Before it would always use the first socket, and always send an IPv4 broadcast packet. That
works fine in a lot of situations, but it is better to try all sockets, and to send IPv6 packets
on IPv6 sockets. This is especially important for users that are on IPv6-only networks or that
have multiple physical network interfaces, although in the latter case it probably requires
them to use the ListenAddress variable to create a separate socket for each interface.
Before, when tinc saw a packet larger than the PMTU with a VLAN tag, it would
not know what to do with it, and would just forward it via TCP. Now, tinc
handles 802.1q packets correctly, as long as there is only one tag.
When set to a non-zero value, tinc will try to maintain exactly that number of
meta connections to other nodes. If there are not enough connections, it will
periodically try to set up an outgoing connection to a random node. If there
are too many connections, it will periodically try to remove an outgoing
connection.
Only the very first packet of an SPTPS session should be send with REQ_KEY,
this signals the peer to abort any previous session and start a new one as
well.
Most of the code doesn't care whether requests are terminated with a newline or
not, except that when requests are forwarded, it is assumed they do not have
one and a newline is added. When a node using SPTPS receives a request from
another SPTPS-using node, and forwards it to a non-SPTPS-using node, this will
result in two consecutive newlines, which the latter node will see as an empty,
and thus invalid, request.
The tree functions were never used on the connection_tree, a list is more appropriate.
Also be more paranoid about connections disappearing while traversing the list.
Struct outgoing_ts and connection_ts were depending too much on each other,
causing lots of problems, especially the reuse of a connection_t. Now, whenever
a connection is closed it is immediately removed from the list of connections
and destroyed.
Similar to old style key exchange requests, keep track of whether a key
exchange is already in progress and how long it took. If no key is known yet
or if key exchange takes too long, (re)start a new key exchange.
Most fields should be zero when reusing a connection. In particular, when an
outgoing connection to a node which is reachable on more than one address is
made, the second connection to that node will have status.encryptout set but
outctx will be NULL, causing a NULL pointer dereference when
EVP_EncryptUpdate() is called in send_meta() when it shouldn't.
When starting tincd, tincctl now strips non-options from the command line, and
sets argv[0] to the name of the tincd command instead of copying its own
command name.
When stopping a running tincd, tincctl now waits for it to terminate.
Internally, tinc maintains a directed graph of the meta connections between
nodes. However, this causes graphviz to draw two lines between nodes, which is
not always desirable. The "dump graph" command now defaults to dumping an
undirected graph, the "dump digraph" command will dump a directed graph.
This new setting allows choosing a custom script interpreter used for the various tinc callbacks.
If none is specified, the script itself is called as executable (as before).
This is particularly useful when storing tinc configuration and script on a mount point with no-exec attribute.
Commented non-existing functions in android NDK.
Prefix scripts execution with shell binary to allow execution on no-exec mount points.
Everyything is currently hard coded, while it should use pre-compiler variables...
When two nodes which support SPTPS want to send packets to each other, they now
always use SPTPS. The node initiating the SPTPS session send the first SPTPS
packet via an extended REQ_KEY messages. All other handshake messages are sent
using ANS_KEY messages. This ensures that intermediate nodes using an older
version of tinc can still help with NAT traversal. After the authentication
phase is over, SPTPS packets are sent via UDP, or are encapsulated in extended
REQ_KEY messages instead of PACKET messages.
Otherwise, the call to daemon() could close filedescriptors in use by libevent
itself; for example if it uses kqueue or epoll instead of a select() or poll()
backend.
In retry() the function do_outgoing_connection() is called, which can delete
items from the connection_tree, so when walking the tree we must first save the
pointer to the next item.
The used remote protocol can change between two reconnects, aka if
the remote side has enabled/disabled for example their ExperimentalProtocols
setting.
Proxy type "exec" can be used to have an external script or binary set
up an outgoing connection. Standard input and output will be used to
exchange data with the external command. The variables REMOTEADDRESS and
REMOTEPORT are set to the intended destination address and port.
When the Proxy option is used, outgoing connections will be made via the
specified proxy. There is no support for authentication methods or for having
the proxy forward incoming connections, and there is no attempt to proxy UDP.
When the "Broadcast = direct" option is used, broadcast packets are not sent
and forwarded via the Minimum Spanning Tree to all nodes, but are sent directly
to all nodes that can be reached in one hop.
One use for this is to allow running ad-hoc routing protocols, such as OLSR, on
top of tinc.
Most likeley the error is that there just is no valid key inside the used
host file, and in this case errno just contains a random value from the
last previously failed call.
When the Name starts with a $, the rest will be interpreted as the name of an
environment variable containing the real Name. When Name is $HOST, but this
environment variable does not exist, gethostname() will be used to set the
Name. In both cases, illegal characters will be converted to underscores.
If the LISTEN_FDS environment variable is set and tinc is run in the
foreground, tinc will use filedescriptors 3 to 3 + LISTEN_FDS for its listening
TCP sockets. For now, tinc will create matching listening UDP sockets itself.
There is no dependency on systemd or on libsystemd-daemon.