Use AES-256-GCM for the SPTPS protocol.

It is faster than AES-256-CTR + HMAC-SHA256, especially on Intel chips with AES
and PCLMULQDQ instructions.
This commit is contained in:
Guus Sliepen 2013-10-13 01:02:52 +02:00
parent e42bd60097
commit 0da0728088
4 changed files with 251 additions and 169 deletions

View file

@ -38,7 +38,12 @@ extern bool cipher_set_counter(cipher_t *, const void *, size_t) __attribute__ (
extern bool cipher_set_counter_key(cipher_t *, void *) __attribute__ ((__warn_unused_result__)); extern bool cipher_set_counter_key(cipher_t *, void *) __attribute__ ((__warn_unused_result__));
extern bool cipher_encrypt(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen, bool oneshot) __attribute__ ((__warn_unused_result__)); extern bool cipher_encrypt(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen, bool oneshot) __attribute__ ((__warn_unused_result__));
extern bool cipher_decrypt(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen, bool oneshot) __attribute__ ((__warn_unused_result__)); extern bool cipher_decrypt(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen, bool oneshot) __attribute__ ((__warn_unused_result__));
extern bool cipher_counter_xor(cipher_t *, const void *indata, size_t inlen, void *outdata) __attribute__ ((__warn_unused_result__)); extern bool cipher_gcm_encrypt(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen) __attribute__ ((__warn_unused_result__));
extern bool cipher_gcm_encrypt_start(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen) __attribute__ ((__warn_unused_result__));
extern bool cipher_gcm_encrypt_finish(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen) __attribute__ ((__warn_unused_result__));
extern bool cipher_gcm_decrypt(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen) __attribute__ ((__warn_unused_result__));
extern bool cipher_gcm_decrypt_start(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen) __attribute__ ((__warn_unused_result__));
extern bool cipher_gcm_decrypt_finish(cipher_t *, const void *indata, size_t inlen, void *outdata, size_t *outlen) __attribute__ ((__warn_unused_result__));
extern int cipher_get_nid(const cipher_t *); extern int cipher_get_nid(const cipher_t *);
extern bool cipher_active(const cipher_t *); extern bool cipher_active(const cipher_t *);

View file

@ -84,7 +84,7 @@ size_t cipher_keylength(const cipher_t *cipher) {
if(!cipher || !cipher->cipher) if(!cipher || !cipher->cipher)
return 0; return 0;
return cipher->cipher->key_len + cipher->cipher->block_size; return cipher->cipher->key_len + cipher->cipher->iv_len;
} }
bool cipher_set_key(cipher_t *cipher, void *key, bool encrypt) { bool cipher_set_key(cipher_t *cipher, void *key, bool encrypt) {
@ -118,13 +118,12 @@ bool cipher_set_key_from_rsa(cipher_t *cipher, void *key, size_t len, bool encry
} }
bool cipher_set_counter(cipher_t *cipher, const void *counter, size_t len) { bool cipher_set_counter(cipher_t *cipher, const void *counter, size_t len) {
if(len > cipher->cipher->block_size - 4) { if(len > cipher->cipher->iv_len - 4) {
logger(DEBUG_ALWAYS, LOG_ERR, "Counter too long"); logger(DEBUG_ALWAYS, LOG_ERR, "Counter too long");
abort(); return false;
} }
memcpy(cipher->counter->counter + cipher->cipher->block_size - len, counter, len); memcpy(cipher->counter->counter, counter, len);
memset(cipher->counter->counter, 0, 4);
cipher->counter->n = 0; cipher->counter->n = 0;
return true; return true;
@ -142,41 +141,96 @@ bool cipher_set_counter_key(cipher_t *cipher, void *key) {
else else
cipher->counter->n = 0; cipher->counter->n = 0;
memcpy(cipher->counter->counter, (unsigned char *)key + cipher->cipher->key_len, cipher->cipher->block_size); memcpy(cipher->counter->counter, (unsigned char *)key + cipher->cipher->key_len, cipher->cipher->iv_len);
return true; return true;
} }
bool cipher_counter_xor(cipher_t *cipher, const void *indata, size_t inlen, void *outdata) { bool cipher_gcm_encrypt_start(cipher_t *cipher, const void *indata, size_t inlen, void *outdata, size_t *outlen) {
if(!cipher->counter) { int len = 0;
logger(DEBUG_ALWAYS, LOG_ERR, "Counter not initialized"); if(!EVP_EncryptInit_ex(&cipher->ctx, NULL, NULL, NULL, cipher->counter->counter)
|| (inlen && !EVP_EncryptUpdate(&cipher->ctx, (unsigned char *)outdata, &len, (unsigned char *)indata, inlen))) {
logger(DEBUG_ALWAYS, LOG_ERR, "Error while encrypting: %s", ERR_error_string(ERR_get_error(), NULL));
