If the LISTEN_FDS environment variable is set and tinc is run in the
foreground, tinc will use filedescriptors 3 to 3 + LISTEN_FDS for its listening
TCP sockets. For now, tinc will create matching listening UDP sockets itself.
There is no dependency on systemd or on libsystemd-daemon.
DeviceType = multicast allows one to specify a multicast address and port with
a Device statement. Tinc will then read/send packets to that multicast group
instead of to a tun/tap device. This allows interaction with UML, QEMU and KVM
instances that are listening on the same group.
The Broadcast option can be used to cause tinc to drop all broadcast and
multicast packets. This option might be expanded in the future to selectively
allow only some broadcast packet types.
Tinc will now, by default, decrement the TTL field of incoming IPv4 and IPv6
packets, before forwarding them to the virtual network device or to another
node. Packets with a TTL value of zero will be dropped, and an ICMP Time
Exceeded message will be sent back.
This behaviour can be disabled using the DecrementTTL option.
Apart from the platform specific tun/tap driver, link with the dummy and
raw_socket devices, and optionally with support for UML and VDE devices.
At runtime, the DeviceType option can be used to select which driver to
use.
In case the config file could not be opened a new but unitialized RSA structure
would be returned, causing a segmentation fault later on. This would only
happen in the case that the config file could be opened before, but not when
read_rsa_public_key() was called. This situation could occur when the --user
option was used, and the config files were not readable by the specified user.
With some exceptions, tinc only accepted host configuration options for the
local node from the corresponding host configuration file. Although this is
documented, many people expect that they can also put those options in
tinc.conf. Tinc now internally merges the contents of both tinc.conf and the
local host configuration file.
If one uses a symbolic name for the Port option, tinc will send that name
literally to other nodes. However, it is not guaranteed that all nodes have
the same contents in /etc/services, or have such a file at all.
When this option is enabled, packets that cannot be sent directly to the destination node,
but which would have to be forwarded by an intermediate node, are dropped instead.
When combined with the IndirectData option,
packets for nodes for which we do not have a meta connection with are also dropped.
This determines if and how incoming packets that are not meant for the local
node are forwarded. It can either be off, internal (tinc forwards them itself,
as in previous versions), or kernel (packets are always sent to the TUN/TAP
device, letting the kernel sort them out).
When this option is enabled, tinc will not accept dynamic updates of Subnets
from other nodes, but will only use Subnets read from local host config files
to build its routing table.
When the HUP signal is sent while some outgoing connections have not been made
yet, or are being retried, a NULL pointer could be dereferenced resulting in
tinc crashing. We fix this by more careful handling of outgoing_ts, and by
deleting all connections that have not been fully activated yet at the HUP
signal is received.
Although it would be better to have the new defaults, only the most recent
releases of most of the platforms supported by tinc come with a version of
OpenSSL that supports SHA256. To ensure people can compile tinc and that nodes
can interact with each other, we revert the default back to Blowfish and SHA1.
This reverts commit 4bb3793e38.
Git's log and blame tools were used to find out which files had significant
contributions from authors who sent in patches that were applied before we used
git.
This feature is not necessary anymore since we have tools like valgrind today
that can catch stack overflow errors before they make a backtrace in gdb
impossible.
In light of the recent improvements of attacks on SHA1, the default hash
algorithm in tinc is now SHA256. At the same time, the default symmetric
encryption algorithm has been changed to AES256.
PMTUDiscovery was disabled in commit d5b56bbba5
because tinc did not handle packets larger than the path MTU in switch and hub
modes. We now allow it again in preparation of proper support, but default to
off.
Instead of a single, global decryption context, each node has its own context.
However, in send_ans_key(), the global context was initialised. This commit
fixes that and removes the global context completely.
Also only set status.validkey after all checks have been evaluated.
In preparation of chroot/setuid operations, split out call to
try_outgoing_connections() from setup_network_connections()
(which was the last call in setup_network_connections()).
This is because dropping privileges should be done in-between
setup_network_connections() and try_outgoing_connections().
This patch renames setup_network_connections() to setup_network()
and moves call to try_outgoing_connections() into main routine.
No functional changes.
Previously, tinc used a fixed address and port for each node for UDP packet
exchange. The port was the one advertised by that node as its listening port.
However, due to NAT the port might be different. Now, tinc sends a different
session key to each node. This way, the sending node can be determined from
incoming packets by checking the MAC against all session keys. If a match is
found, the address and port for that node are updated.
In switch and hub modes, tinc does not generate ICMP packets in response to
packets that are larger than the path MTU. However, if PMTUDiscovery is
enabled, the IP_MTU_DISCOVER and IPV6_MTU_DISCOVER option is set on the UDP
sockets, which causes all UDP packets to be sent with the DF bit set, causing
large packets to be dropped, even if they would otherwise be routed fine.