Initial revision

This commit is contained in:
Ivo Timmermans 2000-03-26 00:33:07 +00:00
commit 1243156a5e
87 changed files with 27214 additions and 0 deletions

14
lib/Makefile.am Normal file
View file

@ -0,0 +1,14 @@
## Process this file with automake to produce Makefile.in
noinst_LIBRARIES = libvpn.a
INCLUDES = -I. -I$(top_builddir)
libvpn_a_SOURCES = xmalloc.c pidfile.c utils.c
libvpn_a_LIBADD = @LIBOBJS@ @ALLOCA@
libvpn_a_DEPENDENCIES = $(libvpn_a_LIBADD)
noinst_HEADERS = xalloc.h pidfile.h utils.h
EXTRA_DIST = README

1
lib/README Normal file
View file

@ -0,0 +1 @@
The files in this directory were merely copied from fileutils 4.0.

494
lib/alloca.c Normal file
View file

@ -0,0 +1,494 @@
/* alloca.c -- allocate automatically reclaimed memory
(Mostly) portable public-domain implementation -- D A Gwyn
This implementation of the PWB library alloca function,
which is used to allocate space off the run-time stack so
that it is automatically reclaimed upon procedure exit,
was inspired by discussions with J. Q. Johnson of Cornell.
J.Otto Tennant <jot@cray.com> contributed the Cray support.
There are some preprocessor constants that can
be defined when compiling for your specific system, for
improved efficiency; however, the defaults should be okay.
The general concept of this implementation is to keep
track of all alloca-allocated blocks, and reclaim any
that are found to be deeper in the stack than the current
invocation. This heuristic does not reclaim storage as
soon as it becomes invalid, but it will do so eventually.
As a special case, alloca(0) reclaims storage without
allocating any. It is a good idea to use alloca(0) in
your main control loop, etc. to force garbage collection. */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef emacs
# include "blockinput.h"
#endif
/* If compiling with GCC 2, this file's not needed. */
#if !defined (__GNUC__) || __GNUC__ < 2
/* If someone has defined alloca as a macro,
there must be some other way alloca is supposed to work. */
# ifndef alloca
# ifdef emacs
# ifdef static
/* actually, only want this if static is defined as ""
-- this is for usg, in which emacs must undefine static
in order to make unexec workable
*/
# ifndef STACK_DIRECTION
you
lose
-- must know STACK_DIRECTION at compile-time
# endif /* STACK_DIRECTION undefined */
# endif /* static */
# endif /* emacs */
/* If your stack is a linked list of frames, you have to
provide an "address metric" ADDRESS_FUNCTION macro. */
# if defined (CRAY) && defined (CRAY_STACKSEG_END)
long i00afunc ();
# define ADDRESS_FUNCTION(arg) (char *) i00afunc (&(arg))
# else
# define ADDRESS_FUNCTION(arg) &(arg)
# endif
# if __STDC__
typedef void *pointer;
# else
typedef char *pointer;
# endif
# ifndef NULL
# define NULL 0
# endif
/* Different portions of Emacs need to call different versions of
malloc. The Emacs executable needs alloca to call xmalloc, because
ordinary malloc isn't protected from input signals. On the other
hand, the utilities in lib-src need alloca to call malloc; some of
them are very simple, and don't have an xmalloc routine.
Non-Emacs programs expect this to call xmalloc.
Callers below should use malloc. */
# ifndef emacs
# define malloc xmalloc
# endif
extern pointer malloc ();
/* Define STACK_DIRECTION if you know the direction of stack
growth for your system; otherwise it will be automatically
deduced at run-time.
STACK_DIRECTION > 0 => grows toward higher addresses
STACK_DIRECTION < 0 => grows toward lower addresses
STACK_DIRECTION = 0 => direction of growth unknown */
# ifndef STACK_DIRECTION
# define STACK_DIRECTION 0 /* Direction unknown. */
# endif
# if STACK_DIRECTION != 0
# define STACK_DIR STACK_DIRECTION /* Known at compile-time. */
# else /* STACK_DIRECTION == 0; need run-time code. */
static int stack_dir; /* 1 or -1 once known. */
# define STACK_DIR stack_dir
static void
find_stack_direction ()
{
static char *addr = NULL; /* Address of first `dummy', once known. */
auto char dummy; /* To get stack address. */
if (addr == NULL)
{ /* Initial entry. */
addr = ADDRESS_FUNCTION (dummy);
find_stack_direction (); /* Recurse once. */
}
else
{
/* Second entry. */
if (ADDRESS_FUNCTION (dummy) > addr)
stack_dir = 1; /* Stack grew upward. */
else
stack_dir = -1; /* Stack grew downward. */
}
}
# endif /* STACK_DIRECTION == 0 */
/* An "alloca header" is used to:
(a) chain together all alloca'ed blocks;
(b) keep track of stack depth.
It is very important that sizeof(header) agree with malloc
alignment chunk size. The following default should work okay. */
