When creating an edge after authenticating a peer, we copy the
address used for the TCP connection, but change the port to that used
for UDP. But the way we did it discarded the scope_id for IPv6
addresses. This prevented UDP communication from working correctly when
connecting to a peer on the same LAN using an IPv6 link-local address.
Thanks to Rafał Leśniak for pointing out this issue.
This deals with the case where one node knows the Ed25519 key of another node, but not the other
way around. This was blocked by an overly paranoid check in id_h(). The upgrade_h() function already
handled this case, and the node that already knows the other's Ed25519 key checks that it has not
been changed, otherwise the connection will be aborted.
The option "--disable-legacy-protocol" was added to the configure
script. The new protocol does not depend on any external crypto
libraries, so when the option is used tinc is no longer linked to
OpenSSL's libcrypto.
The offset value indicates where the actual payload starts, so we can
process both legacy and SPTPS UDP packets without having to do casting
tricks and/or moving memory around.
If the peer presents a different one from the one we already know, log
an error. Otherwise, log an informational message, and terminate in the
same way as we would if we didn't already have that key.
The only places where connection_t::status.active is modified is in
ack_h() and terminate_connection(). In both cases, connection_t::edge
is added and removed at the same time, and that's the only places
connection_t::edge is set. Therefore, the following is true at all
times:
!c->status.active == !c->edge
This commit removes the redundant state information by getting rid of
connection_t::status.active, and using connection_t::edge instead.
In addition to the remote address, each edge now stores the local address from
the point of view of the "from" node. This information is then made available
to other nodes through a backwards-compatible extension to ADD_EDGE messages.
This information can be used in future code to improve packet routing.
It seems like a lot of overhead to call access() for every possible extension
defined in PATHEXT, but apparently this is what Windows does itself too. At
least this avoids calling system() when the script one is looking for does not
exist at all.
Since the tinc utility also needs to call scripts, execute_script() is now
split off into its own source file.
Since filenames could potentially leak to unprivileged users (for example,
because of locatedb), it should not contain the cookie used for invitations.
Instead, tinc now uses the hash of the cookie and the invitation key as the
filename to store pending invitations in.
Using the tinc command, an administrator of an existing VPN can generate
invitations for new nodes. The invitation is a small URL that can easily
be copy&pasted into email or live chat. Another person can have tinc
automatically setup the necessary configuration files and exchange keys
with the server, by only using the invitation URL.
The invitation protocol uses temporary ECDSA keys. The invitation URL
consists of the hostname and port of the server, a hash of the server's
temporary ECDSA key and a cookie. When the client wants to accept an
invitation, it also creates a temporary ECDSA key, connects to the server
and says it wants to accept an invitation. Both sides exchange their
temporary keys. The client verifies that the server's key matches the hash
in the invitation URL. After setting up an SPTPS connection using the
temporary keys, the client gives the cookie to the server. If the cookie
is valid, the server sends the client an invitation file containing the
client's new name and a copy of the server's host config file. If everything
is ok, the client will generate a long-term ECDSA key and send it to the
server, which will add it to a new host config file for the client.
The invitation protocol currently allows multiple host config files to be
send from the server to the client. However, the client filters out
most configuration variables for its own host configuration file. In
particular, it only accepts Name, Mode, Broadcast, ConnectTo, Subnet and
AutoConnect. Also, at the moment no tinc-up script is generated.
When an invitation has succesfully been accepted, the client needs to start
the tinc daemon manually.
At this point, c->config_tree may or may not be NULL, but this does not tell us whether it is an
outgoing connection or not. For incoming connections, we do not know the peer's name yet,
so we always have to claim ECDSA support. For outgoing connections, we always need to check
whether we have the peer's ECDSA public key, so that if we don't, we correctly tell the peer that
we want to upgrade.
This gets rid of the rest of the symbolic links. However, as a consequence, the
crypto header files have now moved to src/, and can no longer contain
library-specific declarations. Therefore, cipher_t, digest_t, ecdh_t, ecdsa_t
and rsa_t are now all opaque types, and only pointers to those types can be
used.
Normally all requests sent via the meta connections are checked so that they
cannot be larger than the input buffer. However, when packets are forwarded via
meta connections, they are copied into a packet buffer without checking whether
it fits into it. Since the packet buffer is allocated on the stack, this in
effect allows an authenticated remote node to cause a stack overflow.
This issue was found by Martin Schobert.
The tree functions were never used on the connection_tree, a list is more appropriate.
Also be more paranoid about connections disappearing while traversing the list.
Struct outgoing_ts and connection_ts were depending too much on each other,
causing lots of problems, especially the reuse of a connection_t. Now, whenever
a connection is closed it is immediately removed from the list of connections
and destroyed.
Proxy type "exec" can be used to have an external script or binary set
up an outgoing connection. Standard input and output will be used to
exchange data with the external command. The variables REMOTEADDRESS and
REMOTEPORT are set to the intended destination address and port.
When the Proxy option is used, outgoing connections will be made via the
specified proxy. There is no support for authentication methods or for having
the proxy forward incoming connections, and there is no attempt to proxy UDP.
* Everything is identical except the headers of the records.
* Instead of sending explicit message length and having an implicit sequence
number, datagram mode has an implicit message length and an explicit sequence
number.
* The sequence number is used to set the most significant bytes of the counter.
This allows tincctl to receive log messages from a running tincd,
independent of what is logged to syslog or to file. Tincctl can receive
debug messages with an arbitrary level.