Try to send ICMP unreachable replies from an address assigned to the
local machine, instead of the destination address of the original
packet.
The address is found by looking up the route towards the sender of
the packet that generated the error; in usual configurations, this
is the tinc interface.
This also fixes the traceroute display in mtr when using the
DecrementTTL option.
Signed-off-by: Vittorio Gambaletta <openwrt@vittgam.net>
# Conflicts:
# src/route.c
The option was not actually working, as it could be seen on traceroute or mtr.
The problem is that it was checking if the TTL was < 1 (so equal to 0) before decrementing it.
This meant that a packet with a TTL of 1 was being sent with a TTL of 0 on the VPN, instead of being discarded with the ICMP error message.
Signed-off-by: Vittorio Gambaletta <openwrt@vittgam.net>
# Conflicts:
# src/route.c
When tinc is used in router mode with a TAP device, Ethernet (MAC)
headers are not present in packets flowing over the VPN; it is the
node's responsibility to fill out this header before handing the
packet over to the TAP interface (which expects such headers).
Currently, tinc fills out the destination MAC address of the packet
(otherwise the host would not recognize the packets, and nothing would
work), but it does not fill out the source MAC address. In practice this
doesn't seem to cause any real issues (the host doesn't care about the
source address), but it does look weird when looking at the packets with
a sniffer, and it also result in the following valgrind warning:
==13651== Syscall param write(buf) points to uninitialised byte(s)
==13651== at 0x5C4B620: __write_nocancel (syscall-template.S:81)
==13651== by 0x1445AA: write_packet (device.c:183)
==13651== by 0x118C7C: send_packet (net_packet.c:1259)
==13651== by 0x12B70A: route_ipv4 (route.c:443)
==13651== by 0x12D5F8: route (route.c:971)
==13651== by 0x1152BC: receive_packet (net_packet.c:250)
==13651== by 0x117E1B: receive_sptps_record (net_packet.c:904)
==13651== by 0x1309A8: sptps_receive_data_datagram (sptps.c:488)
==13651== by 0x130A90: sptps_receive_data (sptps.c:508)
==13651== by 0x115569: receive_udppacket (net_packet.c:286)
==13651== by 0x119856: handle_incoming_vpn_data (net_packet.c:1499)
==13651== by 0x10F3DA: event_loop (event.c:287)
==13651== Address 0xffeffea3a is on thread 1's stack
==13651== in frame #6, created by receive_sptps_record (net_packet.c:821)
==13651==
This commit fixes the issue by filling out the source MAC address. It is
generated by negating the last byte of the device MAC address, which is
consistent with what route_arp() does.
In addition, this commit stops route_arp() from filling out the Ethernet
header of the packet - this is the responsibility of send_packet(), not
route().
When tincd setups it's network device some operating systems send router
solicitation packets from local scope ip addresses. tincd forwards it
then to his neighbors then those nodes follow the same routine fowarding it
to the next hops. I may happen that an loop will occur consuming large amount
of bandwith. Constrains: Mode = Router, Broadcast = mst.
Reproduction: ping6 -c 1 ff02::2%<tincd interface>
Sending one packet will, depending on your setup, generate about 3k packets.
Proposed solution in this commit: enable StrictSubnets, tincd will reject such
packets due to unknown subnet.
Future work: check scope of the ip address and make decisions about forwarding
based on Mode tincd is configured to work.
The offset value indicates where the actual payload starts, so we can
process both legacy and SPTPS UDP packets without having to do casting
tricks and/or moving memory around.
The only places where connection_t::status.active is modified is in
ack_h() and terminate_connection(). In both cases, connection_t::edge
is added and removed at the same time, and that's the only places
connection_t::edge is set. Therefore, the following is true at all
times:
!c->status.active == !c->edge
This commit removes the redundant state information by getting rid of
connection_t::status.active, and using connection_t::edge instead.
Based on a patch from Etienne Dechamps. We avoid the use of %hhx, since even
though it is C99, not all compilers support it yet. We use %x instead, since
it's guaranteed that the minimum size of function arguments on the stack or in
registers is that of an int.
This adds a new option, BroadcastSubnet, that allows the user to
declare broadcast subnets, i.e. subnets which are considered broadcast
addresses by the tinc routing layer. Previously only the global IPv4
and IPv6 broadcast addresses were supported by virtue of being
hardcoded.
This is useful when using tinc in router mode with Ethernet virtual
devices, as it can be used to provide broadcast support for a local
broadcast address (e.g. 10.42.255.255) instead of just the global
address (255.255.255.255).
This is implemented by removing hardcoded broadcast addresses and
introducing "broadcast subnets", which are subnets with a NULL owner.
By default, behavior is unchanged; this is accomplished by adding
the global broadcast addresses for Ethernet, IPv4 and IPv6 at start
time.
There are several reasons for this:
- MacOS/X doesn't support polling the tap device using kqueue, requiring a
workaround to fall back to select().
- On Windows only sockets are properly handled, therefore tinc uses a second
thread that does a blocking ReadFile() on the TAP-Win32/64 device. However,
this does not mix well with libevent.
- Libevent, event just the core, is quite large, and although it is easy to get
and install on many platforms, it can be a burden.
- Libev is more lightweight and seems technically superior, but it doesn't
abstract away all the platform differences (for example, async events are not
supported on Windows).
Before, when tinc saw a packet larger than the PMTU with a VLAN tag, it would
not know what to do with it, and would just forward it via TCP. Now, tinc
handles 802.1q packets correctly, as long as there is only one tag.
The tree functions were never used on the connection_tree, a list is more appropriate.
Also be more paranoid about connections disappearing while traversing the list.
When the "Broadcast = direct" option is used, broadcast packets are not sent
and forwarded via the Minimum Spanning Tree to all nodes, but are sent directly
to all nodes that can be reached in one hop.
One use for this is to allow running ad-hoc routing protocols, such as OLSR, on
top of tinc.
This allows tincctl to receive log messages from a running tincd,
independent of what is logged to syslog or to file. Tincctl can receive
debug messages with an arbitrary level.
The Broadcast option can be used to cause tinc to drop all broadcast and
multicast packets. This option might be expanded in the future to selectively
allow only some broadcast packet types.
Tinc will now, by default, decrement the TTL field of incoming IPv4 and IPv6
packets, before forwarding them to the virtual network device or to another
node. Packets with a TTL value of zero will be dropped, and an ICMP Time
Exceeded message will be sent back.
This behaviour can be disabled using the DecrementTTL option.