# ifndef ALIGN_SIZE
# define ALIGN_SIZE sizeof(double)
# endif
typedef union hdr
{
char align[ALIGN_SIZE]; /* To force sizeof(header). */
struct
{
union hdr *next; /* For chaining headers. */
char *deep; /* For stack depth measure. */
} h;
} header;
static header *last_alloca_header = NULL; /* -> last alloca header. */
/* Return a pointer to at least SIZE bytes of storage,
which will be automatically reclaimed upon exit from
the procedure that called alloca. Originally, this space
was supposed to be taken from the current stack frame of the
caller, but that method cannot be made to work for some
implementations of C, for example under Gould's UTX/32. */
pointer
alloca (size)
unsigned size;
{
auto char probe; /* Probes stack depth: */
register char *depth = ADDRESS_FUNCTION (probe);
# if STACK_DIRECTION == 0
if (STACK_DIR == 0) /* Unknown growth direction. */
find_stack_direction ();
# endif
/* Reclaim garbage, defined as all alloca'd storage that
was allocated from deeper in the stack than currently. */
{
register header *hp; /* Traverses linked list. */
# ifdef emacs
BLOCK_INPUT;
# endif
for (hp = last_alloca_header; hp != NULL;)
if ((STACK_DIR > 0 && hp->h.deep > depth)
|| (STACK_DIR < 0 && hp->h.deep < depth))
{
register header *np = hp->h.next;
free ((pointer) hp); /* Collect garbage. */
hp = np; /* -> next header. */
}
else
break; /* Rest are not deeper. */
last_alloca_header = hp; /* -> last valid storage. */
# ifdef emacs
UNBLOCK_INPUT;
# endif
}
if (size == 0)
return NULL; /* No allocation required. */
/* Allocate combined header + user data storage. */
{
register pointer new = malloc (sizeof (header) + size);
/* Address of header. */
((header *) new)->h.next = last_alloca_header;
((header *) new)->h.deep = depth;
last_alloca_header = (header *) new;
/* User storage begins just after header. */
return (pointer) ((char *) new + sizeof (header));
}
}
# if defined (CRAY) && defined (CRAY_STACKSEG_END)
# ifdef DEBUG_I00AFUNC
# include <stdio.h>
# endif
# ifndef CRAY_STACK
# define CRAY_STACK
# ifndef CRAY2
/* Stack structures for CRAY-1, CRAY X-MP, and CRAY Y-MP */
struct stack_control_header
{
long shgrow:32; /* Number of times stack has grown. */
long shaseg:32; /* Size of increments to stack. */
long shhwm:32; /* High water mark of stack. */
long shsize:32; /* Current size of stack (all segments). */
};
/* The stack segment linkage control information occurs at
the high-address end of a stack segment. (The stack
grows from low addresses to high addresses.) The initial
part of the stack segment linkage control information is
0200 (octal) words. This provides for register storage
for the routine which overflows the stack. */
struct stack_segment_linkage
{
long ss[0200]; /* 0200 overflow words. */
long sssize:32; /* Number of words in this segment. */
long ssbase:32; /* Offset to stack base. */
long:32;
long sspseg:32; /* Offset to linkage control of previous
segment of stack. */
long:32;
long sstcpt:32; /* Pointer to task common address block. */
long sscsnm; /* Private control structure number for
microtasking. */
long ssusr1; /* Reserved for user. */
long ssusr2; /* Reserved for user. */
long sstpid; /* Process ID for pid based multi-tasking. */
long ssgvup; /* Pointer to multitasking thread giveup. */
long sscray[7]; /* Reserved for Cray Research. */
long ssa0;
long ssa1;
long ssa2;
long ssa3;
long ssa4;
long ssa5;
long ssa6;
long ssa7;
long sss0;
long sss1;
long sss2;
long sss3;
long sss4;
long sss5;
long sss6;
long sss7;
};
# else /* CRAY2 */
/* The following structure defines the vector of words
returned by the STKSTAT library routine. */
struct stk_stat
{
long now; /* Current total stack size. */
long maxc; /* Amount of contiguous space which would
be required to satisfy the maximum
stack demand to date. */
long high_water; /* Stack high-water mark. */
long overflows; /* Number of stack overflow ($STKOFEN) calls. */
long hits; /* Number of internal buffer hits. */
long extends; /* Number of block extensions. */
long stko_mallocs; /* Block allocations by $STKOFEN. */
long underflows; /* Number of stack underflow calls ($STKRETN). */
long stko_free; /* Number of deallocations by $STKRETN. */
long stkm_free; /* Number of deallocations by $STKMRET. */
long segments; /* Current number of stack segments. */
long maxs; /* Maximum number of stack segments so far. */
long pad_size; /* Stack pad size. */
long current_address; /* Current stack segment address. */
long current_size; /* Current stack segment size. This