return false;
}
if(outlen)
*outlen = len;
return true;
}
bool cipher_gcm_encrypt_finish(cipher_t *cipher, const void *indata, size_t inlen, void *outdata, size_t *outlen) {
int len = 0, pad = 0;
if(!(inlen && EVP_EncryptUpdate(&cipher->ctx, (unsigned char *)outdata, &len, (unsigned char *)indata, inlen))
|| !EVP_EncryptFinal(&cipher->ctx, (unsigned char *)outdata + len, &pad)) {
logger(DEBUG_ALWAYS, LOG_ERR, "Error while encrypting: %s", ERR_error_string(ERR_get_error(), NULL));
return false;
}
EVP_CIPHER_CTX_ctrl(&cipher->ctx, EVP_CTRL_GCM_GET_TAG, 16, (unsigned char *)outdata + len + pad);
if(outlen)
*outlen = len + pad + 16;
return true;
}
bool cipher_gcm_encrypt(cipher_t *cipher, const void *indata, size_t inlen, void *outdata, size_t *outlen) {
int len = 0, pad = 0;
if(!EVP_EncryptInit_ex(&cipher->ctx, NULL, NULL, NULL, cipher->counter->counter) ||
!EVP_EncryptUpdate(&cipher->ctx, (unsigned char *)outdata, &len, (unsigned char *)indata, inlen) ||
!EVP_EncryptFinal(&cipher->ctx, (unsigned char *)outdata + len, &pad)) {
logger(DEBUG_ALWAYS, LOG_ERR, "Error while encrypting: %s", ERR_error_string(ERR_get_error(), NULL));
return false;
}
EVP_CIPHER_CTX_ctrl(&cipher->ctx, EVP_CTRL_GCM_GET_TAG, 16, (unsigned char *)outdata + len + pad);
if(outlen)
*outlen = len + pad + 16;
return true;
}
bool cipher_gcm_decrypt(cipher_t *cipher, const void *indata, size_t inlen, void *outdata, size_t *outlen) {
if(inlen < 16)
return false;
int len = 0, pad = 0;
if(!EVP_DecryptInit_ex(&cipher->ctx, NULL, NULL, NULL, cipher->counter->counter)) {
logger(DEBUG_ALWAYS, LOG_ERR, "Error while decrypting: %s", ERR_error_string(ERR_get_error(), NULL));
return false; return false;
} }
const unsigned char *in = indata; EVP_CIPHER_CTX_ctrl(&cipher->ctx, EVP_CTRL_GCM_SET_TAG, 16, (unsigned char *)indata + inlen - 16);
unsigned char *out = outdata;
while(inlen--) { if(!EVP_DecryptUpdate(&cipher->ctx, (unsigned char *)outdata, &len, (unsigned char *)indata, inlen - 16) ||
// Encrypt the new counter value if we need it !EVP_DecryptFinal(&cipher->ctx, (unsigned char *)outdata + len, &pad)) {
if(!cipher->counter->n) { logger(DEBUG_ALWAYS, LOG_ERR, "Error while decrypting: %s", ERR_error_string(ERR_get_error(), NULL));
int len; return false;
if(!EVP_EncryptUpdate(&cipher->ctx, cipher->counter->block, &len, cipher->counter->counter, cipher->cipher->block_size)) {
logger(DEBUG_ALWAYS, LOG_ERR, "Error while encrypting: %s", ERR_error_string(ERR_get_error(), NULL));
return false;
}
// Increase the counter value
for(int i = 0; i < cipher->cipher->block_size; i++)
if(++cipher->counter->counter[i])
break;
}
*out++ = *in++ ^ cipher->counter->block[cipher->counter->n++];
if(cipher->counter->n >= cipher->cipher->block_size)
cipher->counter->n = 0;
} }
if(outlen)
*outlen = len;
return true;
}
bool cipher_gcm_decrypt_start(cipher_t *cipher, const void *indata, size_t inlen, void *outdata, size_t *outlen) {
int len = 0;
if(!EVP_DecryptInit_ex(&cipher->ctx, NULL, NULL, NULL, cipher->counter->counter)
|| (inlen && !EVP_DecryptUpdate(&cipher->ctx, (unsigned char *)outdata, &len, (unsigned char *)indata, inlen))) {
logger(DEBUG_ALWAYS, LOG_ERR, "Error while decrypting: %s", ERR_error_string(ERR_get_error(), NULL));
return false;
}
if(outlen)
*outlen = len;
return true;
}
bool cipher_gcm_decrypt_finish(cipher_t *cipher, const void *indata, size_t inlen, void *outdata, size_t *outlen) {
if(inlen < 16)
return false;
EVP_CIPHER_CTX_ctrl(&cipher->ctx, EVP_CTRL_GCM_SET_TAG, 16, (unsigned char *)indata + inlen - 16);
int len = 0, pad = 0;
if((inlen > 16 && !EVP_DecryptUpdate(&cipher->ctx, (unsigned char *)outdata, &len, (unsigned char *)indata, inlen - 16))
|| !EVP_DecryptFinal(&cipher->ctx, (unsigned char *)outdata + len, &pad)) {
logger(DEBUG_ALWAYS, LOG_ERR, "Error while decrypting: %s", ERR_error_string(ERR_get_error(), NULL));
return false;
}
return true; return true;
} }

View file

@ -22,7 +22,6 @@
#include "cipher.h" #include "cipher.h"
#include "crypto.h" #include "crypto.h"
#include "digest.h"
#include "ecdh.h" #include "ecdh.h"
#include "ecdsa.h" #include "ecdsa.h"
#include "logger.h" #include "logger.h"
@ -83,34 +82,30 @@ static void warning(sptps_t *s, const char *format, ...) {
// Send a record (datagram version, accepts all record types, handles encryption and authentication). // Send a record (datagram version, accepts all record types, handles encryption and authentication).
