34 REALTEK

Realtek Ameba CoAP Library User Guide

This document provides a guideline to use mbed CoAP C Library APIs in Ameba SDK

il REALTEK

Document Number: UM0150

Table of Contents

1 CoAP Protocol Introduction
1.1 CoAP Protocol Stack.........ccceeuuueee.
1.2 CoAP Message Format

2 mbed CoAP APIs and Ameba Wrappers

3 CoAPExamplecccoviieeeeiieecciieeeeen,
3.1 Example Setup....ccoovvreeeeiiieicninnen,
3.2 Example Executionc....cceuuunneeee.

April 21, 2017

T
KM\\ REAI—TEK Document Number: UM0150

1 CoAP Protocol Introduction

The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with
constrained nodes and constrained (e.g., low-power, lossy) networks. The protocol is designed
for machine-to-machine (M2M) applications such as smart energy and building automation.

CoAP provides a request/response interaction model between application endpoints, supports
built-in discovery of services and resources, and includes key concepts of the Web such as URIs
and Internet media types. CoAP is designed to easily interface with HTTP for integration with
the Web while meeting specialized requirements such as multicast support, very low overhead,
and simplicity for constrained environments.

1.1 CoAP Protocol Stack

CoAP is an application layer protocol build on the top of UDP layer, it contains two sub-layers:
CoAP method layer and CoAP transaction layer.

Application

Application Layer CoAP Method
CoAP 0 —
CoAP Transaction
Transport Layer uop

The function of the CoAP transaction layer is to control message exchanges over UDP between
two endpoints. There are 4 message types: confirmable (CON), non-confirmable (NON),
acknowledgement (ACK), and reset (RST). The message transactions are formed between peer
to peer and identified by transaction ID. An optional token can be used to differentiate
concurrent requests. The 4 message types are explained as below:

e CON: confirmable request, receiving peer must send an ACK or RST to reply the message.
e NON: non-confirmable request, receiving peer does not require to reply

e ACK: acknowledgement, send when a CON message is received, can carry payload.

e RST: rest, indicates a CON message is received but some content is missing to process it.

At the CoAP method layer, request and response semantics are carried in a message, and
include either a method code or a response code. The message also carries optional
information, such as the URI and type of payload content. There are 4 method types: GET, POST,
PUT, and DELETE which are explained as below:

April 21, 2017 3

T
KM\\ REAI—TEK Document Number: UM0150

e GET: retrieve information from URI

e POST: create a new resource under requested URI
e PUT: update resource identified by URI
e DELETE: delete resource identified by URI

1.2 CoAP Message Format
CoAP messages are encoded in a simple binary format with extensible options. The protocol has
a base header size of only 4 bytes, and a total header of 10-20 bytes for a typical request.

0 1 2 3
0123456789 01234567890123456789°01
Fott bttt —t—F—t—F—t—F—t—F—t—F -ttt —F—+—+

|[Ver| T | TKL \ Code \ Message ID

=t —t—t—F—t—F—F—t—F—Ft—t—F—t—F—F—t—F—F—F—F—F—t—F—t—F—F—Ft—F—F -+ —F+—+
| Token (if any, TKL bytes)

Fott bttt —t—F—t—F—t—F—t—F—t—F -ttt —F—+—+
| Options (if any)

T et e S S e s S e e st
/111 1111 1] Payload (if any)
t—t—t—t—F—t—F—F—t—F—t—t—F—t—F—F—t—F—F—t—F—F—t—F—t—F—F—t—F—F—t—F—+

Version (Ver): 2-bit unsigned integer. Indicates the CoAP version number. Implementations of
this specification MUST set this field to 1 (01 binary). Other values are reserved for future
versions. Messages with unknown version numbers MUST be silently ignored.

Type (T): 2-bit unsigned integer. Indicates if this message is of type Confirmable (0), Non-
confirmable (1), Acknowledgement (2), or Reset (3).

