udp_confirmed = udp_confirmed;
|
|
}
|
|
|
|
static void udp_probe_h(node_t *n, vpn_packet_t *packet, length_t len) {
|
|
if(!DATA(packet)[0]) {
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Got UDP probe request %d from %s (%s)", packet->len, n->name, n->hostname);
|
|
return send_udp_probe_reply(n, packet, len);
|
|
}
|
|
|
|
if (DATA(packet)[0] == 2) {
|
|
// It's a type 2 probe reply, use the length field inside the packet
|
|
uint16_t len16;
|
|
memcpy(&len16, DATA(packet) + 1, 2);
|
|
len = ntohs(len16);
|
|
}
|
|
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Got type %d UDP probe reply %d from %s (%s)", DATA(packet)[0], len, n->name, n->hostname);
|
|
|
|
/* It's a valid reply: now we know bidirectional communication
|
|
is possible using the address and socket that the reply
|
|
packet used. */
|
|
n->status.udp_confirmed = true;
|
|
|
|
// Reset the UDP ping timer.
|
|
n->udp_ping_sent = now;
|
|
|
|
if(udp_discovery) {
|
|
timeout_del(&n->udp_ping_timeout);
|
|
timeout_add(&n->udp_ping_timeout, &udp_probe_timeout_handler, n, &(struct timeval){udp_discovery_timeout, 0});
|
|
}
|
|
|
|
if(len > n->maxmtu) {
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Increase in PMTU to %s (%s) detected, restarting PMTU discovery", n->name, n->hostname);
|
|
n->minmtu = len;
|
|
n->maxmtu = MTU;
|
|
/* Set mtuprobes to 1 so that try_mtu() doesn't reset maxmtu */
|
|
n->mtuprobes = 1;
|
|
return;
|
|
} else if(n->mtuprobes < 0 && len == n->maxmtu) {
|
|
/* We got a maxmtu sized packet, confirming the PMTU is still valid. */
|
|
n->mtuprobes = -1;
|
|
n->mtu_ping_sent = now;
|
|
}
|
|
|
|
/* If applicable, raise the minimum supported MTU */
|
|
|
|
if(n->minmtu < len) {
|
|
n->minmtu = len;
|
|
try_fix_mtu(n);
|
|
}
|
|
}
|
|
|
|
static length_t compress_packet(uint8_t *dest, const uint8_t *source, length_t len, int level) {
|
|
if(level == 0) {
|
|
memcpy(dest, source, len);
|
|
return len;
|
|
} else if(level == 10) {
|
|
#ifdef HAVE_LZO
|
|
lzo_uint lzolen = MAXSIZE;
|
|
lzo1x_1_compress(source, len, dest, &lzolen, lzo_wrkmem);
|
|
return lzolen;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
} else if(level < 10) {
|
|
#ifdef HAVE_ZLIB
|
|
unsigned long destlen = MAXSIZE;
|
|
if(compress2(dest, &destlen, source, len, level) == Z_OK)
|
|
return destlen;
|
|
else
|
|
#endif
|
|
return -1;
|
|
} else {
|
|
#ifdef HAVE_LZO
|
|
lzo_uint lzolen = MAXSIZE;
|
|
lzo1x_999_compress(source, len, dest, &lzolen, lzo_wrkmem);
|
|
return lzolen;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static length_t uncompress_packet(uint8_t *dest, const uint8_t *source, length_t len, int level) {
|
|
if(level == 0) {
|
|
memcpy(dest, source, len);
|
|
return len;
|
|
} else if(level > 9) {
|
|
#ifdef HAVE_LZO
|
|
lzo_uint lzolen = MAXSIZE;
|
|
if(lzo1x_decompress_safe(source, len, dest, &lzolen, NULL) == LZO_E_OK)
|
|
return lzolen;
|
|
else
|
|
#endif
|
|
return -1;
|
|
}
|
|
#ifdef HAVE_ZLIB
|
|
else {
|
|
unsigned long destlen = MAXSIZE;
|
|
if(uncompress(dest, &destlen, source, len) == Z_OK)
|
|
return destlen;
|
|
else
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* VPN packet I/O */
|
|
|
|
static void receive_packet(node_t *n, vpn_packet_t *packet) {
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Received packet of %d bytes from %s (%s)",
|
|
packet->len, n->name, n->hostname);
|
|
|
|
n->in_packets++;
|
|
n->in_bytes += packet->len;
|
|
|
|
route(n, packet);
|
|
}
|
|
|
|
static bool try_mac(node_t *n, const vpn_packet_t *inpkt) {
|
|
if(n->status.sptps)
|
|
return sptps_verify_datagram(&n->sptps, DATA(inpkt), inpkt->len);
|
|
|
|
#ifdef DISABLE_LEGACY
|
|
return false;
|
|
#else
|
|
if(!n->status.validkey_in || !digest_active(n->indigest) || inpkt->len < sizeof(seqno_t) + digest_length(n->indigest))
|
|
return false;
|
|
|
|
return digest_verify(n->indigest, SEQNO(inpkt), inpkt->len - digest_length(n->indigest), DATA(inpkt) + inpkt->len - digest_length(n->indigest));
|
|
#endif
|
|
}
|
|
|
|
static bool receive_udppacket(node_t *n, vpn_packet_t *inpkt) {
|
|
vpn_packet_t pkt1, pkt2;
|
|
vpn_packet_t *pkt[] = { &pkt1, &pkt2, &pkt1, &pkt2 };
|
|
int nextpkt = 0;
|
|
size_t outlen;
|
|
pkt1.offset = DEFAULT_PACKET_OFFSET;
|
|
pkt2.offset = DEFAULT_PACKET_OFFSET;
|
|
|
|
if(n->status.sptps) {
|
|
if(!n->sptps.state) {
|
|
if(!n->status.waitingforkey) {
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Got packet from %s (%s) but we haven't exchanged keys yet", n->name, n->hostname);
|
|
send_req_key(n);
|
|
} else {
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Got packet from %s (%s) but he hasn't got our key yet", n->name, n->hostname);
|
|
}
|
|
return false;
|
|
}
|
|
n->status.udppacket = true;
|
|
bool result = sptps_receive_data(&n->sptps, DATA(inpkt), inpkt->len);
|
|
n->status.udppacket = false;
|
|
|
|
if(!result) {
|
|
/* Uh-oh. It might be that the tunnel is stuck in some corrupted state,
|
|
so let's restart SPTPS in case that helps. But don't do that too often
|
|
to prevent storms, and because that would make life a little too easy
|
|
for external attackers trying to DoS us. */
|
|
if(n->last_req_key < now.tv_sec - 10) {
|
|
logger(DEBUG_PROTOCOL, LOG_ERR, "Failed to decode raw TCP packet from %s (%s), restarting SPTPS", n->name, n->hostname);
|
|
send_req_key(n);
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#ifdef DISABLE_LEGACY
|
|
return false;
|
|
#else
|
|
if(!n->status.validkey_in) {
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Got packet from %s (%s) but he hasn't got our key yet", n->name, n->hostname);
|
|
return false;
|
|
}
|
|
|
|
/* Check packet length */
|
|
|
|
if(inpkt->len < sizeof(seqno_t) + digest_length(n->indigest)) {
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Got too short packet from %s (%s)",
|
|
n->name, n->hostname);
|
|
return false;
|
|
}
|
|
|
|
/* It's a legacy UDP packet, the data starts after the seqno */
|
|
|
|
inpkt->offset += sizeof(seqno_t);
|
|
|
|
/* Check the message authentication code */
|
|
|
|
if(digest_active(n->indigest)) {
|
|
inpkt->len -= digest_length(n->indigest);
|
|
if(!digest_verify(n->indigest, SEQNO(inpkt), inpkt->len, SEQNO(inpkt) + inpkt->len)) {
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Got unauthenticated packet from %s (%s)", n->name, n->hostname);
|
|
return false;
|
|
}
|
|
}
|
|
/* Decrypt the packet */
|
|
|
|
if(cipher_active(n->incipher)) {
|
|
vpn_packet_t *outpkt = pkt[nextpkt++];
|
|
outlen = MAXSIZE;