number is actually corrupted by STKSTAT to
include the fifteen word trailer area. */
long initial_address; /* Address of initial segment. */
long initial_size; /* Size of initial segment. */
};
/* The following structure describes the data structure which trails
any stack segment. I think that the description in 'asdef' is
out of date. I only describe the parts that I am sure about. */
struct stk_trailer
{
long this_address; /* Address of this block. */
long this_size; /* Size of this block (does not include
this trailer). */
long unknown2;
long unknown3;
long link; /* Address of trailer block of previous
segment. */
long unknown5;
long unknown6;
long unknown7;
long unknown8;
long unknown9;
long unknown10;
long unknown11;
long unknown12;
long unknown13;
long unknown14;
};
# endif /* CRAY2 */
# endif /* not CRAY_STACK */
# ifdef CRAY2
/* Determine a "stack measure" for an arbitrary ADDRESS.
I doubt that "lint" will like this much. */
static long
i00afunc (long *address)
{
struct stk_stat status;
struct stk_trailer *trailer;
long *block, size;
long result = 0;
/* We want to iterate through all of the segments. The first
step is to get the stack status structure. We could do this
more quickly and more directly, perhaps, by referencing the
$LM00 common block, but I know that this works. */
STKSTAT (&status);
/* Set up the iteration. */
trailer = (struct stk_trailer *) (status.current_address
+ status.current_size
- 15);
/* There must be at least one stack segment. Therefore it is
a fatal error if "trailer" is null. */
if (trailer == 0)
abort ();
/* Discard segments that do not contain our argument address. */
while (trailer != 0)
{
block = (long *) trailer->this_address;
size = trailer->this_size;
if (block == 0 || size == 0)
abort ();
trailer = (struct stk_trailer *) trailer->link;
if ((block <= address) && (address < (block + size)))
break;
}
/* Set the result to the offset in this segment and add the sizes
of all predecessor segments. */
result = address - block;
if (trailer == 0)
{
return result;
}
do
{
if (trailer->this_size <= 0)
abort ();
result += trailer->this_size;
trailer = (struct stk_trailer *) trailer->link;
}
while (trailer != 0);
/* We are done. Note that if you present a bogus address (one
not in any segment), you will get a different number back, formed
from subtracting the address of the first block. This is probably
not what you want. */
return (result);
}
# else /* not CRAY2 */
/* Stack address function for a CRAY-1, CRAY X-MP, or CRAY Y-MP.
Determine the number of the cell within the stack,
given the address of the cell. The purpose of this
routine is to linearize, in some sense, stack addresses
for alloca. */
static long
i00afunc (long address)
{
long stkl = 0;
long size, pseg, this_segment, stack;
long result = 0;
struct stack_segment_linkage *ssptr;
/* Register B67 contains the address of the end of the
current stack segment. If you (as a subprogram) store
your registers on the stack and find that you are past
the contents of B67, you have overflowed the segment.
B67 also points to the stack segment linkage control
area, which is what we are really interested in. */
stkl = CRAY_STACKSEG_END ();
ssptr = (struct stack_segment_linkage *) stkl;
/* If one subtracts 'size' from the end of the segment,
one has the address of the first word of the segment.
If this is not the first segment, 'pseg' will be
nonzero. */
pseg = ssptr->sspseg;
size = ssptr->sssize;
this_segment = stkl - size;
/* It is possible that calling this routine itself caused
a stack overflow. Discard stack segments which do not
contain the target address. */
while (!(this_segment <= address && address <= stkl))
{
# ifdef DEBUG_I00AFUNC
fprintf (stderr, "%011o %011o %011o\n", this_segment, address, stkl);
# endif
if (pseg == 0)
break;
stkl = stkl - pseg;
ssptr = (struct stack_segment_linkage *) stkl;
size = ssptr->sssize;
pseg = ssptr->sspseg;
this_segment = stkl - size;
}
result = address - this_segment;
/* If you subtract pseg from the current end of the stack,
you get the address of the previous stack segment's end.
This seems a little convoluted to me, but I'll bet you save
a cycle somewhere. */
while (pseg != 0)
{
# ifdef DEBUG_I00AFUNC
fprintf (stderr, "%011o %011o\n", pseg, size);
# endif
stkl = stkl - pseg;
ssptr = (struct stack_segment_linkage *) stkl;
size = ssptr->sssize;
pseg = ssptr->sspseg;
result += size;
}
return (result);
}
# endif /* not CRAY2 */
# endif /* CRAY */
# endif /* no alloca */
#endif /* not GCC version 2 */