static bool send_record_priv_datagram(sptps_t *s, uint8_t type, const char *data, uint16_t len) { static bool send_record_priv_datagram(sptps_t *s, uint8_t type, const char *data, uint16_t len) {
char buffer[len + 23UL]; char buffer[len + 21UL];
// Create header with sequence number, length and record type // Create header with sequence number, length and record type
uint32_t seqno = htonl(s->outseqno++); uint32_t seqno = htonl(s->outseqno++);
uint16_t netlen = htons(len);
memcpy(buffer, &netlen, 2); memcpy(buffer, &seqno, 4);
memcpy(buffer + 2, &seqno, 4); buffer[4] = type;
buffer[6] = type;
// Add plaintext (TODO: avoid unnecessary copy)
memcpy(buffer + 7, data, len);
if(s->outstate) { if(s->outstate) {
// If first handshake has finished, encrypt and HMAC // If first handshake has finished, encrypt and HMAC
if(!cipher_set_counter(s->outcipher, &seqno, sizeof seqno)) if(!cipher_set_counter(s->outcipher, &seqno, sizeof seqno))
return false; return error(s, EINVAL, "Failed to set counter");
if(!cipher_counter_xor(s->outcipher, buffer + 6, len + 1UL, buffer + 6)) if(!cipher_gcm_encrypt_start(s->outcipher, buffer + 4, 1, buffer + 4, NULL))
return false; return error(s, EINVAL, "Error encrypting record");
if(!digest_create(s->outdigest, buffer, len + 7UL, buffer + 7UL + len)) if(!cipher_gcm_encrypt_finish(s->outcipher, data, len, buffer + 5, NULL))
return false; return error(s, EINVAL, "Error encrypting record");
return s->send_data(s->handle, type, buffer + 2, len + 21UL); return s->send_data(s->handle, type, buffer, len + 21UL);
} else { } else {
// Otherwise send as plaintext // Otherwise send as plaintext
return s->send_data(s->handle, type, buffer + 2, len + 5UL); memcpy(buffer + 5, data, len);
return s->send_data(s->handle, type, buffer, len + 5UL);
} }
} }
// Send a record (private version, accepts all record types, handles encryption and authentication). // Send a record (private version, accepts all record types, handles encryption and authentication).
@ -118,31 +113,31 @@ static bool send_record_priv(sptps_t *s, uint8_t type, const char *data, uint16_
if(s->datagram) if(s->datagram)
return send_record_priv_datagram(s, type, data, len); return send_record_priv_datagram(s, type, data, len);
char buffer[len + 23UL]; char buffer[len + 19UL];
// Create header with sequence number, length and record type // Create header with sequence number, length and record type
uint32_t seqno = htonl(s->outseqno++); uint32_t seqno = htonl(s->outseqno++);
uint16_t netlen = htons(len); uint16_t netlen = htons(len);
memcpy(buffer, &seqno, 4); memcpy(buffer, &netlen, 2);
memcpy(buffer + 4, &netlen, 2); buffer[2] = type;
buffer[6] = type;
// Add plaintext (TODO: avoid unnecessary copy)
memcpy(buffer + 7, data, len);
if(s->outstate) { if(s->outstate) {
// If first handshake has finished, encrypt and HMAC // If first handshake has finished, encrypt and HMAC
if(!cipher_counter_xor(s->outcipher, buffer + 4, len + 3UL, buffer + 4)) if(!cipher_set_counter(s->outcipher, &seqno, 4))
return false; return error(s, EINVAL, "Failed to set counter");
if(!digest_create(s->outdigest, buffer, len + 7UL, buffer + 7UL + len)) if(!cipher_gcm_encrypt_start(s->outcipher, buffer, 3, buffer, NULL))
return false; return error(s, EINVAL, "Error encrypting record");
return s->send_data(s->handle, type, buffer + 4, len + 19UL); if(!cipher_gcm_encrypt_finish(s->outcipher, data, len, buffer + 3, NULL))
return error(s, EINVAL, "Error encrypting record");
return s->send_data(s->handle, type, buffer, len + 19UL);
} else { } else {
// Otherwise send as plaintext // Otherwise send as plaintext
return s->send_data(s->handle, type, buffer + 4, len + 3UL); memcpy(buffer + 3, data, len);
return s->send_data(s->handle, type, buffer, len + 3UL);
} }
} }
@ -165,7 +160,7 @@ static bool send_kex(sptps_t *s) {
// Make room for our KEX message, which we will keep around since send_sig() needs it. // Make room for our KEX message, which we will keep around since send_sig() needs it.