|
|
|
|
if(!cipher_decrypt(n->incipher, SEQNO(inpkt), inpkt->len, SEQNO(outpkt), &outlen, true)) {
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Error decrypting packet from %s (%s)", n->name, n->hostname);
|
|
return false;
|
|
}
|
|
|
|
outpkt->len = outlen;
|
|
inpkt = outpkt;
|
|
}
|
|
|
|
/* Check the sequence number */
|
|
|
|
seqno_t seqno;
|
|
memcpy(&seqno, SEQNO(inpkt), sizeof seqno);
|
|
seqno = ntohl(seqno);
|
|
inpkt->len -= sizeof seqno;
|
|
|
|
if(replaywin) {
|
|
if(seqno != n->received_seqno + 1) {
|
|
if(seqno >= n->received_seqno + replaywin * 8) {
|
|
if(n->farfuture++ < replaywin >> 2) {
|
|
logger(DEBUG_ALWAYS, LOG_WARNING, "Packet from %s (%s) is %d seqs in the future, dropped (%u)",
|
|
n->name, n->hostname, seqno - n->received_seqno - 1, n->farfuture);
|
|
return false;
|
|
}
|
|
logger(DEBUG_ALWAYS, LOG_WARNING, "Lost %d packets from %s (%s)",
|
|
seqno - n->received_seqno - 1, n->name, n->hostname);
|
|
memset(n->late, 0, replaywin);
|
|
} else if (seqno <= n->received_seqno) {
|
|
if((n->received_seqno >= replaywin * 8 && seqno <= n->received_seqno - replaywin * 8) || !(n->late[(seqno / 8) % replaywin] & (1 << seqno % 8))) {
|
|
logger(DEBUG_ALWAYS, LOG_WARNING, "Got late or replayed packet from %s (%s), seqno %d, last received %d",
|
|
n->name, n->hostname, seqno, n->received_seqno);
|
|
return false;
|
|
}
|
|
} else {
|
|
for(int i = n->received_seqno + 1; i < seqno; i++)
|
|
n->late[(i / 8) % replaywin] |= 1 << i % 8;
|
|
}
|
|
}
|
|
|
|
n->farfuture = 0;
|
|
n->late[(seqno / 8) % replaywin] &= ~(1 << seqno % 8);
|
|
}
|
|
|
|
if(seqno > n->received_seqno)
|
|
n->received_seqno = seqno;
|
|
|
|
n->received++;
|
|
|
|
if(n->received_seqno > MAX_SEQNO)
|
|
regenerate_key();
|
|
|
|
/* Decompress the packet */
|
|
|
|
length_t origlen = inpkt->len;
|
|
|
|
if(n->incompression) {
|
|
vpn_packet_t *outpkt = pkt[nextpkt++];
|
|
|
|
if((outpkt->len = uncompress_packet(DATA(outpkt), DATA(inpkt), inpkt->len, n->incompression)) < 0) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Error while uncompressing packet from %s (%s)",
|
|
n->name, n->hostname);
|
|
return false;
|
|
}
|
|
|
|
inpkt = outpkt;
|
|
|
|
origlen -= MTU/64 + 20;
|
|
}
|
|
|
|
if(inpkt->len > n->maxrecentlen)
|
|
n->maxrecentlen = inpkt->len;
|
|
|
|
inpkt->priority = 0;
|
|
|
|
if(!DATA(inpkt)[12] && !DATA(inpkt)[13])
|
|
udp_probe_h(n, inpkt, origlen);
|
|
else
|
|
receive_packet(n, inpkt);
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
void receive_tcppacket(connection_t *c, const char *buffer, int len) {
|
|
vpn_packet_t outpkt;
|
|
outpkt.offset = DEFAULT_PACKET_OFFSET;
|
|
|
|
if(len > sizeof outpkt.data - outpkt.offset)
|
|
return;
|
|
|
|
outpkt.len = len;
|
|
if(c->options & OPTION_TCPONLY)
|
|
outpkt.priority = 0;
|
|
else
|
|
outpkt.priority = -1;
|
|
memcpy(DATA(&outpkt), buffer, len);
|
|
|
|
receive_packet(c->node, &outpkt);
|
|
}
|
|
|
|
bool receive_tcppacket_sptps(connection_t *c, const char *data, int len) {
|
|
if (len < sizeof(node_id_t) + sizeof(node_id_t)) {
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "Got too short TCP SPTPS packet from %s (%s)", c->name, c->hostname);
|
|
return false;
|
|
}
|
|
|
|
node_t *to = lookup_node_id((node_id_t *)data);
|
|
data += sizeof(node_id_t); len -= sizeof(node_id_t);
|
|
if(!to) {
|
|
logger(DEBUG_PROTOCOL, LOG_ERR, "Got TCP SPTPS packet from %s (%s) with unknown destination ID", c->name, c->hostname);
|
|
return true;
|
|
}
|
|
|
|
node_t *from = lookup_node_id((node_id_t *)data);
|
|
data += sizeof(node_id_t); len -= sizeof(node_id_t);
|
|
if(!from) {
|
|
logger(DEBUG_PROTOCOL, LOG_ERR, "Got TCP SPTPS packet from %s (%s) with unknown source ID", c->name, c->hostname);
|
|
return true;
|
|
}
|
|
|
|
if(!to->status.reachable) {
|
|
/* This can happen in the form of a race condition
|
|
if the node just became unreachable. */
|
|
logger(DEBUG_TRAFFIC, LOG_WARNING, "Cannot relay TCP packet from %s (%s) because the destination, %s (%s), is unreachable", from->name, from->hostname, to->name, to->hostname);
|
|
return true;
|
|
}
|
|
|
|
/* Help the sender reach us over UDP.
|
|
Note that we only do this if we're the destination or the static relay;
|
|
otherwise every hop would initiate its own UDP info message, resulting in elevated chatter. */
|
|
if(to->via == myself)
|
|
send_udp_info(myself, from);
|
|
|
|
/* If we're not the final recipient, relay the packet. */
|
|
|
|
if(to != myself) {
|
|
if (!to->status.waitingforkey) {
|
|
send_sptps_data(to, from, 0, data, len);
|
|
try_tx(to, true);
|
|
} else
|
|
logger(DEBUG_ALWAYS, LOG_INFO, "Cannot forward TCP packet from %s (%s) to %s (%s) because we are still wating for key", from->name, from->hostname, to->name, to->hostname);
|
|
return true;
|
|
}
|
|
|
|
/* The packet is for us */
|
|
|
|
if(!sptps_receive_data(&from->sptps, data, len)) {
|
|
/* Uh-oh. It might be that the tunnel is stuck in some corrupted state,
|
|
so let's restart SPTPS in case that helps. But don't do that too often
|
|
to prevent storms. */
|
|
if(from->last_req_key < now.tv_sec - 10) {
|
|
logger(DEBUG_PROTOCOL, LOG_ERR, "Failed to decode raw TCP packet from %s (%s), restarting SPTPS", from->name, from->hostname);
|
|
send_req_key(from);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
send_mtu_info(myself, from, MTU);
|
|
return true;
|
|
}
|
|
|
|
static void send_sptps_packet(node_t *n, vpn_packet_t *origpkt) {
|
|
if(!n->status.validkey && !n->connection)
|
|
return;
|
|
|
|
uint8_t type = 0;
|
|
int offset = 0;
|
|
|
|
if((!(DATA(origpkt)[12] | DATA(origpkt)[13])) && (n->sptps.outstate)) {
|
|
sptps_send_record(&n->sptps, PKT_PROBE, (char *)DATA(origpkt), origpkt->len);
|
|
return;
|
|
}
|
|
|
|
if(routing_mode == RMODE_ROUTER)
|
|
offset = 14;
|
|
else
|
|
type = PKT_MAC;
|
|
|
|
if(origpkt->len < offset)
|
|
return;
|
|
|
|
vpn_packet_t outpkt;
|
|
|
|
if(n->outcompression) {
|
|
outpkt.offset = 0;
|
|
int len = compress_packet(DATA(&outpkt) + offset, DATA(origpkt) + offset, origpkt->len - offset, n->outcompression);
|
|
if(len < 0) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Error while compressing packet to %s (%s)", n->name, n->hostname);
|
|
} else if(len < origpkt->len - offset) {
|
|
outpkt.len = len + offset;
|
|
origpkt = &outpkt;
|
|
type |= PKT_COMPRESSED;
|
|
}
|
|
}
|
|
|
|
/* If we have a direct metaconnection to n, and we can't use UDP, then
|
|
don't bother with SPTPS and just use a "plaintext" PACKET message.