39
lib/malloc.c Normal file
View file

@ -0,0 +1,39 @@
/* Work around bug on some systems where malloc (0) fails.
Copyright (C) 1997 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/* written by Jim Meyering */
#if HAVE_CONFIG_H
# include <config.h>
#endif
#undef malloc
#include <sys/types.h>
char *malloc ();
/* Allocate an N-byte block of memory from the heap.
If N is zero, allocate a 1-byte block. */
char *
rpl_malloc (n)
size_t n;
{
if (n == 0)
n = 1;
return malloc (n);
}

391
lib/memcmp.c Normal file
View file

@ -0,0 +1,391 @@
/* Copyright (C) 1991, 1993, 1995, 1997, 1998 Free Software Foundation, Inc.
Contributed by Torbjorn Granlund (tege@sics.se).
NOTE: The canonical source of this file is maintained with the GNU C Library.
Bugs can be reported to bug-glibc@prep.ai.mit.edu.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
USA. */
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#undef __ptr_t
#if defined __cplusplus || (defined __STDC__ && __STDC__)
# define __ptr_t void *
#else /* Not C++ or ANSI C. */
# undef const
# define const
# define __ptr_t char *
#endif /* C++ or ANSI C. */
#ifndef __P
# if defined __GNUC__ || (defined __STDC__ && __STDC__)
# define __P(args) args
# else
# define __P(args) ()
# endif /* GCC. */
#endif /* Not __P. */
#if defined HAVE_STRING_H || defined _LIBC
# include <string.h>
#endif
#undef memcmp
#ifdef _LIBC
# include <memcopy.h>
#else /* Not in the GNU C library. */
# include <sys/types.h>
/* Type to use for aligned memory operations.
This should normally be the biggest type supported by a single load
and store. Must be an unsigned type. */
# define op_t unsigned long int
# define OPSIZ (sizeof(op_t))
/* Threshold value for when to enter the unrolled loops. */
# define OP_T_THRES 16
/* Type to use for unaligned operations. */
typedef unsigned char byte;
# ifndef WORDS_BIGENDIAN
# define MERGE(w0, sh_1, w1, sh_2) (((w0) >> (sh_1)) | ((w1) << (sh_2)))
# else
# define MERGE(w0, sh_1, w1, sh_2) (((w0) << (sh_1)) | ((w1) >> (sh_2)))
# endif
#endif /* In the GNU C library. */
#ifdef WORDS_BIGENDIAN
# define CMP_LT_OR_GT(a, b) ((a) > (b) ? 1 : -1)
#else
# define CMP_LT_OR_GT(a, b) memcmp_bytes ((a), (b))
#endif
/* BE VERY CAREFUL IF YOU CHANGE THIS CODE! */
/* The strategy of this memcmp is:
1. Compare bytes until one of the block pointers is aligned.
2. Compare using memcmp_common_alignment or
memcmp_not_common_alignment, regarding the alignment of the other
block after the initial byte operations. The maximum number of
full words (of type op_t) are compared in this way.
3. Compare the few remaining bytes. */
#ifndef WORDS_BIGENDIAN
/* memcmp_bytes -- Compare A and B bytewise in the byte order of the machine.
A and B are known to be different.