Token Length (TKL): 4-bit unsigned integer. Indicates the length of the variable-length Token
field (0-8 bytes). Lengths 9-15 are reserved, MUST NOT be sent, and MUST be processed as a
message format error.

Code: 8-bit unsigned integer, split into a 3-bit class (most significant bits) and a 5-bit detail
(least significant bits), documented as "c.dd" where "c" is a digit from 0 to 7 for the 3-bit
subfield and "dd" are two digits from 00 to 31 for the 5-bit subfield. The class can indicate a
request (0), a success response (2), a client error response (4), or a server error response (5).
(All other class values are reserved.) As a special case, Code 0.00 indicates an Empty message.
In case of a request, the Code field indicates the Request Method; in case of a response, a
Response Code.

April 21, 2017 4

e
@AM REALTEK Document Number: UM0150

Message ID: 16-bit unsigned integer in network byte order. Used to detect message
duplication and to match messages of type Acknowledgement/Reset to messages of type
Confirmable/Non-confirmable.

Token value (Token): which may be 0 to 8 bytes, as given by the Token Length field. The Token
value is used to correlate requests and responses.

Options: Header and Token are followed by zero or more Options. An Option can be followed
by the end of the message, by another Option, or by the Payload Marker and the payload.

Payload: Following the header, token, and options, if any, comes the optional payload. If
present and of non-zero length, it is prefixed by a fixed, one-byte Payload Marker (OxFF), which
indicates the end of options and the start of the payload. The payload data extends from after
the marker to the end of the UDP datagram, i.e., the Payload Length is calculated from the
datagram size. The absence of the Payload Marker denotes a zero-length payload. The
presence of a marker followed by a zero-length payload MUST be processed as a message
format error.

For detailed information about this protocol, please reference to IETF RFC7252 .

2 mbed CoAP APIs and Ameba Wrappers

CoAP messages are built/parsed by using mbed CoAP APIs and sent/received by using Ameba
wrapper functions. A quick briefing is given as below:

sn_coap_header.h

Use to parse an incoming message

sn_coap_parser() buffer to a CoAP header structure.

This function releases any memory

sn_coap_parser_release_allocated_coap_msg_mem() allocated by a CoAP message structure.

Use to build an outgoing message

ShEcoapTbUilden() buffer from a CoAP header structure.

Use to calculate the needed message
sn_coap_builder_calc_needed_packet_data_size() buffer size from a CoAP message
structure.

Builds an outgoing message buffer from

SINCoGRREUERIS @) a CoAP header structure.

Calculates needed Packet data memory

sn_coap_builder calc_needed packet_data size 2() size for given CoAP message.

April 21, 2017 5

https://tools.ietf.org/html/rfc7252

e
@AM REALTEK Document Number: UM0150

Use to automate the building of a

sn_coap_build_response() . .
- - - response to an incoming request.

. Initialize a message structure to
sn_coap_parser_init_message()

empty.
sn_coap_parser_alloc_message() Allocate an empty message structure.
. Allocates and initializes options list
sn_coap_parser_alloc_options() structure

sn_coap_protocol.h

This function sets the memory
allocation and deallocation functions
the library will use, and must be
called first.

Frees all allocated memory in CoAP
protocol part.

sn_coap_protocol init()

sn_coap_protocol_destroy()

Use to build an outgoing message

sn_coap_protocol_build() buffer from a CoAP header structure.

Use to parse an incoming message

sn_coap_protocol_parse() buffer to a CoAP header structure.

Called periodically to allow the
sn_coap_protocol_exec() protocol to update retransmission
timers and destroy unneeded data.

If block transfer is enabled, this
function changes the block size.

sn_coap_protocol_set_block_size()

If duplicate message detection is
sn_coap_protocol_set_duplicate_ buffer_size() enabled, this function changes buffer
size.

If re-transmissions are enabled, this
sn_coap_protocol set retransmission_parameters() | function changes resending count and
interval.