|
|
We don't really care about end-to-end security since we're not
|
|
sending the message through any intermediate nodes. */
|
|
if(n->connection && origpkt->len > n->minmtu)
|
|
send_tcppacket(n->connection, origpkt);
|
|
else
|
|
sptps_send_record(&n->sptps, type, DATA(origpkt) + offset, origpkt->len - offset);
|
|
return;
|
|
}
|
|
|
|
static void adapt_socket(const sockaddr_t *sa, int *sock) {
|
|
/* Make sure we have a suitable socket for the chosen address */
|
|
if(listen_socket[*sock].sa.sa.sa_family != sa->sa.sa_family) {
|
|
for(int i = 0; i < listen_sockets; i++) {
|
|
if(listen_socket[i].sa.sa.sa_family == sa->sa.sa_family) {
|
|
*sock = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void choose_udp_address(const node_t *n, const sockaddr_t **sa, int *sock) {
|
|
/* Latest guess */
|
|
*sa = &n->address;
|
|
*sock = n->sock;
|
|
|
|
/* If the UDP address is confirmed, use it. */
|
|
if(n->status.udp_confirmed)
|
|
return;
|
|
|
|
/* Send every third packet to n->address; that could be set
|
|
to the node's reflexive UDP address discovered during key
|
|
exchange. */
|
|
|
|
static int x = 0;
|
|
if(++x >= 3) {
|
|
x = 0;
|
|
return;
|
|
}
|
|
|
|
/* Otherwise, address are found in edges to this node.
|
|
So we pick a random edge and a random socket. */
|
|
|
|
int i = 0;
|
|
int j = rand() % n->edge_tree->count;
|
|
edge_t *candidate = NULL;
|
|
|
|
for splay_each(edge_t, e, n->edge_tree) {
|
|
if(i++ == j) {
|
|
candidate = e->reverse;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(candidate) {
|
|
*sa = &candidate->address;
|
|
*sock = rand() % listen_sockets;
|
|
}
|
|
|
|
adapt_socket(*sa, sock);
|
|
}
|
|
|
|
static void choose_local_address(const node_t *n, const sockaddr_t **sa, int *sock) {
|
|
*sa = NULL;
|
|
|
|
/* Pick one of the edges from this node at random, then use its local address. */
|
|
|
|
int i = 0;
|
|
int j = rand() % n->edge_tree->count;
|
|
edge_t *candidate = NULL;
|
|
|
|
for splay_each(edge_t, e, n->edge_tree) {
|
|
if(i++ == j) {
|
|
candidate = e;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (candidate && candidate->local_address.sa.sa_family) {
|
|
*sa = &candidate->local_address;
|
|
*sock = rand() % listen_sockets;
|
|
adapt_socket(*sa, sock);
|
|
}
|
|
}
|
|
|
|
static void send_udppacket(node_t *n, vpn_packet_t *origpkt) {
|
|
vpn_packet_t pkt1, pkt2;
|
|
vpn_packet_t *pkt[] = { &pkt1, &pkt2, &pkt1, &pkt2 };
|
|
vpn_packet_t *inpkt = origpkt;
|
|
int nextpkt = 0;
|
|
vpn_packet_t *outpkt;
|
|
int origlen = origpkt->len;
|
|
size_t outlen;
|
|
int origpriority = origpkt->priority;
|
|
|
|
pkt1.offset = DEFAULT_PACKET_OFFSET;
|
|
pkt2.offset = DEFAULT_PACKET_OFFSET;
|
|
|
|
if(!n->status.reachable) {
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Trying to send UDP packet to unreachable node %s (%s)", n->name, n->hostname);
|
|
return;
|
|
}
|
|
|
|
if(n->status.sptps)
|
|
return send_sptps_packet(n, origpkt);
|
|
|
|
#ifdef DISABLE_LEGACY
|
|
return;
|
|
#else
|
|
/* Make sure we have a valid key */
|
|
|
|
if(!n->status.validkey) {
|
|
logger(DEBUG_TRAFFIC, LOG_INFO,
|
|
"No valid key known yet for %s (%s), forwarding via TCP",
|
|
n->name, n->hostname);
|
|
send_tcppacket(n->nexthop->connection, origpkt);
|
|
return;
|
|
}
|
|
|
|
if(n->options & OPTION_PMTU_DISCOVERY && inpkt->len > n->minmtu && (DATA(inpkt)[12] | DATA(inpkt)[13])) {
|
|
logger(DEBUG_TRAFFIC, LOG_INFO,
|
|
"Packet for %s (%s) larger than minimum MTU, forwarding via %s",
|
|
n->name, n->hostname, n != n->nexthop ? n->nexthop->name : "TCP");
|
|
|
|
if(n != n->nexthop)
|
|
send_packet(n->nexthop, origpkt);
|
|
else
|
|
send_tcppacket(n->nexthop->connection, origpkt);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Compress the packet */
|
|
|
|
if(n->outcompression) {
|
|
outpkt = pkt[nextpkt++];
|
|
|
|
if((outpkt->len = compress_packet(DATA(outpkt), DATA(inpkt), inpkt->len, n->outcompression)) < 0) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Error while compressing packet to %s (%s)",
|
|
n->name, n->hostname);
|
|
return;
|
|
}
|
|
|
|
inpkt = outpkt;
|
|
}
|
|
|
|
/* Add sequence number */
|
|
|
|
seqno_t seqno = htonl(++(n->sent_seqno));
|
|
memcpy(SEQNO(inpkt), &seqno, sizeof seqno);
|
|
inpkt->len += sizeof seqno;
|
|
|
|
/* Encrypt the packet */
|
|
|
|
if(cipher_active(n->outcipher)) {
|
|
outpkt = pkt[nextpkt++];
|
|
outlen = MAXSIZE;
|
|
|
|
if(!cipher_encrypt(n->outcipher, SEQNO(inpkt), inpkt->len, SEQNO(outpkt), &outlen, true)) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Error while encrypting packet to %s (%s)", n->name, n->hostname);
|
|
goto end;
|
|
}
|
|
|
|
outpkt->len = outlen;
|
|
inpkt = outpkt;
|
|
}
|
|
|
|
/* Add the message authentication code */
|
|
|
|
if(digest_active(n->outdigest)) {
|
|
if(!digest_create(n->outdigest, SEQNO(inpkt), inpkt->len, SEQNO(inpkt) + inpkt->len)) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Error while encrypting packet to %s (%s)", n->name, n->hostname);
|
|
goto end;
|
|
}
|
|
|
|
inpkt->len += digest_length(n->outdigest);
|
|
}
|
|
|
|
/* Send the packet */
|
|
|
|
const sockaddr_t *sa = NULL;
|
|
int sock = -1;
|
|
|
|
if(n->status.send_locally)
|
|
choose_local_address(n, &sa, &sock);
|
|
if(!sa)
|
|
choose_udp_address(n, &sa, &sock);
|
|
|
|
if(priorityinheritance && origpriority != listen_socket[sock].priority) {
|
|
listen_socket[sock].priority = origpriority;
|
|
switch(sa->sa.sa_family) {
|
|
#if defined(IPPROTO_IP) && defined(IP_TOS)
|
|
case AF_INET:
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Setting IPv4 outgoing packet priority to %d", origpriority);
|
|
if(setsockopt(listen_socket[sock].udp.fd, IPPROTO_IP, IP_TOS, (void *)&origpriority, sizeof origpriority)) /* SO_PRIORITY doesn't seem to work */
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "System call `%s' failed: %s", "setsockopt", sockstrerror(sockerrno));
|
|
break;
|
|
#endif
|
|
#if defined(IPPROTO_IPV6) & defined(IPV6_TCLASS)
|
|
case AF_INET6:
|
|
logger(DEBUG_TRAFFIC, LOG_DEBUG, "Setting IPv6 outgoing packet priority to %d", origpriority);
|
|
if(setsockopt(listen_socket[sock].udp.fd, IPPROTO_IPV6, IPV6_TCLASS, (void *)&origpriority, sizeof origpriority)) /* SO_PRIORITY doesn't seem to work */
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "System call `%s' failed: %s", "setsockopt", sockstrerror(sockerrno));
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(sendto(listen_socket[sock].udp.fd, (void *)SEQNO(inpkt), inpkt->len, 0, &sa->sa, SALEN(sa->sa)) < 0 && !sockwouldblock(sockerrno)) {
|
|
if(sockmsgsize(sockerrno)) {
|
|
if(n->maxmtu >= origlen)
|
|
n->maxmtu = origlen - 1;
|
|
if(n->mtu >= origlen)
|
|
n->mtu = origlen - 1;
|
|
try_fix_mtu(n);
|
|
} else
|
|
logger(DEBUG_TRAFFIC, LOG_WARNING, "Error sending packet to %s (%s): %s", n->name, n->hostname, sockstrerror(sockerrno));
|
|
}
|
|
|
|
end:
|
|
origpkt->len = origlen;