This is needed only on little-endian machines. */
static int memcmp_bytes __P((op_t, op_t));
# ifdef __GNUC__
__inline
# endif
static int
memcmp_bytes (a, b)
op_t a, b;
{
long int srcp1 = (long int) &a;
long int srcp2 = (long int) &b;
op_t a0, b0;
do
{
a0 = ((byte *) srcp1)[0];
b0 = ((byte *) srcp2)[0];
srcp1 += 1;
srcp2 += 1;
}
while (a0 == b0);
return a0 - b0;
}
#endif
static int memcmp_common_alignment __P((long, long, size_t));
/* memcmp_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN `op_t'
objects (not LEN bytes!). Both SRCP1 and SRCP2 should be aligned for
memory operations on `op_t's. */
#ifdef __GNUC__
__inline
#endif
static int
memcmp_common_alignment (srcp1, srcp2, len)
long int srcp1;
long int srcp2;
size_t len;
{
op_t a0, a1;
op_t b0, b1;
switch (len % 4)
{
default: /* Avoid warning about uninitialized local variables. */
case 2:
a0 = ((op_t *) srcp1)[0];
b0 = ((op_t *) srcp2)[0];
srcp1 -= 2 * OPSIZ;
srcp2 -= 2 * OPSIZ;
len += 2;
goto do1;
case 3:
a1 = ((op_t *) srcp1)[0];
b1 = ((op_t *) srcp2)[0];
srcp1 -= OPSIZ;
srcp2 -= OPSIZ;
len += 1;
goto do2;
case 0:
if (OP_T_THRES <= 3 * OPSIZ && len == 0)
return 0;
a0 = ((op_t *) srcp1)[0];
b0 = ((op_t *) srcp2)[0];
goto do3;
case 1:
a1 = ((op_t *) srcp1)[0];
b1 = ((op_t *) srcp2)[0];
srcp1 += OPSIZ;
srcp2 += OPSIZ;
len -= 1;
if (OP_T_THRES <= 3 * OPSIZ && len == 0)
goto do0;
/* Fall through. */
}
do
{
a0 = ((op_t *) srcp1)[0];
b0 = ((op_t *) srcp2)[0];
if (a1 != b1)
return CMP_LT_OR_GT (a1, b1);
do3:
a1 = ((op_t *) srcp1)[1];
b1 = ((op_t *) srcp2)[1];
if (a0 != b0)
return CMP_LT_OR_GT (a0, b0);
do2:
a0 = ((op_t *) srcp1)[2];
b0 = ((op_t *) srcp2)[2];
if (a1 != b1)
return CMP_LT_OR_GT (a1, b1);
do1:
a1 = ((op_t *) srcp1)[3];
b1 = ((op_t *) srcp2)[3];
if (a0 != b0)
return CMP_LT_OR_GT (a0, b0);
srcp1 += 4 * OPSIZ;
srcp2 += 4 * OPSIZ;
len -= 4;
}
while (len != 0);
/* This is the right position for do0. Please don't move
it into the loop. */
do0:
if (a1 != b1)
return CMP_LT_OR_GT (a1, b1);
return 0;
}
static int memcmp_not_common_alignment __P((long, long, size_t));
/* memcmp_not_common_alignment -- Compare blocks at SRCP1 and SRCP2 with LEN
`op_t' objects (not LEN bytes!). SRCP2 should be aligned for memory
operations on `op_t', but SRCP1 *should be unaligned*. */
#ifdef __GNUC__
__inline
#endif
static int
memcmp_not_common_alignment (srcp1, srcp2, len)
long int srcp1;
long int srcp2;
size_t len;
{
op_t a0, a1, a2, a3;
op_t b0, b1, b2, b3;
op_t x;
int shl, shr;
/* Calculate how to shift a word read at the memory operation
aligned srcp1 to make it aligned for comparison. */
shl = 8 * (srcp1 % OPSIZ);
shr = 8 * OPSIZ - shl;
/* Make SRCP1 aligned by rounding it down to the beginning of the `op_t'