if(s->mykex) if(s->mykex)
abort(); return false;
s->mykex = realloc(s->mykex, 1 + 32 + keylen); s->mykex = realloc(s->mykex, 1 + 32 + keylen);
if(!s->mykex) if(!s->mykex)
return error(s, errno, strerror(errno)); return error(s, errno, strerror(errno));
@ -178,7 +173,7 @@ static bool send_kex(sptps_t *s) {
// Create a new ECDH public key. // Create a new ECDH public key.
if(!(s->ecdh = ecdh_generate_public(s->mykex + 1 + 32))) if(!(s->ecdh = ecdh_generate_public(s->mykex + 1 + 32)))
return false; return error(s, EINVAL, "Failed to generate ECDH public key");
return send_record_priv(s, SPTPS_HANDSHAKE, s->mykex, 1 + 32 + keylen); return send_record_priv(s, SPTPS_HANDSHAKE, s->mykex, 1 + 32 + keylen);
} }
@ -199,7 +194,7 @@ static bool send_sig(sptps_t *s) {
// Sign the result. // Sign the result.
if(!ecdsa_sign(s->mykey, msg, sizeof msg, sig)) if(!ecdsa_sign(s->mykey, msg, sizeof msg, sig))
return false; return error(s, EINVAL, "Failed to sign SIG record");
// Send the SIG exchange record. // Send the SIG exchange record.
return send_record_priv(s, SPTPS_HANDSHAKE, sig, sizeof sig); return send_record_priv(s, SPTPS_HANDSHAKE, sig, sizeof sig);
@ -209,16 +204,14 @@ static bool send_sig(sptps_t *s) {
static bool generate_key_material(sptps_t *s, const char *shared, size_t len) { static bool generate_key_material(sptps_t *s, const char *shared, size_t len) {
// Initialise cipher and digest structures if necessary // Initialise cipher and digest structures if necessary
if(!s->outstate) { if(!s->outstate) {
s->incipher = cipher_open_by_name("aes-256-ecb"); s->incipher = cipher_open_by_name("aes-256-gcm");
s->outcipher = cipher_open_by_name("aes-256-ecb"); s->outcipher = cipher_open_by_name("aes-256-gcm");
s->indigest = digest_open_by_name("sha256", 16); if(!s->incipher || !s->outcipher)
s->outdigest = digest_open_by_name("sha256", 16); return error(s, EINVAL, "Failed to open cipher");
if(!s->incipher || !s->outcipher || !s->indigest || !s->outdigest)
return false;
} }
// Allocate memory for key material // Allocate memory for key material
size_t keylen = digest_keylength(s->indigest) + digest_keylength(s->outdigest) + cipher_keylength(s->incipher) + cipher_keylength(s->outcipher); size_t keylen = cipher_keylength(s->incipher) + cipher_keylength(s->outcipher);
s->key = realloc(s->key, keylen); s->key = realloc(s->key, keylen);
if(!s->key) if(!s->key)
@ -238,7 +231,7 @@ static bool generate_key_material(sptps_t *s, const char *shared, size_t len) {
// Use PRF to generate the key material // Use PRF to generate the key material
if(!prf(shared, len, seed, s->labellen + 64 + 13, s->key, keylen)) if(!prf(shared, len, seed, s->labellen + 64 + 13, s->key, keylen))
return false; return error(s, EINVAL, "Failed to generate key material");
return true; return true;
} }
@ -254,17 +247,11 @@ static bool receive_ack(sptps_t *s, const char *data, uint16_t len) {
return error(s, EIO, "Invalid ACK record length"); return error(s, EIO, "Invalid ACK record length");
if(s->initiator) { if(s->initiator) {
bool result if(!cipher_set_counter_key(s->incipher, s->key))
= cipher_set_counter_key(s->incipher, s->key) return error(s, EINVAL, "Failed to set counter");
&& digest_set_key(s->indigest, s->key + cipher_keylength(s->incipher), digest_keylength(s->indigest));
if(!result)
return false;
} else { } else {
bool result if(!cipher_set_counter_key(s->incipher, s->key + cipher_keylength(s->outcipher)))
= cipher_set_counter_key(s->incipher, s->key + cipher_keylength(s->outcipher) + digest_keylength(s->outdigest)) return error(s, EINVAL, "Failed to set counter");
&& digest_set_key(s->indigest, s->key + cipher_keylength(s->outcipher) + digest_keylength(s->outdigest) + cipher_keylength(s->incipher), digest_keylength(s->indigest));
if(!result)
return false;
} }
free(s->key); free(s->key);
@ -284,7 +271,7 @@ static bool receive_kex(sptps_t *s, const char *data, uint16_t len) {
// Make a copy of the KEX message, send_sig() and receive_sig() need it // Make a copy of the KEX message, send_sig() and receive_sig() need it
if(s->hiskex) if(s->hiskex)
abort(); return error(s, EINVAL, "Received a second KEX message before first has been processed");
s->hiskex = realloc(s->hiskex, len); s->hiskex = realloc(s->hiskex, len);
if(!s->hiskex) if(!s->hiskex)
return error(s, errno, strerror(errno)); return error(s, errno, strerror(errno));
@ -313,12 +300,12 @@ static bool receive_sig(sptps_t *s, const char *data, uint16_t len) {
// Verify signature. // Verify signature.