|
|
#endif
|
|
}
|
|
|
|
bool send_sptps_data(node_t *to, node_t *from, int type, const void *data, size_t len) {
|
|
node_t *relay = (to->via != myself && (type == PKT_PROBE || (len - SPTPS_DATAGRAM_OVERHEAD) <= to->via->minmtu)) ? to->via : to->nexthop;
|
|
bool direct = from == myself && to == relay;
|
|
bool relay_supported = (relay->options >> 24) >= 4;
|
|
bool tcponly = (myself->options | relay->options) & OPTION_TCPONLY;
|
|
|
|
/* Send it via TCP if it is a handshake packet, TCPOnly is in use, this is a relay packet that the other node cannot understand, or this packet is larger than the MTU. */
|
|
|
|
if(type == SPTPS_HANDSHAKE || tcponly || (!direct && !relay_supported) || (type != PKT_PROBE && (len - SPTPS_DATAGRAM_OVERHEAD) > relay->minmtu)) {
|
|
if(type != SPTPS_HANDSHAKE && (to->nexthop->connection->options >> 24) >= 7) {
|
|
char buf[len + sizeof to->id + sizeof from->id]; char* buf_ptr = buf;
|
|
memcpy(buf_ptr, &to->id, sizeof to->id); buf_ptr += sizeof to->id;
|
|
memcpy(buf_ptr, &from->id, sizeof from->id); buf_ptr += sizeof from->id;
|
|
memcpy(buf_ptr, data, len); buf_ptr += len;
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Sending packet from %s (%s) to %s (%s) via %s (%s) (TCP)", from->name, from->hostname, to->name, to->hostname, to->nexthop->name, to->nexthop->hostname);
|
|
return send_sptps_tcppacket(to->nexthop->connection, buf, sizeof buf);
|
|
}
|
|
|
|
char buf[len * 4 / 3 + 5];
|
|
b64encode(data, buf, len);
|
|
/* If this is a handshake packet, use ANS_KEY instead of REQ_KEY, for two reasons:
|
|
- We don't want intermediate nodes to switch to UDP to relay these packets;
|
|
- ANS_KEY allows us to learn the reflexive UDP address. */
|
|
if(type == SPTPS_HANDSHAKE) {
|
|
to->incompression = myself->incompression;
|
|
return send_request(to->nexthop->connection, "%d %s %s %s -1 -1 -1 %d", ANS_KEY, from->name, to->name, buf, to->incompression);
|
|
} else {
|
|
return send_request(to->nexthop->connection, "%d %s %s %d %s", REQ_KEY, from->name, to->name, SPTPS_PACKET, buf);
|
|
}
|
|
}
|
|
|
|
size_t overhead = 0;
|
|
if(relay_supported) overhead += sizeof to->id + sizeof from->id;
|
|
char buf[len + overhead]; char* buf_ptr = buf;
|
|
if(relay_supported) {
|
|
if(direct) {
|
|
/* Inform the recipient that this packet was sent directly. */
|
|
node_id_t nullid = {};
|
|
memcpy(buf_ptr, &nullid, sizeof nullid); buf_ptr += sizeof nullid;
|
|
} else {
|
|
memcpy(buf_ptr, &to->id, sizeof to->id); buf_ptr += sizeof to->id;
|
|
}
|
|
memcpy(buf_ptr, &from->id, sizeof from->id); buf_ptr += sizeof from->id;
|
|
|
|
}
|
|
/* TODO: if this copy turns out to be a performance concern, change sptps_send_record() to add some "pre-padding" to the buffer and use that instead */
|
|
memcpy(buf_ptr, data, len); buf_ptr += len;
|
|
|
|
const sockaddr_t *sa = NULL;
|
|
int sock = -1;
|
|
if(relay->status.send_locally)
|
|
choose_local_address(relay, &sa, &sock);
|
|
if(!sa)
|
|
choose_udp_address(relay, &sa, &sock);
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Sending packet from %s (%s) to %s (%s) via %s (%s) (UDP)", from->name, from->hostname, to->name, to->hostname, relay->name, relay->hostname);
|
|
if(sendto(listen_socket[sock].udp.fd, buf, buf_ptr - buf, 0, &sa->sa, SALEN(sa->sa)) < 0 && !sockwouldblock(sockerrno)) {
|
|
if(sockmsgsize(sockerrno)) {
|
|
// Compensate for SPTPS overhead
|
|
len -= SPTPS_DATAGRAM_OVERHEAD;
|
|
if(relay->maxmtu >= len)
|
|
relay->maxmtu = len - 1;
|
|
if(relay->mtu >= len)
|
|
relay->mtu = len - 1;
|
|
try_fix_mtu(relay);
|
|
} else {
|
|
logger(DEBUG_TRAFFIC, LOG_WARNING, "Error sending UDP SPTPS packet to %s (%s): %s", relay->name, relay->hostname, sockstrerror(sockerrno));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool receive_sptps_record(void *handle, uint8_t type, const void *data, uint16_t len) {
|
|
node_t *from = handle;
|
|
|
|
if(type == SPTPS_HANDSHAKE) {
|
|
if(!from->status.validkey) {
|
|
from->status.validkey = true;
|
|
from->status.waitingforkey = false;
|
|
logger(DEBUG_META, LOG_INFO, "SPTPS key exchange with %s (%s) succesful", from->name, from->hostname);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if(len > MTU) {
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "Packet from %s (%s) larger than maximum supported size (%d > %d)", from->name, from->hostname, len, MTU);
|
|
return false;
|
|
}
|
|
|
|
vpn_packet_t inpkt;
|
|
inpkt.offset = DEFAULT_PACKET_OFFSET;
|
|
|
|
if(type == PKT_PROBE) {
|
|
if(!from->status.udppacket) {
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "Got SPTPS PROBE packet from %s (%s) via TCP", from->name, from->hostname);
|
|
return false;
|
|
}
|
|
inpkt.len = len;
|
|
memcpy(DATA(&inpkt), data, len);
|
|
if(inpkt.len > from->maxrecentlen)
|
|
from->maxrecentlen = inpkt.len;
|
|
udp_probe_h(from, &inpkt, len);
|
|
return true;
|
|
}
|
|
|
|
if(type & ~(PKT_COMPRESSED | PKT_MAC)) {
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "Unexpected SPTPS record type %d len %d from %s (%s)", type, len, from->name, from->hostname);
|
|
return false;
|
|
}
|
|
|
|
/* Check if we have the headers we need */
|
|
if(routing_mode != RMODE_ROUTER && !(type & PKT_MAC)) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Received packet from %s (%s) without MAC header (maybe Mode is not set correctly)", from->name, from->hostname);
|
|
return false;
|
|
} else if(routing_mode == RMODE_ROUTER && (type & PKT_MAC)) {
|
|
logger(DEBUG_TRAFFIC, LOG_WARNING, "Received packet from %s (%s) with MAC header (maybe Mode is not set correctly)", from->name, from->hostname);
|
|
}
|
|
|
|
int offset = (type & PKT_MAC) ? 0 : 14;
|
|
if(type & PKT_COMPRESSED) {
|
|
length_t ulen = uncompress_packet(DATA(&inpkt) + offset, (const uint8_t *)data, len, from->incompression);
|
|
if(ulen < 0) {
|
|
return false;
|
|
} else {
|
|
inpkt.len = ulen + offset;
|
|
}
|
|
if(inpkt.len > MAXSIZE) {
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "receive_sptps_record(): inpkt.len > MAXSIZE. aborting!");
|
|
abort();
|
|
}
|
|
} else {
|
|
memcpy(DATA(&inpkt) + offset, data, len);
|
|
inpkt.len = len + offset;
|
|
}
|
|
|
|
/* Generate the Ethernet packet type if necessary */
|
|
if(offset) {
|
|
switch(DATA(&inpkt)[14] >> 4) {
|
|
case 4:
|
|
DATA(&inpkt)[12] = 0x08;
|
|
DATA(&inpkt)[13] = 0x00;
|
|
break;
|
|
case 6:
|
|
DATA(&inpkt)[12] = 0x86;
|
|
DATA(&inpkt)[13] = 0xDD;
|
|
break;
|
|
default:
|
|
logger(DEBUG_TRAFFIC, LOG_ERR,
|
|
"Unknown IP version %d while reading packet from %s (%s)",
|
|
DATA(&inpkt)[14] >> 4, from->name, from->hostname);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if(from->status.udppacket && inpkt.len > from->maxrecentlen)
|
|
from->maxrecentlen = inpkt.len;
|
|
|
|
receive_packet(from, &inpkt);
|
|
return true;
|
|
}
|
|
|
|
// This function tries to get SPTPS keys, if they aren't already known.