it points in the middle of. */
srcp1 &= -OPSIZ;
switch (len % 4)
{
default: /* Avoid warning about uninitialized local variables. */
case 2:
a1 = ((op_t *) srcp1)[0];
a2 = ((op_t *) srcp1)[1];
b2 = ((op_t *) srcp2)[0];
srcp1 -= 1 * OPSIZ;
srcp2 -= 2 * OPSIZ;
len += 2;
goto do1;
case 3:
a0 = ((op_t *) srcp1)[0];
a1 = ((op_t *) srcp1)[1];
b1 = ((op_t *) srcp2)[0];
srcp2 -= 1 * OPSIZ;
len += 1;
goto do2;
case 0:
if (OP_T_THRES <= 3 * OPSIZ && len == 0)
return 0;
a3 = ((op_t *) srcp1)[0];
a0 = ((op_t *) srcp1)[1];
b0 = ((op_t *) srcp2)[0];
srcp1 += 1 * OPSIZ;
goto do3;
case 1:
a2 = ((op_t *) srcp1)[0];
a3 = ((op_t *) srcp1)[1];
b3 = ((op_t *) srcp2)[0];
srcp1 += 2 * OPSIZ;
srcp2 += 1 * OPSIZ;
len -= 1;
if (OP_T_THRES <= 3 * OPSIZ && len == 0)
goto do0;
/* Fall through. */
}
do
{
a0 = ((op_t *) srcp1)[0];
b0 = ((op_t *) srcp2)[0];
x = MERGE(a2, shl, a3, shr);
if (x != b3)
return CMP_LT_OR_GT (x, b3);
do3:
a1 = ((op_t *) srcp1)[1];
b1 = ((op_t *) srcp2)[1];
x = MERGE(a3, shl, a0, shr);
if (x != b0)
return CMP_LT_OR_GT (x, b0);
do2:
a2 = ((op_t *) srcp1)[2];
b2 = ((op_t *) srcp2)[2];
x = MERGE(a0, shl, a1, shr);
if (x != b1)
return CMP_LT_OR_GT (x, b1);
do1:
a3 = ((op_t *) srcp1)[3];
b3 = ((op_t *) srcp2)[3];
x = MERGE(a1, shl, a2, shr);
if (x != b2)
return CMP_LT_OR_GT (x, b2);
srcp1 += 4 * OPSIZ;
srcp2 += 4 * OPSIZ;
len -= 4;
}
while (len != 0);
/* This is the right position for do0. Please don't move
it into the loop. */
do0:
x = MERGE(a2, shl, a3, shr);
if (x != b3)
return CMP_LT_OR_GT (x, b3);
return 0;
}
int
rpl_memcmp (s1, s2, len)
const __ptr_t s1;
const __ptr_t s2;
size_t len;
{
op_t a0;
op_t b0;
long int srcp1 = (long int) s1;
long int srcp2 = (long int) s2;
op_t res;
if (len >= OP_T_THRES)
{
/* There are at least some bytes to compare. No need to test
for LEN == 0 in this alignment loop. */
while (srcp2 % OPSIZ != 0)
{
a0 = ((byte *) srcp1)[0];
b0 = ((byte *) srcp2)[0];
srcp1 += 1;
srcp2 += 1;
res = a0 - b0;
if (res != 0)
return res;
len -= 1;
}
/* SRCP2 is now aligned for memory operations on `op_t'.
SRCP1 alignment determines if we can do a simple,
aligned compare or need to shuffle bits. */
if (srcp1 % OPSIZ == 0)
res = memcmp_common_alignment (srcp1, srcp2, len / OPSIZ);
else
res = memcmp_not_common_alignment (srcp1, srcp2, len / OPSIZ);
if (res != 0)
return res;
/* Number of bytes remaining in the interval [0..OPSIZ-1]. */
srcp1 += len & -OPSIZ;
srcp2 += len & -OPSIZ;
len %= OPSIZ;
}
/* There are just a few bytes to compare. Use byte memory operations. */
while (len != 0)
{
a0 = ((byte *) srcp1)[0];
b0 = ((byte *) srcp2)[0];
srcp1 += 1;
srcp2 += 1;
res = a0 - b0;
if (res != 0)
return res;
len -= 1;
}
return 0;
}
#ifdef weak_alias
# undef bcmp
weak_alias (memcmp, bcmp)
#endif