if(!ecdsa_verify(s->hiskey, msg, sizeof msg, data)) if(!ecdsa_verify(s->hiskey, msg, sizeof msg, data))
return false; return error(s, EIO, "Failed to verify SIG record");
// Compute shared secret. // Compute shared secret.
char shared[ECDH_SHARED_SIZE]; char shared[ECDH_SHARED_SIZE];
if(!ecdh_compute_shared(s->ecdh, s->hiskex + 1 + 32, shared)) if(!ecdh_compute_shared(s->ecdh, s->hiskex + 1 + 32, shared))
return false; return error(s, EINVAL, "Failed to compute ECDH shared secret");
s->ecdh = NULL; s->ecdh = NULL;
// Generate key material from shared secret. // Generate key material from shared secret.
@ -337,17 +324,11 @@ static bool receive_sig(sptps_t *s, const char *data, uint16_t len) {
// TODO: only set new keys after ACK has been set/received // TODO: only set new keys after ACK has been set/received
if(s->initiator) { if(s->initiator) {
bool result if(!cipher_set_counter_key(s->outcipher, s->key + cipher_keylength(s->incipher)))
= cipher_set_counter_key(s->outcipher, s->key + cipher_keylength(s->incipher) + digest_keylength(s->indigest)) return error(s, EINVAL, "Failed to set counter");
&& digest_set_key(s->outdigest, s->key + cipher_keylength(s->incipher) + digest_keylength(s->indigest) + cipher_keylength(s->outcipher), digest_keylength(s->outdigest));
if(!result)
return false;
} else { } else {
bool result if(!cipher_set_counter_key(s->outcipher, s->key))
= cipher_set_counter_key(s->outcipher, s->key) return error(s, EINVAL, "Failed to set counter");
&& digest_set_key(s->outdigest, s->key + cipher_keylength(s->outcipher), digest_keylength(s->outdigest));
if(!result)
return false;
} }
return true; return true;
@ -407,15 +388,11 @@ static bool receive_handshake(sptps_t *s, const char *data, uint16_t len) {
// Check datagram for valid HMAC // Check datagram for valid HMAC
bool sptps_verify_datagram(sptps_t *s, const char *data, size_t len) { bool sptps_verify_datagram(sptps_t *s, const char *data, size_t len) {
if(!s->instate || len < 21) if(!s->instate || len < 21)
return false; return error(s, EIO, "Received short packet");
char buffer[len + 23]; // TODO: just decrypt without updating the replay window
uint16_t netlen = htons(len - 21);
memcpy(buffer, &netlen, 2); return true;
memcpy(buffer + 2, data, len);
return digest_verify(s->indigest, buffer, len - 14, buffer + len - 14);
} }
// Receive incoming data, datagram version. // Receive incoming data, datagram version.
@ -441,16 +418,16 @@ static bool sptps_receive_data_datagram(sptps_t *s, const char *data, size_t len
return receive_handshake(s, data + 5, len - 5); return receive_handshake(s, data + 5, len - 5);
} }
// Check HMAC. // Decrypt
uint16_t netlen = htons(len - 21);
char buffer[len + 23]; char buffer[len];
memcpy(buffer, &netlen, 2); if(!cipher_set_counter(s->incipher, data, sizeof seqno))
memcpy(buffer + 2, data, len); return error(s, EINVAL, "Failed to set counter");
size_t outlen;
if(!digest_verify(s->indigest, buffer, len - 14, buffer + len - 14)) if(!cipher_gcm_decrypt(s->incipher, data + 4, len - 4, buffer, &outlen))
return error(s, EIO, "Invalid HMAC"); return error(s, EIO, "Failed to decrypt and verify packet");
// Replay protection using a sliding window of configurable size. // Replay protection using a sliding window of configurable size.