|
|
// This function makes no guarantees - it is up to the caller to check the node's state to figure out if the keys are available.
|
|
static void try_sptps(node_t *n) {
|
|
if(n->status.validkey)
|
|
return;
|
|
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "No valid key known yet for %s (%s)", n->name, n->hostname);
|
|
|
|
if(!n->status.waitingforkey)
|
|
send_req_key(n);
|
|
else if(n->last_req_key + 10 < now.tv_sec) {
|
|
logger(DEBUG_ALWAYS, LOG_DEBUG, "No key from %s after 10 seconds, restarting SPTPS", n->name);
|
|
sptps_stop(&n->sptps);
|
|
n->status.waitingforkey = false;
|
|
send_req_key(n);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static void send_udp_probe_packet(node_t *n, int len) {
|
|
vpn_packet_t packet;
|
|
packet.offset = DEFAULT_PACKET_OFFSET;
|
|
memset(DATA(&packet), 0, 14);
|
|
randomize(DATA(&packet) + 14, len - 14);
|
|
packet.len = len;
|
|
packet.priority = 0;
|
|
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Sending UDP probe length %d to %s (%s)", len, n->name, n->hostname);
|
|
|
|
send_udppacket(n, &packet);
|
|
}
|
|
|
|
// This function tries to establish a UDP tunnel to a node so that packets can be sent.
|
|
// If a tunnel is already established, it makes sure it stays up.
|
|
// This function makes no guarantees - it is up to the caller to check the node's state to figure out if UDP is usable.
|
|
static void try_udp(node_t* n) {
|
|
if(!udp_discovery)
|
|
return;
|
|
|
|
/* Send gratuitous probe replies to 1.1 nodes. */
|
|
|
|
if((n->options >> 24) >= 3 && n->status.udp_confirmed) {
|
|
struct timeval ping_tx_elapsed;
|
|
timersub(&now, &n->udp_reply_sent, &ping_tx_elapsed);
|
|
|
|
if(ping_tx_elapsed.tv_sec >= udp_discovery_keepalive_interval - 1) {
|
|
n->udp_reply_sent = now;
|
|
if(n->maxrecentlen) {
|
|
vpn_packet_t pkt;
|
|
pkt.len = n->maxrecentlen;
|
|
pkt.offset = DEFAULT_PACKET_OFFSET;
|
|
memset(DATA(&pkt), 0, 14);
|
|
randomize(DATA(&pkt) + 14, MIN_PROBE_SIZE - 14);
|
|
send_udp_probe_reply(n, &pkt, pkt.len);
|
|
n->maxrecentlen = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Probe request */
|
|
|
|
struct timeval ping_tx_elapsed;
|
|
timersub(&now, &n->udp_ping_sent, &ping_tx_elapsed);
|
|
|
|
int interval = n->status.udp_confirmed ? udp_discovery_keepalive_interval : udp_discovery_interval;
|
|
|
|
if(ping_tx_elapsed.tv_sec >= interval) {
|
|
send_udp_probe_packet(n, MIN_PROBE_SIZE);
|
|
n->udp_ping_sent = now;
|
|
|
|
if(localdiscovery && !n->status.udp_confirmed && n->prevedge) {
|
|
n->status.send_locally = true;
|
|
send_udp_probe_packet(n, MIN_PROBE_SIZE);
|
|
n->status.send_locally = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
static length_t choose_initial_maxmtu(node_t *n) {
|
|
#ifdef IP_MTU
|
|
|
|
int sock = -1;
|
|
|
|
const sockaddr_t *sa = NULL;
|
|
int sockindex;
|
|
choose_udp_address(n, &sa, &sockindex);
|
|
if(!sa)
|
|
return MTU;
|
|
|
|
sock = socket(sa->sa.sa_family, SOCK_DGRAM, IPPROTO_UDP);
|
|
if(sock < 0) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Creating MTU assessment socket for %s (%s) failed: %s", n->name, n->hostname, sockstrerror(sockerrno));
|
|
return MTU;
|
|
}
|
|
|
|
if(connect(sock, &sa->sa, SALEN(sa->sa))) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Connecting MTU assessment socket for %s (%s) failed: %s", n->name, n->hostname, sockstrerror(sockerrno));
|
|
close(sock);
|
|
return MTU;
|
|
}
|
|
|
|
int ip_mtu;
|
|
socklen_t ip_mtu_len = sizeof ip_mtu;
|
|
if(getsockopt(sock, IPPROTO_IP, IP_MTU, &ip_mtu, &ip_mtu_len)) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "getsockopt(IP_MTU) on %s (%s) failed: %s", n->name, n->hostname, sockstrerror(sockerrno));
|
|
close(sock);
|
|
return MTU;
|
|
}
|
|
|
|
close(sock);
|
|
|
|
/* getsockopt(IP_MTU) returns the MTU of the physical interface.
|
|
We need to remove various overheads to get to the tinc MTU. */
|
|
length_t mtu = ip_mtu;
|
|
mtu -= (sa->sa.sa_family == AF_INET6) ? sizeof(struct ip6_hdr) : sizeof(struct ip);
|
|
mtu -= 8; /* UDP */
|
|
if(n->status.sptps) {
|
|
mtu -= SPTPS_DATAGRAM_OVERHEAD;
|
|
if((n->options >> 24) >= 4)
|
|
mtu -= sizeof(node_id_t) + sizeof(node_id_t);
|
|
#ifndef DISABLE_LEGACY
|
|
} else {
|
|
mtu -= digest_length(n->outdigest);
|
|
|
|
/* Now it's tricky. We use CBC mode, so the length of the
|
|
encrypted payload must be a multiple of the blocksize. The
|
|
sequence number is also part of the encrypted payload, so we
|
|
must account for it after correcting for the blocksize.
