/* event.c -- I/O, timeout and signal event handling Copyright (C) 2012-2013 Guus Sliepen This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "system.h" #include "dropin.h" #include "event.h" #include "net.h" #include "utils.h" #include "xalloc.h" struct timeval now; #ifndef HAVE_MINGW static fd_set readfds; static fd_set writefds; #else static const long READ_EVENTS = FD_READ | FD_ACCEPT | FD_CLOSE; static const long WRITE_EVENTS = FD_WRITE | FD_CONNECT; static DWORD event_count = 0; #endif static volatile bool running; static int io_compare(const io_t *a, const io_t *b) { #ifndef HAVE_MINGW return a->fd - b->fd; #else return a->event - b->event; #endif } static int timeout_compare(const timeout_t *a, const timeout_t *b) { struct timeval diff; timersub(&a->tv, &b->tv, &diff); if(diff.tv_sec < 0) return -1; if(diff.tv_sec > 0) return 1; if(diff.tv_usec < 0) return -1; if(diff.tv_usec > 0) return 1; if(a < b) return -1; if(a > b) return 1; return 0; } static splay_tree_t io_tree = {.compare = (splay_compare_t)io_compare}; static splay_tree_t timeout_tree = {.compare = (splay_compare_t)timeout_compare}; void io_add(io_t *io, io_cb_t cb, void *data, int fd, int flags) { if(io->cb) return; io->fd = fd; #ifdef HAVE_MINGW io->event = WSACreateEvent(); if (io->event == WSA_INVALID_EVENT) abort(); event_count++; #endif io->cb = cb; io->data = data; io->node.data = io; io_set(io, flags); if(!splay_insert_node(&io_tree, &io->node)) abort(); } void io_set(io_t *io, int flags) { if (flags == io->flags) return; io->flags = flags; #ifndef HAVE_MINGW if(flags & IO_READ) FD_SET(io->fd, &readfds); else FD_CLR(io->fd, &readfds); if(flags & IO_WRITE) FD_SET(io->fd, &writefds); else FD_CLR(io->fd, &writefds); #else long events = 0; if (flags & IO_WRITE) events |= WRITE_EVENTS; if (flags & IO_READ) events |= READ_EVENTS; if (WSAEventSelect(io->fd, io->event, events) != 0) abort(); #endif } void io_del(io_t *io) { if(!io->cb) return; io_set(io, 0); #ifdef HAVE_MINGW if (WSACloseEvent(io->event) == FALSE) abort(); event_count--; #endif splay_unlink_node(&io_tree, &io->node); io->cb = NULL; } void timeout_add(timeout_t *timeout, timeout_cb_t cb, void *data, struct timeval *tv) { timeout->cb = cb; timeout->data = data; timeout->node.data = timeout; timeout_set(timeout, tv); } void timeout_set(timeout_t *timeout, struct timeval *tv) { if(timerisset(&timeout->tv)) splay_unlink_node(&timeout_tree, &timeout->node); if(!now.tv_sec) gettimeofday(&now, NULL); timeradd(&now, tv, &timeout->tv); if(!splay_insert_node(&timeout_tree, &timeout->node)) abort(); } void timeout_del(timeout_t *timeout) { if(!timeout->cb) return; splay_unlink_node(&timeout_tree, &timeout->node); timeout->cb = 0; timeout->tv = (struct timeval){0, 0}; } #ifndef HAVE_MINGW static int signal_compare(const signal_t *a, const signal_t *b) { return a->signum - b->signum; } static io_t signalio; static int pipefd[2] = {-1, -1}; static splay_tree_t signal_tree = {.compare = (splay_compare_t)signal_compare}; static void signal_handler(int signum) { unsigned char num = signum; write(pipefd[1], &num, 1); } static void signalio_handler(void *data, int flags) { unsigned char signum; if(read(pipefd[0], &signum, 1) != 1) return; signal_t *sig = splay_search(&signal_tree, &((signal_t){.signum = signum})); if(sig) sig->cb(sig->data); } static void pipe_init(void) { if(!pipe(pipefd)) io_add(&signalio, signalio_handler, NULL, pipefd[0], IO_READ); } void signal_add(signal_t *sig, signal_cb_t cb, void *data, int signum) { if(sig->cb) return; sig->cb = cb; sig->data = data; sig->signum = signum; sig->node.data = sig; if(pipefd[0] == -1) pipe_init(); signal(sig->signum, signal_handler); if(!splay_insert_node(&signal_tree, &sig->node)) abort(); } void signal_del(signal_t *sig) { if(!sig->cb) return; signal(sig->signum, SIG_DFL); splay_unlink_node(&signal_tree, &sig->node); sig->cb = NULL; } #endif static struct timeval * get_time_remaining(struct timeval *diff) { gettimeofday(&now, NULL); struct timeval *tv = NULL; while(timeout_tree.head) { timeout_t *timeout = timeout_tree.head->data; timersub(&timeout->tv, &now, diff); if(diff->tv_sec < 0) { timeout->cb(timeout->data); if(timercmp(&timeout->tv, &now, <)) timeout_del(timeout); } else { tv = diff; break; } } return tv; } bool event_loop(void) { running = true; #ifndef HAVE_MINGW fd_set readable; fd_set writable; while(running) { memcpy(&readable, &readfds, sizeof readable); memcpy(&writable, &writefds, sizeof writable); struct timeval diff; struct timeval *tv = get_time_remaining(&diff); int fds = 0; if(io_tree.tail) { io_t *last = io_tree.tail->data; fds = last->fd + 1; } int n = select(fds, &readable, &writable, NULL, tv); if(n < 0) { if(sockwouldblock(sockerrno)) continue; else return false; } if(!n) continue; for splay_each(io_t, io, &io_tree) { if(FD_ISSET(io->fd, &writable)) io->cb(io->data, IO_WRITE); else if(FD_ISSET(io->fd, &readable)) io->cb(io->data, IO_READ); } } #else while (running) { struct timeval diff; struct timeval *tv = get_time_remaining(&diff); DWORD timeout_ms = tv ? (tv->tv_sec * 1000 + tv->tv_usec / 1000 + 1) : WSA_INFINITE; if (!event_count) { LeaveCriticalSection(&mutex); Sleep(timeout_ms); EnterCriticalSection(&mutex); continue; } /* For some reason, Microsoft decided to make the FD_WRITE event edge-triggered instead of level-triggered, which is the opposite of what select() does. In practice, that means that if a FD_WRITE event triggers, it will never trigger again until a send() returns EWOULDBLOCK. Since the semantics of this event loop is that write events are level-triggered (i.e. they continue firing until the socket is full), we need to emulate these semantics by making sure we fire each IO_WRITE that is still writeable. Note that technically FD_CLOSE has the same problem, but it's okay because user code does not rely on this event being fired again if ignored. */ io_t* writeable_io = NULL; for splay_each(io_t, io, &io_tree) if (io->flags & IO_WRITE && send(io->fd, NULL, 0, 0) == 0) { writeable_io = io; break; } if (writeable_io) { writeable_io->cb(writeable_io->data, IO_WRITE); continue; } WSAEVENT* events = xmalloc(event_count * sizeof(*events)); DWORD event_index = 0; for splay_each(io_t, io, &io_tree) { events[event_index] = io->event; event_index++; } LeaveCriticalSection(&mutex); DWORD result = WSAWaitForMultipleEvents(event_count, events, FALSE, timeout_ms, FALSE); EnterCriticalSection(&mutex); WSAEVENT event; if (result >= WSA_WAIT_EVENT_0 && result < WSA_WAIT_EVENT_0 + event_count) event = events[result - WSA_WAIT_EVENT_0]; free(events); if (result == WSA_WAIT_TIMEOUT) continue; if (result < WSA_WAIT_EVENT_0 || result >= WSA_WAIT_EVENT_0 + event_count) return false; io_t *io = splay_search(&io_tree, &((io_t){.event = event})); if (!io) abort(); WSANETWORKEVENTS network_events; if (WSAEnumNetworkEvents(io->fd, io->event, &network_events) != 0) return false; if (network_events.lNetworkEvents & WRITE_EVENTS) io->cb(io->data, IO_WRITE); if (network_events.lNetworkEvents & READ_EVENTS) io->cb(io->data, IO_READ); } #endif return true; } void event_flush_output(void) { for splay_each(io_t, io, &io_tree) if(io->flags & IO_WRITE) io->cb(io->data, IO_WRITE); } void event_exit(void) { running = false; }