// s->inseqno is expected sequence number // s->inseqno is expected sequence number
@ -492,26 +469,19 @@ static bool sptps_receive_data_datagram(sptps_t *s, const char *data, size_t len
else else
s->received++; s->received++;
// Decrypt.
memcpy(&seqno, buffer + 2, 4);
if(!cipher_set_counter(s->incipher, &seqno, sizeof seqno))
return false;
if(!cipher_counter_xor(s->incipher, buffer + 6, len - 4, buffer + 6))
return false;
// Append a NULL byte for safety. // Append a NULL byte for safety.
buffer[len - 14] = 0; buffer[len - 20] = 0;
uint8_t type = buffer[6]; uint8_t type = buffer[0];
if(type < SPTPS_HANDSHAKE) { if(type < SPTPS_HANDSHAKE) {
if(!s->instate) if(!s->instate)
return error(s, EIO, "Application record received before handshake finished"); return error(s, EIO, "Application record received before handshake finished");
if(!s->receive_record(s->handle, type, buffer + 7, len - 21)) if(!s->receive_record(s->handle, type, buffer + 1, len - 21))
return false; abort();
} else if(type == SPTPS_HANDSHAKE) { } else if(type == SPTPS_HANDSHAKE) {
if(!receive_handshake(s, buffer + 7, len - 21)) if(!receive_handshake(s, buffer + 1, len - 21))
return false; abort();
} else { } else {
return error(s, EIO, "Invalid record type %d", type); return error(s, EIO, "Invalid record type %d", type);
} }
@ -529,8 +499,8 @@ bool sptps_receive_data(sptps_t *s, const char *data, size_t len) {
while(len) { while(len) {
// First read the 2 length bytes. // First read the 2 length bytes.
if(s->buflen < 6) { if(s->buflen < 2) {
size_t toread = 6 - s->buflen; size_t toread = 2 - s->buflen;
if(toread > len) if(toread > len)
toread = len; toread = len;
@ -541,36 +511,39 @@ bool sptps_receive_data(sptps_t *s, const char *data, size_t len) {
data += toread; data += toread;
// Exit early if we don't have the full length. // Exit early if we don't have the full length.
if(s->buflen < 6) if(s->buflen < 2)
return true; return true;
// Update sequence number.
uint32_t seqno = htonl(s->inseqno++);
// Decrypt the length bytes // Decrypt the length bytes
if(s->instate) { if(s->instate) {
if(!cipher_counter_xor(s->incipher, s->inbuf + 4, 2, &s->reclen)) if(!cipher_set_counter(s->incipher, &seqno, 4))
return false; return error(s, EINVAL, "Failed to set counter");
if(!cipher_gcm_decrypt_start(s->incipher, s->inbuf, 2, &s->reclen, NULL))
return error(s, EINVAL, "Failed to decrypt record");
} else { } else {
memcpy(&s->reclen, s->inbuf + 4, 2); memcpy(&s->reclen, s->inbuf, 2);
} }
s->reclen = ntohs(s->reclen); s->reclen = ntohs(s->reclen);
// If we have the length bytes, ensure our buffer can hold the whole request. // If we have the length bytes, ensure our buffer can hold the whole request.
s->inbuf = realloc(s->inbuf, s->reclen + 23UL); s->inbuf = realloc(s->inbuf, s->reclen + 19UL);
if(!s->inbuf) if(!s->inbuf)
return error(s, errno, strerror(errno)); return error(s, errno, strerror(errno));
// Add sequence number.
uint32_t seqno = htonl(s->inseqno++);
memcpy(s->inbuf, &seqno, 4);
// Exit early if we have no more data to process. // Exit early if we have no more data to process.
if(!len) if(!len)
return true; return true;
} }
// Read up to the end of the record. // Read up to the end of the record.
size_t toread = s->reclen + (s->instate ? 23UL : 7UL) - s->buflen; size_t toread = s->reclen + (s->instate ? 19UL : 3UL) - s->buflen;
if(toread > len) if(toread > len)
toread = len; toread = len;
@ -580,36 +553,33 @@ bool sptps_receive_data(sptps_t *s, const char *data, size_t len) {
data += toread; data += toread;
// If we don't have a whole record, exit. // If we don't have a whole record, exit.
if(s->buflen < s->reclen + (s->instate ? 23UL : 7UL)) if(s->buflen < s->reclen + (s->instate ? 19UL : 3UL))
return true; return true;
// Check HMAC and decrypt. // Check HMAC and decrypt.
if(s->instate) { if(s->instate) {
if(!digest_verify(s->indigest, s->inbuf, s->reclen + 7UL, s->inbuf + s->reclen + 7UL)) if(!cipher_gcm_decrypt_finish(s->incipher, s->inbuf + 2UL, s->reclen + 17UL, s->inbuf + 2UL, NULL))
return error(s, EIO, "Invalid HMAC"); return error(s, EINVAL, "Failed to decrypt and verify record");
if(!cipher_counter_xor(s->incipher, s->inbuf + 6UL, s->reclen + 1UL, s->inbuf + 6UL))
return false;
} }
// Append a NULL byte for safety. // Append a NULL byte for safety.