|
|
Furthermore, the padding in the last block must be at least
|
|
1 byte. */
|
|
|
|
length_t blocksize = cipher_blocksize(n->outcipher);
|
|
|
|
if(blocksize > 1) {
|
|
mtu /= blocksize;
|
|
mtu *= blocksize;
|
|
mtu--;
|
|
}
|
|
|
|
mtu -= 4; // seqno
|
|
#endif
|
|
}
|
|
|
|
if (mtu < 512) {
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "getsockopt(IP_MTU) on %s (%s) returned absurdly small value: %d", n->name, n->hostname, ip_mtu);
|
|
return MTU;
|
|
}
|
|
if (mtu > MTU)
|
|
return MTU;
|
|
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Using system-provided maximum tinc MTU for %s (%s): %hd", n->name, n->hostname, mtu);
|
|
return mtu;
|
|
|
|
#else
|
|
UNUSED(n);
|
|
return MTU;
|
|
|
|
#endif
|
|
}
|
|
|
|
/* This function tries to determines the MTU of a node.
|
|
By calling this function repeatedly, n->minmtu will be progressively
|
|
increased, and at some point, n->mtu will be fixed to n->minmtu. If the MTU
|
|
is already fixed, this function checks if it can be increased.
|
|
*/
|
|
|
|
static void try_mtu(node_t *n) {
|
|
if(!(n->options & OPTION_PMTU_DISCOVERY))
|
|
return;
|
|
|
|
if(udp_discovery && !n->status.udp_confirmed) {
|
|
n->maxrecentlen = 0;
|
|
n->mtuprobes = 0;
|
|
n->minmtu = 0;
|
|
n->maxmtu = MTU;
|
|
return;
|
|
}
|
|
|
|
/* mtuprobes == 0..19: initial discovery, send bursts with 1 second interval, mtuprobes++
|
|
mtuprobes == 20: fix MTU, and go to -1
|
|
mtuprobes == -1: send one maxmtu and one maxmtu+1 probe every pinginterval
|
|
mtuprobes ==-2..-3: send one maxmtu probe every second
|
|
mtuprobes == -4: maxmtu no longer valid, reset minmtu and maxmtu and go to 0 */
|
|
|
|
struct timeval elapsed;
|
|
timersub(&now, &n->mtu_ping_sent, &elapsed);
|
|
if(n->mtuprobes >= 0) {
|
|
if(n->mtuprobes != 0 && elapsed.tv_sec == 0 && elapsed.tv_usec < 333333)
|
|
return;
|
|
} else {
|
|
if(n->mtuprobes < -1) {
|
|
if(elapsed.tv_sec < 1)
|
|
return;
|
|
} else {
|
|
if(elapsed.tv_sec < pinginterval)
|
|
return;
|
|
}
|
|
}
|
|
|
|
n->mtu_ping_sent = now;
|
|
|
|
try_fix_mtu(n);
|
|
|
|
if(n->mtuprobes < -3) {
|
|
/* We lost three MTU probes, restart discovery */
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Decrease in PMTU to %s (%s) detected, restarting PMTU discovery", n->name, n->hostname);
|
|
n->mtuprobes = 0;
|
|
n->minmtu = 0;
|
|
}
|
|
|
|
if(n->mtuprobes < 0) {
|
|
/* After the initial discovery, we only send one maxmtu and one
|
|
maxmtu+1 probe to detect PMTU increases. */
|
|
send_udp_probe_packet(n, n->maxmtu);
|
|
if(n->mtuprobes == -1 && n->maxmtu + 1 < MTU)
|
|
send_udp_probe_packet(n, n->maxmtu + 1);
|
|
n->mtuprobes--;
|
|
} else {
|
|
/* Before initial discovery begins, set maxmtu to the most likely value.
|
|
If it's underestimated, we will correct it after initial discovery. */
|
|
if(n->mtuprobes == 0)
|
|
n->maxmtu = choose_initial_maxmtu(n);
|
|
|
|
for (;;) {
|
|
/* Decreasing the number of probes per cycle might make the algorithm react faster to lost packets,
|
|
but it will typically increase convergence time in the no-loss case. */
|
|
const length_t probes_per_cycle = 8;
|
|
|
|
/* This magic value was determined using math simulations.
|
|
It will result in a 1329-byte first probe, followed (if there was a reply) by a 1407-byte probe.
|
|
Since 1407 is just below the range of tinc MTUs over typical networks,
|
|
this fine-tuning allows tinc to cover a lot of ground very quickly.
|
|
This fine-tuning is only valid for maxmtu = MTU; if maxmtu is smaller,
|
|
then it's better to use a multiplier of 1. Indeed, this leads to an interesting scenario
|
|
if choose_initial_maxmtu() returns the actual MTU value - it will get confirmed with one single probe. */
|
|
const float multiplier = (n->maxmtu == MTU) ? 0.97 : 1;
|
|
|
|
const float cycle_position = probes_per_cycle - (n->mtuprobes % probes_per_cycle) - 1;
|
|
const length_t minmtu = MAX(n->minmtu, 512);
|
|
const float interval = n->maxmtu - minmtu;
|
|
|
|
/* The core of the discovery algorithm is this exponential.
|
|
It produces very large probes early in the cycle, and then it very quickly decreases the probe size.
|
|
This reflects the fact that in the most difficult cases, we don't get any feedback for probes that
|
|
are too large, and therefore we need to concentrate on small offsets so that we can quickly converge
|
|
on the precise MTU as we are approaching it.
|
|
The last probe of the cycle is always 1 byte in size - this is to make sure we'll get at least one
|
|
reply per cycle so that we can make progress. */
|
|
const length_t offset = powf(interval, multiplier * cycle_position / (probes_per_cycle - 1));
|
|
|
|
length_t maxmtu = n->maxmtu;
|
|
send_udp_probe_packet(n, minmtu + offset);
|
|
/* If maxmtu changed, it means the probe was rejected by the system because it was too large.
|
|
In that case, we recalculate with the new maxmtu and try again. */
|
|
if(n->mtuprobes < 0 || maxmtu == n->maxmtu)
|
|
break;
|
|
}
|
|
|
|
if(n->mtuprobes >= 0)
|
|
n->mtuprobes++;
|
|
}
|
|
}
|
|
|
|
/* These functions try to establish a tunnel to a node (or its relay) so that
|
|
packets can be sent (e.g. exchange keys).
|
|
If a tunnel is already established, it tries to improve it (e.g. by trying
|
|
to establish a UDP tunnel instead of TCP). This function makes no
|
|
guarantees - it is up to the caller to check the node's state to figure out
|
|
if TCP and/or UDP is usable. By calling this function repeatedly, the
|
|
tunnel is gradually improved until we hit the wall imposed by the underlying
|
|
network environment. It is recommended to call this function every time a
|
|
packet is sent (or intended to be sent) to a node, so that the tunnel keeps
|
|
improving as packets flow, and then gracefully downgrades itself as it goes
|
|
idle.
|
|
*/
|
|
|
|
static void try_tx_sptps(node_t *n, bool mtu) {
|
|
/* If n is a TCP-only neighbor, we'll only use "cleartext" PACKET
|
|
messages anyway, so there's no need for SPTPS at all. */
|
|
|
|
if(n->connection && ((myself->options | n->options) & OPTION_TCPONLY))
|
|
return;
|
|
|
|
/* Otherwise, try to do SPTPS authentication with n if necessary. */
|
|
|
|
try_sptps(n);
|
|
|
|
/* Do we need to statically relay packets? */
|
|
|
|
node_t *via = (n->via == myself) ? n->nexthop : n->via;
|
|
|
|
/* If we do have a static relay, try everything with that one instead, if it supports relaying. */
|
|
|
|
if(via != n) {
|
|
if((via->options >> 24) < 4)
|
|
return;
|
|
return try_tx(via, mtu);
|
|
}
|
|
|
|
/* Otherwise, try to establish UDP connectivity. */
|
|
|
|
try_udp(n);
|
|
if(mtu)
|
|
try_mtu(n);
|
|
|
|
/* If we don't have UDP connectivity (yet), we need to use a dynamic relay (nexthop)
|
|
while we try to establish direct connectivity. */
|
|
|
|
if(!n->status.udp_confirmed && n != n->nexthop && (n->nexthop->options >> 24) >= 4)
|
|
try_tx(n->nexthop, mtu);
|
|
}
|
|
|
|
static void try_tx_legacy(node_t *n, bool mtu) {
|
|
/* Does he have our key? If not, send one. */
|
|
|
|
if(!n->status.validkey_in)
|
|
send_ans_key(n);
|
|
|
|
/* Check if we already have a key, or request one. */
|
|
|
|
if(!n->status.validkey) {
|
|
if(n->last_req_key + 10 <= now.tv_sec) {
|
|
send_req_key(n);
|
|
n->last_req_key = now.tv_sec;
|
|
}
|
|
return;
|
|
}
|
|
|
|
try_udp(n);
|
|
if(mtu)
|
|
try_mtu(n);
|
|
}
|
|
|
|
void try_tx(node_t *n, bool mtu) {
|
|
if(!n->status.reachable)
|
|
return;
|
|
if(n->status.sptps)
|
|
try_tx_sptps(n, mtu);
|
|
else
|
|
try_tx_legacy(n, mtu);
|
|
}
|
|
|
|
void send_packet(node_t *n, vpn_packet_t *packet) {
|
|
// If it's for myself, write it to the tun/tap device.