131
lib/pidfile.c Normal file
View file

@ -0,0 +1,131 @@
/*
pidfile.c - interact with pidfiles
Copyright (c) 1995 Martin Schulze <Martin.Schulze@Linux.DE>
This file is part of the sysklogd package, a kernel and system log daemon.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA
*/
/* left unaltered for tinc -- Ivo Timmermans */
/*
* Sat Aug 19 13:24:33 MET DST 1995: Martin Schulze
* First version (v0.2) released
*/
#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/file.h>
#include <string.h>
#include <errno.h>
#include <signal.h>
/* read_pid
*
* Reads the specified pidfile and returns the read pid.
* 0 is returned if either there's no pidfile, it's empty
* or no pid can be read.
*/
int read_pid (char *pidfile)
{
FILE *f;
int pid;
if (!(f=fopen(pidfile,"r")))
return 0;
fscanf(f,"%d", &pid);
fclose(f);
return pid;
}
/* check_pid
*
* Reads the pid using read_pid and looks up the pid in the process
* table (using /proc) to determine if the process already exists. If
* so 1 is returned, otherwise 0.
*/
int check_pid (char *pidfile)
{
int pid = read_pid(pidfile);
/* Amazing ! _I_ am already holding the pid file... */
if ((!pid) || (pid == getpid ()))
return 0;
/*
* The 'standard' method of doing this is to try and do a 'fake' kill
* of the process. If an ESRCH error is returned the process cannot
* be found -- GW
*/
/* But... errno is usually changed only on error.. */
if (kill(pid, 0) && errno == ESRCH)
return(0);
return pid;
}
/* write_pid
*
* Writes the pid to the specified file. If that fails 0 is
* returned, otherwise the pid.
*/
int write_pid (char *pidfile)
{
FILE *f;
int fd;
int pid;
if ( ((fd = open(pidfile, O_RDWR|O_CREAT, 0644)) == -1)
|| ((f = fdopen(fd, "r+")) == NULL) ) {
fprintf(stderr, "Can't open or create %s.\n", pidfile);
return 0;
}
if (flock(fd, LOCK_EX|LOCK_NB) == -1) {
fscanf(f, "%d", &pid);
fclose(f);
printf("Can't lock, lock is held by pid %d.\n", pid);
return 0;
}
pid = getpid();
if (!fprintf(f,"%d\n", pid)) {
printf("Can't write pid , %s.\n", strerror(errno));
close(fd);
return 0;
}
fflush(f);
if (flock(fd, LOCK_UN) == -1) {
printf("Can't unlock pidfile %s, %s.\n", pidfile, strerror(errno));
close(fd);
return 0;
}
close(fd);
return pid;
}
/* remove_pid
*
* Remove the the specified file. The result from unlink(2)
* is returned
*/
int remove_pid (char *pidfile)
{
return unlink (pidfile);
}

50
lib/pidfile.h Normal file
View file

@ -0,0 +1,50 @@
/*
pidfile.h - interact with pidfiles
Copyright (c) 1995 Martin Schulze <Martin.Schulze@Linux.DE>
This file is part of the sysklogd package, a kernel and system log daemon.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA.
*/
/* read_pid
*
* Reads the specified pidfile and returns the read pid.
* 0 is returned if either there's no pidfile, it's empty
* or no pid can be read.
*/
int read_pid (char *pidfile);
/* check_pid
*
* Reads the pid using read_pid and looks up the pid in the process
* table (using /proc) to determine if the process already exists. If
* so 1 is returned, otherwise 0.
*/
int check_pid (char *pidfile);
/* write_pid
*
* Writes the pid to the specified file. If that fails 0 is
* returned, otherwise the pid.
*/
int write_pid (char *pidfile);
/* remove_pid
*
* Remove the the specified file. The result from unlink(2)
* is returned
*/
int remove_pid (char *pidfile);

44
lib/realloc.c Normal file
View file

@ -0,0 +1,44 @@
/* Work around bug on some systems where realloc (NULL, 0) fails.
Copyright (C) 1997 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/* written by Jim Meyering */
#if HAVE_CONFIG_H
# include <config.h>
#endif
#undef realloc
#include <sys/types.h>
char *malloc ();
char *realloc ();
/* Change the size of an allocated block of memory P to N bytes,
with error checking. If N is zero, change it to 1. If P is NULL,
use malloc. */
char *
rpl_realloc (p, n)
char *p;
size_t n;
{
if (n == 0)
n = 1;
if (p == 0)
return malloc (n);
return realloc (p, n);
}