s->inbuf[s->reclen + 7UL] = 0; s->inbuf[s->reclen + 3UL] = 0;
uint8_t type = s->inbuf[6]; uint8_t type = s->inbuf[2];
if(type < SPTPS_HANDSHAKE) { if(type < SPTPS_HANDSHAKE) {
if(!s->instate) if(!s->instate)
return error(s, EIO, "Application record received before handshake finished"); return error(s, EIO, "Application record received before handshake finished");
if(!s->receive_record(s->handle, type, s->inbuf + 7, s->reclen)) if(!s->receive_record(s->handle, type, s->inbuf + 3, s->reclen))
return false; return false;
} else if(type == SPTPS_HANDSHAKE) { } else if(type == SPTPS_HANDSHAKE) {
if(!receive_handshake(s, s->inbuf + 7, s->reclen)) if(!receive_handshake(s, s->inbuf + 3, s->reclen))
return false; return false;
} else { } else {
return error(s, EIO, "Invalid record type %d", type); return error(s, EIO, "Invalid record type %d", type);
} }
s->buflen = 4; s->buflen = 0;
} }
return true; return true;
@ -641,8 +611,7 @@ bool sptps_start(sptps_t *s, void *handle, bool initiator, bool datagram, ecdsa_
s->inbuf = malloc(7); s->inbuf = malloc(7);
if(!s->inbuf) if(!s->inbuf)
return error(s, errno, strerror(errno)); return error(s, errno, strerror(errno));
s->buflen = 4; s->buflen = 0;
memset(s->inbuf, 0, 4);
} }
memcpy(s->label, label, labellen); memcpy(s->label, label, labellen);

View file

@ -48,7 +48,8 @@ static void receive_data(sptps_t *sptps) {
char buf[4096]; char buf[4096];
int fd = *(int *)sptps->handle; int fd = *(int *)sptps->handle;
size_t len = recv(fd, buf, sizeof buf, 0); size_t len = recv(fd, buf, sizeof buf, 0);
sptps_receive_data(sptps, buf, len); if(!sptps_receive_data(sptps, buf, len))
abort();
} }
struct timespec start; struct timespec start;
@ -62,7 +63,7 @@ static void clock_start() {
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start);
} }
static bool clock_countto(int seconds) { static bool clock_countto(double seconds) {
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end); clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &end);
elapsed = end.tv_sec + end.tv_nsec * 1e-9 - start.tv_sec - start.tv_nsec * 1e-9; elapsed = end.tv_sec + end.tv_nsec * 1e-9 - start.tv_sec - start.tv_nsec * 1e-9;
if(elapsed < seconds) if(elapsed < seconds)
@ -77,38 +78,39 @@ int main(int argc, char *argv[]) {
ecdh_t *ecdh1, *ecdh2; ecdh_t *ecdh1, *ecdh2;
sptps_t sptps1, sptps2; sptps_t sptps1, sptps2;
char buf1[4096], buf2[4096], buf3[4096]; char buf1[4096], buf2[4096], buf3[4096];
double duration = argc > 1 ? atof(argv[1]) : 10;
crypto_init(); crypto_init();
// Key generation // Key generation
fprintf(stderr, "Generating keys for 10 seconds: "); fprintf(stderr, "Generating keys for %lg seconds: ", duration);
for(clock_start(); clock_countto(10);) for(clock_start(); clock_countto(duration);)
ecdsa_free(ecdsa_generate()); ecdsa_free(ecdsa_generate());
fprintf(stderr, "%13.2lf op/s\n", rate); fprintf(stderr, "%17.2lf op/s\n", rate);
key1 = ecdsa_generate(); key1 = ecdsa_generate();
key2 = ecdsa_generate(); key2 = ecdsa_generate();
// ECDSA signatures // ECDSA signatures
fprintf(stderr, "ECDSA sign for 10 seconds: "); fprintf(stderr, "ECDSA sign for %lg seconds: ", duration);
for(clock_start(); clock_countto(10);) for(clock_start(); clock_countto(duration);)
ecdsa_sign(key1, buf1, 256, buf2); ecdsa_sign(key1, buf1, 256, buf2);
fprintf(stderr, "%18.2lf op/s\n", rate); fprintf(stderr, "%22.2lf op/s\n", rate);
fprintf(stderr, "ECDSA verify for 10 seconds: "); fprintf(stderr, "ECDSA verify for %lg seconds: ", duration);
for(clock_start(); clock_countto(10);) for(clock_start(); clock_countto(duration);)
