The tree functions were never used on the connection_tree, a list is more appropriate.
Also be more paranoid about connections disappearing while traversing the list.
Similar to old style key exchange requests, keep track of whether a key
exchange is already in progress and how long it took. If no key is known yet
or if key exchange takes too long, (re)start a new key exchange.
When two nodes which support SPTPS want to send packets to each other, they now
always use SPTPS. The node initiating the SPTPS session send the first SPTPS
packet via an extended REQ_KEY messages. All other handshake messages are sent
using ANS_KEY messages. This ensures that intermediate nodes using an older
version of tinc can still help with NAT traversal. After the authentication
phase is over, SPTPS packets are sent via UDP, or are encapsulated in extended
REQ_KEY messages instead of PACKET messages.
When the "Broadcast = direct" option is used, broadcast packets are not sent
and forwarded via the Minimum Spanning Tree to all nodes, but are sent directly
to all nodes that can be reached in one hop.
One use for this is to allow running ad-hoc routing protocols, such as OLSR, on
top of tinc.
This allows tincctl to receive log messages from a running tincd,
independent of what is logged to syslog or to file. Tincctl can receive
debug messages with an arbitrary level.
Apart from the platform specific tun/tap driver, link with the dummy and
raw_socket devices, and optionally with support for UML and VDE devices.
At runtime, the DeviceType option can be used to select which driver to
use.
Probably due to a merge, the try_harder() function had duplicated the
rate-limiting code for detecting the sender node based on the HMAC of the
packet. This prevented this detection from running at all. The function is now
identical again to that in the 1.0 branch.
Because we don't want to keep track of that, and this will cause the node
structure from being relinked into the node tree, which results in myself
pointing to an invalid address.
When a UDP packet was received with an unknown source address/port, and if it
failed a HMAC check against known keys, it could still incorrectly assign that
UDP address to another node. This would temporarily cause outgoing UDP packets
to go to the wrong destination address, until packets from the correct address
were received again.
Before, if MTU probes failed, tinc would stop sending probes until the next
time keys were regenerated (by default, once every hour). Now it continues to
send them every PingInterval, so it recovers faster from temporary failures.