|
|
|
|
if(n == myself) {
|
|
if(overwrite_mac) {
|
|
memcpy(DATA(packet), mymac.x, ETH_ALEN);
|
|
// Use an arbitrary fake source address.
|
|
memcpy(DATA(packet) + ETH_ALEN, DATA(packet), ETH_ALEN);
|
|
DATA(packet)[ETH_ALEN * 2 - 1] ^= 0xFF;
|
|
}
|
|
n->out_packets++;
|
|
n->out_bytes += packet->len;
|
|
devops.write(packet);
|
|
return;
|
|
}
|
|
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Sending packet of %d bytes to %s (%s)", packet->len, n->name, n->hostname);
|
|
|
|
// If the node is not reachable, drop it.
|
|
|
|
if(!n->status.reachable) {
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Node %s (%s) is not reachable", n->name, n->hostname);
|
|
return;
|
|
}
|
|
|
|
// Keep track of packet statistics.
|
|
|
|
n->out_packets++;
|
|
n->out_bytes += packet->len;
|
|
|
|
// Check if it should be sent as an SPTPS packet.
|
|
|
|
if(n->status.sptps) {
|
|
send_sptps_packet(n, packet);
|
|
try_tx(n, true);
|
|
return;
|
|
}
|
|
|
|
// Determine which node to actually send it to.
|
|
|
|
node_t *via = (packet->priority == -1 || n->via == myself) ? n->nexthop : n->via;
|
|
|
|
if(via != n)
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Sending packet to %s via %s (%s)", n->name, via->name, n->via->hostname);
|
|
|
|
// Try to send via UDP, unless TCP is forced.
|
|
|
|
if(packet->priority == -1 || ((myself->options | via->options) & OPTION_TCPONLY)) {
|
|
if(!send_tcppacket(via->connection, packet))
|
|
terminate_connection(via->connection, true);
|
|
return;
|
|
}
|
|
|
|
send_udppacket(via, packet);
|
|
try_tx(via, true);
|
|
}
|
|
|
|
void broadcast_packet(const node_t *from, vpn_packet_t *packet) {
|
|
// Always give ourself a copy of the packet.
|
|
if(from != myself)
|
|
send_packet(myself, packet);
|
|
|
|
// In TunnelServer mode, do not forward broadcast packets.
|
|
// The MST might not be valid and create loops.
|
|
if(tunnelserver || broadcast_mode == BMODE_NONE)
|
|
return;
|
|
|
|
logger(DEBUG_TRAFFIC, LOG_INFO, "Broadcasting packet of %d bytes from %s (%s)",
|
|
packet->len, from->name, from->hostname);
|
|
|
|
switch(broadcast_mode) {
|
|
// In MST mode, broadcast packets travel via the Minimum Spanning Tree.
|
|
// This guarantees all nodes receive the broadcast packet, and
|
|
// usually distributes the sending of broadcast packets over all nodes.
|
|
case BMODE_MST:
|
|
for list_each(connection_t, c, connection_list)
|
|
if(c->edge && c->status.mst && c != from->nexthop->connection)
|
|
send_packet(c->node, packet);
|
|
break;
|
|
|
|
// In direct mode, we send copies to each node we know of.
|
|
// However, this only reaches nodes that can be reached in a single hop.
|
|
// We don't have enough information to forward broadcast packets in this case.
|
|
case BMODE_DIRECT:
|
|
if(from != myself)
|
|
break;
|
|
|
|
for splay_each(node_t, n, node_tree)
|
|
if(n->status.reachable && n != myself && ((n->via == myself && n->nexthop == n) || n->via == n))
|
|
send_packet(n, packet);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* We got a packet from some IP address, but we don't know who sent it. Try to
|
|
verify the message authentication code against all active session keys.
|
|
Since this is actually an expensive operation, we only do a full check once
|
|
a minute, the rest of the time we only check against nodes for which we know
|
|
an IP address that matches the one from the packet. */
|
|
|
|
static node_t *try_harder(const sockaddr_t *from, const vpn_packet_t *pkt) {
|
|
node_t *match = NULL;
|
|
bool hard = false;
|
|
static time_t last_hard_try = 0;
|
|
|
|
for splay_each(node_t, n, node_tree) {
|
|
if(!n->status.reachable || n == myself)
|
|
continue;
|
|
|
|
if(!n->status.validkey_in && !(n->status.sptps && n->sptps.instate))
|
|
continue;
|
|
|
|
bool soft = false;
|
|
|
|
for splay_each(edge_t, e, n->edge_tree) {
|
|
if(!e->reverse)
|
|
continue;
|
|
if(!sockaddrcmp_noport(from, &e->reverse->address)) {
|
|
soft = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if(!soft) {
|
|
if(last_hard_try == now.tv_sec)
|
|
continue;
|
|
hard = true;
|
|
}
|
|
|
|
if(!try_mac(n, pkt))
|
|
continue;
|
|
|
|
match = n;
|
|
break;
|
|
}
|
|
|
|
if(hard)
|
|
last_hard_try = now.tv_sec;
|
|
|
|
return match;
|
|
}
|
|
|
|
static void handle_incoming_vpn_packet(listen_socket_t *ls, vpn_packet_t *pkt, sockaddr_t *addr) {
|
|
char *hostname;
|
|
node_id_t nullid = {};
|
|
node_t *from, *to;
|
|
bool direct = false;
|
|
|
|
sockaddrunmap(addr); /* Some braindead IPv6 implementations do stupid things. */
|
|
|
|
// Try to figure out who sent this packet.
|
|
|
|
node_t *n = lookup_node_udp(addr);
|
|
|
|
if(n && !n->status.udp_confirmed)
|
|
n = NULL; // Don't believe it if we don't have confirmation yet.
|
|
|
|
if(!n) {
|
|
// It might be from a 1.1 node, which might have a source ID in the packet.
|
|
pkt->offset = 2 * sizeof(node_id_t);
|
|
from = lookup_node_id(SRCID(pkt));
|
|
if(from && !memcmp(DSTID(pkt), &nullid, sizeof nullid) && from->status.sptps) {
|
|
if(sptps_verify_datagram(&from->sptps, DATA(pkt), pkt->len - 2 * sizeof(node_id_t)))
|
|
n = from;
|
|
else
|
|
goto skip_harder;
|
|
}
|
|
}
|
|
|
|
if(!n) {
|
|
pkt->offset = 0;
|
|
n = try_harder(addr, pkt);
|
|
}
|
|
|
|
skip_harder:
|
|
if(!n) {
|
|
if(debug_level >= DEBUG_PROTOCOL) {
|
|
hostname = sockaddr2hostname(addr);
|
|
logger(DEBUG_PROTOCOL, LOG_WARNING, "Received UDP packet from unknown source %s", hostname);
|
|
free(hostname);
|
|
}
|
|
return;
|
|
}
|
|
|
|
pkt->offset = 0;
|
|
|
|
if(n->status.sptps) {
|
|
bool relay_enabled = (n->options >> 24) >= 4;
|
|
if (relay_enabled) {
|
|
pkt->offset = 2 * sizeof(node_id_t);
|
|
pkt->len -= pkt->offset;
|
|
}
|
|
|
|
if(!memcmp(DSTID(pkt), &nullid, sizeof nullid) || !relay_enabled) {
|
|
direct = true;
|
|
from = n;
|
|
to = myself;
|
|
} else {
|
|
from = lookup_node_id(SRCID(pkt));
|
|
to = lookup_node_id(DSTID(pkt));
|
|
}
|
|
if(!from || !to) {
|
|
logger(DEBUG_PROTOCOL, LOG_WARNING, "Received UDP packet from %s (%s) with unknown source and/or destination ID", n->name, n->hostname);
|
|
return;
|
|
}
|
|
|
|
if(!to->status.reachable) {
|
|
/* This can happen in the form of a race condition
|
|
if the node just became unreachable. */
|
|
logger(DEBUG_TRAFFIC, LOG_WARNING, "Cannot relay packet from %s (%s) because the destination, %s (%s), is unreachable", from->name, from->hostname, to->name, to->hostname);
|
|
return;
|
|
}
|
|
|
|
/* The packet is supposed to come from the originator or its static relay
|
|
(i.e. with no dynamic relays in between).
