There are several reasons for this:
- MacOS/X doesn't support polling the tap device using kqueue, requiring a
workaround to fall back to select().
- On Windows only sockets are properly handled, therefore tinc uses a second
thread that does a blocking ReadFile() on the TAP-Win32/64 device. However,
this does not mix well with libevent.
- Libevent, event just the core, is quite large, and although it is easy to get
and install on many platforms, it can be a burden.
- Libev is more lightweight and seems technically superior, but it doesn't
abstract away all the platform differences (for example, async events are not
supported on Windows).
We don't need to search the whole edge tree, we can use the node's own edge
tree since each edge has a pointer to its reverse. Also, we do need to make
sure we try the reflexive address often.
Before it would always use the first socket, and always send an IPv4 broadcast packet. That
works fine in a lot of situations, but it is better to try all sockets, and to send IPv6 packets
on IPv6 sockets. This is especially important for users that are on IPv6-only networks or that
have multiple physical network interfaces, although in the latter case it probably requires
them to use the ListenAddress variable to create a separate socket for each interface.
Only the very first packet of an SPTPS session should be send with REQ_KEY,
this signals the peer to abort any previous session and start a new one as
well.
The tree functions were never used on the connection_tree, a list is more appropriate.
Also be more paranoid about connections disappearing while traversing the list.
Similar to old style key exchange requests, keep track of whether a key
exchange is already in progress and how long it took. If no key is known yet
or if key exchange takes too long, (re)start a new key exchange.
When two nodes which support SPTPS want to send packets to each other, they now
always use SPTPS. The node initiating the SPTPS session send the first SPTPS
packet via an extended REQ_KEY messages. All other handshake messages are sent
using ANS_KEY messages. This ensures that intermediate nodes using an older
version of tinc can still help with NAT traversal. After the authentication
phase is over, SPTPS packets are sent via UDP, or are encapsulated in extended
REQ_KEY messages instead of PACKET messages.
When the "Broadcast = direct" option is used, broadcast packets are not sent
and forwarded via the Minimum Spanning Tree to all nodes, but are sent directly
to all nodes that can be reached in one hop.
One use for this is to allow running ad-hoc routing protocols, such as OLSR, on
top of tinc.
This allows tincctl to receive log messages from a running tincd,
independent of what is logged to syslog or to file. Tincctl can receive
debug messages with an arbitrary level.
Apart from the platform specific tun/tap driver, link with the dummy and
raw_socket devices, and optionally with support for UML and VDE devices.
At runtime, the DeviceType option can be used to select which driver to
use.
Probably due to a merge, the try_harder() function had duplicated the
rate-limiting code for detecting the sender node based on the HMAC of the
packet. This prevented this detection from running at all. The function is now
identical again to that in the 1.0 branch.