ecdsa_verify(key1, buf1, 256, buf2); ecdsa_verify(key1, buf1, 256, buf2);
fprintf(stderr, "%16.2lf op/s\n", rate); fprintf(stderr, "%20.2lf op/s\n", rate);
ecdh1 = ecdh_generate_public(buf1); ecdh1 = ecdh_generate_public(buf1);
fprintf(stderr, "ECDH for 10 seconds: "); fprintf(stderr, "ECDH for %lg seconds: ", duration);
for(clock_start(); clock_countto(10);) { for(clock_start(); clock_countto(duration);) {
ecdh2 = ecdh_generate_public(buf2); ecdh2 = ecdh_generate_public(buf2);
ecdh_compute_shared(ecdh2, buf1, buf3); ecdh_compute_shared(ecdh2, buf1, buf3);
} }
fprintf(stderr, "%24.2lf op/s\n", rate); fprintf(stderr, "%28.2lf op/s\n", rate);
ecdh_free(ecdh1); ecdh_free(ecdh1);
// SPTPS authentication phase // SPTPS authentication phase
@ -121,8 +123,8 @@ int main(int argc, char *argv[]) {
struct pollfd pfd[2] = {{fd[0], POLLIN}, {fd[1], POLLIN}}; struct pollfd pfd[2] = {{fd[0], POLLIN}, {fd[1], POLLIN}};
fprintf(stderr, "SPTPS authenticate for 10 seconds: "); fprintf(stderr, "SPTPS/TCP authenticate for %lg seconds: ", duration);
for(clock_start(); clock_countto(10);) { for(clock_start(); clock_countto(duration);) {
sptps_start(&sptps1, fd + 0, true, false, key1, key2, "sptps_speed", 11, send_data, receive_record); sptps_start(&sptps1, fd + 0, true, false, key1, key2, "sptps_speed", 11, send_data, receive_record);
sptps_start(&sptps2, fd + 1, false, false, key2, key1, "sptps_speed", 11, send_data, receive_record); sptps_start(&sptps2, fd + 1, false, false, key2, key1, "sptps_speed", 11, send_data, receive_record);
while(poll(pfd, 2, 0)) { while(poll(pfd, 2, 0)) {
@ -146,9 +148,61 @@ int main(int argc, char *argv[]) {
if(pfd[1].revents) if(pfd[1].revents)
receive_data(&sptps2); receive_data(&sptps2);
} }
fprintf(stderr, "SPTPS transmit for 10 seconds: "); fprintf(stderr, "SPTPS/TCP transmit for %lg seconds: ", duration);
for(clock_start(); clock_countto(10);) { for(clock_start(); clock_countto(duration);) {
sptps_send_record(&sptps1, 0, buf1, 1451); if(!sptps_send_record(&sptps1, 0, buf1, 1451))
abort();
receive_data(&sptps2);
}
rate *= 2 * 1451 * 8;
if(rate > 1e9)
fprintf(stderr, "%14.2lf Gbit/s\n", rate / 1e9);
else if(rate > 1e6)
fprintf(stderr, "%14.2lf Mbit/s\n", rate / 1e6);
else if(rate > 1e3)
fprintf(stderr, "%14.2lf kbit/s\n", rate / 1e3);
sptps_stop(&sptps1);
sptps_stop(&sptps2);
// SPTPS datagram authentication phase
close(fd[0]);
close(fd[1]);
if(socketpair(AF_UNIX, SOCK_DGRAM, 0, fd)) {
fprintf(stderr, "Could not create a UNIX socket pair: %s\n", strerror(errno));
return 1;
}
fprintf(stderr, "SPTPS/UDP authenticate for %lg seconds: ", duration);
for(clock_start(); clock_countto(duration);) {
sptps_start(&sptps1, fd + 0, true, true, key1, key2, "sptps_speed", 11, send_data, receive_record);
sptps_start(&sptps2, fd + 1, false, true, key2, key1, "sptps_speed", 11, send_data, receive_record);
while(poll(pfd, 2, 0)) {
if(pfd[0].revents)
receive_data(&sptps1);
if(pfd[1].revents)
receive_data(&sptps2);
}
sptps_stop(&sptps1);
sptps_stop(&sptps2);
}
fprintf(stderr, "%10.2lf op/s\n", rate * 2);
// SPTPS datagram data
sptps_start(&sptps1, fd + 0, true, true, key1, key2, "sptps_speed", 11, send_data, receive_record);
sptps_start(&sptps2, fd + 1, false, true, key2, key1, "sptps_speed", 11, send_data, receive_record);
while(poll(pfd, 2, 0)) {
if(pfd[0].revents)
receive_data(&sptps1);
if(pfd[1].revents)
receive_data(&sptps2);
}
fprintf(stderr, "SPTPS/UDP transmit for %lg seconds: ", duration);
for(clock_start(); clock_countto(duration);) {
if(!sptps_send_record(&sptps1, 0, buf1, 1451))
abort();
receive_data(&sptps2); receive_data(&sptps2);
} }
rate *= 2 * 1451 * 8; rate *= 2 * 1451 * 8;