|
|
If it did not, "help" the static relay by sending it UDP info.
|
|
Note that we only do this if we're the destination or the static relay;
|
|
otherwise every hop would initiate its own UDP info message, resulting in elevated chatter. */
|
|
|
|
if(n != from->via && to->via == myself)
|
|
send_udp_info(myself, from);
|
|
|
|
/* If we're not the final recipient, relay the packet. */
|
|
|
|
if(to != myself) {
|
|
send_sptps_data(to, from, 0, DATA(pkt), pkt->len);
|
|
try_tx(to, true);
|
|
return;
|
|
}
|
|
} else {
|
|
direct = true;
|
|
from = n;
|
|
}
|
|
|
|
if(!receive_udppacket(from, pkt))
|
|
return;
|
|
|
|
n->sock = ls - listen_socket;
|
|
if(direct && sockaddrcmp(addr, &n->address))
|
|
update_node_udp(n, addr);
|
|
|
|
/* If the packet went through a relay, help the sender find the appropriate MTU
|
|
through the relay path. */
|
|
|
|
if(!direct)
|
|
send_mtu_info(myself, n, MTU);
|
|
}
|
|
|
|
static void handle_incoming_slpd_packet(listen_socket_t *ls, void *pkt, sockaddr_t *addr) {
|
|
|
|
int mav, miv, port;
|
|
char nodename[MAXSIZE], fng[MAXSIZE];
|
|
|
|
int i = sscanf(pkt, "sLPD %d %d %s %d %s", &mav, &miv, &nodename[0], &port, &fng[0]);
|
|
if (i != 5) {
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "cant not parse packet... %d",i);
|
|
return;
|
|
}
|
|
|
|
if (mav == 0 && miv == 1) {
|
|
|
|
logger(DEBUG_TRAFFIC, LOG_ERR, "Got SLPD packet node:%s port:%d %d.%d <%s> from %s", nodename, port, mav, miv, fng, inet_ntoa(addr->in.sin_addr));
|
|
|
|
node_t *n = lookup_node(nodename);
|
|
if (!n) {
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "unknown node: %s", nodename);
|
|
return;
|
|
}
|
|
|
|
if (!strncmp(n->name, myself->name, strlen(myself->name))) {
|
|
logger(DEBUG_SCARY_THINGS, LOG_NOTICE, "Ignore SLPD for myself: %s", nodename);
|
|
return;
|
|
}
|
|
|
|
config_t *cfg = NULL;
|
|
if (!n->slpd_address) {
|
|
cfg = new_config();
|
|
cfg->variable = xstrdup("Address");
|
|
cfg->value = xstrdup(inet_ntoa(addr->in.sin_addr));
|
|
cfg->file = NULL;
|
|
cfg->line = -1;
|
|
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "Discovered %s on %s", nodename, inet_ntoa(addr->in.sin_addr));
|
|
|
|
n->slpd_address = cfg;
|
|
n->status.has_address = true;
|
|
}
|
|
} else {
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "Got SLPD packet with wrong version %d.%d", mav, miv);
|
|
}
|
|
return;
|
|
}
|
|
|
|
void handle_incoming_vpn_data(void *data, int flags) {
|
|
listen_socket_t *ls = data;
|
|
|
|
#ifdef HAVE_RECVMMSG
|
|
#define MAX_MSG 64
|
|
static int num = MAX_MSG;
|
|
static vpn_packet_t pkt[MAX_MSG];
|
|
static sockaddr_t addr[MAX_MSG];
|
|
static struct mmsghdr msg[MAX_MSG];
|
|
static struct iovec iov[MAX_MSG];
|
|
|
|
for(int i = 0; i < num; i++) {
|
|
pkt[i].offset = 0;
|
|
|
|
iov[i] = (struct iovec){
|
|
.iov_base = DATA(&pkt[i]),
|
|
.iov_len = MAXSIZE,
|
|
};
|
|
|
|
msg[i].msg_hdr = (struct msghdr){
|
|
.msg_name = &addr[i].sa,
|
|
.msg_namelen = sizeof addr[i],
|
|
.msg_iov = &iov[i],
|
|
.msg_iovlen = 1,
|
|
};
|
|
}
|
|
|
|
num = recvmmsg(ls->udp.fd, msg, MAX_MSG, MSG_DONTWAIT, NULL);
|
|
|
|
if(num < 0) {
|
|
if(!sockwouldblock(sockerrno))
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "Receiving packet failed: %s", sockstrerror(sockerrno));
|
|
return;
|
|
}
|
|
|
|
for(int i = 0; i < num; i++) {
|
|
pkt[i].len = msg[i].msg_len;
|
|
if(pkt[i].len <= 0 || pkt[i].len > MAXSIZE)
|
|
continue;
|
|
handle_incoming_vpn_packet(ls, &pkt[i], &addr[i]);
|
|
}
|
|
#else
|
|
vpn_packet_t pkt;
|
|
sockaddr_t addr = {};
|
|
socklen_t addrlen = sizeof addr;
|
|
|
|
pkt.offset = 0;
|
|
int len = recvfrom(ls->udp.fd, (void *)DATA(&pkt), MAXSIZE, 0, &addr.sa, &addrlen);
|
|
|
|
if(len <= 0 || len > MAXSIZE) {
|
|
if(!sockwouldblock(sockerrno))
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "Receiving packet failed: %s", sockstrerror(sockerrno));
|
|
return;
|
|
}
|
|
|
|
pkt.len = len;
|
|
|
|
handle_incoming_vpn_packet(ls, &pkt, &addr);
|
|
#endif
|
|
}
|
|
|
|
void handle_incoming_slpd_data(void *data, int flags) {
|
|
listen_socket_t *ls = data;
|
|
|
|
char pkt[MAXSIZE];
|
|
sockaddr_t addr = {};
|
|
socklen_t addrlen = sizeof addr;
|
|
|
|
logger(DEBUG_SCARY_THINGS, LOG_INFO, "Receiving SLPD packet");
|
|
|
|
size_t len = recvfrom(ls->udp.fd, (void *)&pkt, MAXSIZE, 0, &addr.sa, &addrlen);
|
|
|
|
if(len <= 0 || len > MAXSIZE) {
|
|
if(!sockwouldblock(sockerrno))
|
|
logger(DEBUG_ALWAYS, LOG_ERR, "Receiving SLPD packet failed: %s", sockstrerror(sockerrno));
|
|
return;
|
|
}
|
|
|
|
handle_incoming_slpd_packet(ls, &pkt, &addr);
|
|
}
|
|
|
|
|
|
void handle_device_data(void *data, int flags) {
|
|
vpn_packet_t packet;
|
|
UNUSED(data);
|
|
UNUSED(flags);
|
|
packet.offset = DEFAULT_PACKET_OFFSET;
|
|
packet.priority = 0;
|
|
|
|
if(devops.read(&packet)) {
|
|
myself->in_packets++;
|
|
myself->in_bytes += packet.len;
|
|
route(myself, &packet);
|
|
}
|
|
}
|