26
lib/utils.c Normal file
View file

@ -0,0 +1,26 @@
/*
utils.c -- gathering of some stupid small functions
Copyright (C) 1999 Ivo Timmermans <zarq@iname.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "config.h"
#include <utils.h>
volatile int cp_line;
volatile char *cp_file;

30
lib/utils.h Normal file
View file

@ -0,0 +1,30 @@
/*
utils.h -- header file for utils.c
Copyright (C) 1999 Ivo Timmermans <zarq@iname.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __TINC_UTILS_H__
#define __TINC_UTILS_H__
#define min(a,b) (((a)<(b))?(a):(b))
#define cp { cp_line = __LINE__; cp_file = __FILE__; }
extern volatile int cp_line;
extern volatile char *cp_file;
#endif /* __TINC_UTILS_H__ */

21
lib/xalloc.h Normal file
View file

@ -0,0 +1,21 @@
#ifndef PARAMS
# if defined PROTOTYPES || (defined __STDC__ && __STDC__)
# define PARAMS(Args) Args
# else
# define PARAMS(Args) ()
# endif
#endif
/* Exit value when the requested amount of memory is not available.
The caller may set it to some other value. */
extern int xalloc_exit_failure;
/* FIXME: describe */
extern char *const xalloc_msg_memory_exhausted;
/* FIXME: describe */
extern void (*xalloc_fail_func) ();
void *xmalloc PARAMS ((size_t n));
void *xcalloc PARAMS ((size_t n, size_t s));
void *xrealloc PARAMS ((void *p, size_t n));

133
lib/xmalloc.c Normal file
View file

@ -0,0 +1,133 @@
/* xmalloc.c -- malloc with out of memory checking
Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#if HAVE_CONFIG_H
# include <config.h>
#endif
#include <sys/types.h>
#if STDC_HEADERS
# include <stdlib.h>
#else
void *calloc ();
void *malloc ();
void *realloc ();
void free ();
#endif
#if ENABLE_NLS
# include <libintl.h>
# define _(Text) gettext (Text)
#else
# define textdomain(Domain)
# define _(Text) Text
#endif
#define N_(Text) Text
#include "error.h"
#include "xalloc.h"
#ifndef EXIT_FAILURE
# define EXIT_FAILURE 1
#endif
/* Prototypes for functions defined here. */
#if defined (__STDC__) && __STDC__
void *xmalloc (size_t n);
void *xcalloc (size_t n, size_t s);
void *xrealloc (void *p, size_t n);
#endif
#ifndef HAVE_DONE_WORKING_MALLOC_CHECK
you must run the autoconf test for a properly working malloc -- see malloc.m4
#endif
#ifndef HAVE_DONE_WORKING_REALLOC_CHECK
you must run the autoconf test for a properly working realloc -- see realloc.m4
#endif
/* Exit value when the requested amount of memory is not available.
The caller may set it to some other value. */
int xalloc_exit_failure = EXIT_FAILURE;
/* FIXME: describe */
char *const xalloc_msg_memory_exhausted = N_("Memory exhausted");
/* FIXME: describe */
void (*xalloc_fail_func) () = 0;
#if __STDC__ && (HAVE_VPRINTF || HAVE_DOPRNT)
void error (int, int, const char *, ...);
#else
void error ();
#endif
static void
xalloc_fail ()
{
if (xalloc_fail_func)
(*xalloc_fail_func) ();
error (xalloc_exit_failure, 0, xalloc_msg_memory_exhausted);
}
/* Allocate N bytes of memory dynamically, with error checking. */
void *
xmalloc (n)
size_t n;
{
void *p;
p = malloc (n);
if (p == 0)
xalloc_fail ();
return p;
}
/* Change the size of an allocated block of memory P to N bytes,
with error checking.
If P is NULL, run xmalloc. */
void *
xrealloc (p, n)
void *p;
size_t n;
{
p = realloc (p, n);
if (p == 0)
xalloc_fail ();
return p;
}
#ifdef NOT_USED
/* Allocate memory for N elements of S bytes, with error checking. */
void *
xcalloc (n, s)
size_t n, s;
{
void *p;
p = calloc (n, s);
if (p == 0)
xalloc_fail ();
return p;
}
#endif /* NOT_USED */