If re-transmissions are enabled, this
sn_coap_protocol_set_retransmission_buffer() function changes message
retransmission queue size

If re-transmissions are enabled, this
sn_coap_protocol clear_retransmission_buffer() function removes all messages from the
retransmission queue.

Remove saved block data. Can be used
sn_coap_protocol block remove() to remove the data from RAM to enable
storing it to other place.

If re-transmissions are enabled, this
sn_coap_protocol_delete_retransmission() function removes message from
retransmission buffer.

sn_coap_ameba_port.h
tr_debug() Print CoAP debug message
This function returns an unsigned
short, which is called in

sn_coap_protocol_init() for random
message ID

randLIB_get 16bit()

April 21, 2017 6

il REALTEK

Document Number: UM0150

coap_malloc()

Ameba malloc() function wrapper

coap_free()

Ameba free() function wrapper

coap_calloc()

Ameba calloc() function wrapper

coap_sock_open()

Ameba socket() function wrapper,
creates a Datagrams
type (SOCK DGRAM) socket.

coap_sock_close()

Ameba close() function wrapper, closes
a socket file descriptor.

coap_protocol_init()

Ameba sn_coap_protocol_init() function
wrapper, initializes CoAP Protocol
part.

coap_send()

Send the constructed CoAP message to
designated host address on the
specific port number.

coap_recv()

Receive the constructed CoAP message
from host.

coap_print_hdr()

Print CoAP message header (for debug
use)

For detailed description, please reference to Ameba SDK Documentation under “Modules”->

“Network” -> “COAP” session.

3 CoAP Example

An example of using CoAP C library and correspond APIs is provided in example_coap.c

Example description:

This example demonstrates how to use mbed-CoAP C library to build and parse a CoAP message.

In the example, a confirmable GET request is send to test server "coap.me" to retrieve the

resource under path "/hello". The expected return is an ACK message with payload "world".

Note:

Company Firewall may block CoAP message. You can use copper
(https://addons.mozilla.org/en-US/firefox/addon/copper-270430/) to test the server's

reachability.

April 21, 2017

https://addons.mozilla.org/en-US/firefox/addon/copper-270430/

e
@AM REALTEK Document Number: UM0150

3.1 Example Setup

1) Add CoAP library and example to SDK:

/component/common/network/coap

-- include

-- ns_list.h

-- ns_types.h

-- sn_coap_ameba_port.h

-- sn_coap_header.h

-- sn_coap_header_internal.h
-- sn_coap_protocol.h

-- sn_coap_protocol_internal.h
-- sn_config.h

-- sn_coap_ameba_port.c

-- sn_coap_builder.c

-- sn_coap_header_check.c

-- sn_coap_parser.c

-- sn_coap_protocol.c

/component/common/example/coap

i—— example_coap.c
|-- example_coap.h
-- readme.txt

2) Add/Enable CONFIG_EXAMPLE_COAP in platform_opts.h

/* for CoAP example*/
#define CONFIG_EXAMPLE_ COAP 1

w

) Add example_coap() to example_entry.c

#if CONFIG_EXAMPLE_COAP
#include <coap/example coap.h>
#endif

void example_entry(void)

{

#if CONFIG_EXAMPLE_COAP
example_coap();
#tendif

¥
April 21, 2017

e
@AM REALTEK Document Number: UM0150

4) Add CoAP related files to IAR project

Files g B A
B Pruject_hwu_image
— (J application - Debug v
—& [crmsis
—H [(Jconsole *
— (b
—H (d multimedia .
—& [netwark
—& [api .
—H [1app .
Fetcoan 1
sh_coap_ameha_pot.c ¥
sh_coap_huilder.c x
sh_coap_header_check.c *
SN_COoap_parser.c x
sh_coap_protocol.c ¥
TETgooglenest .
— [http *
—E [hwip x
—&= [(Omdns .
—E (sl
L [Jwsclient *
—E[(Jos *
—& [peripheral *
—E [SDRAR v oo
—= [(Juser
rrain.c *
= (T utilities
—= [(Jexample
example_amazon_alexa.c *
example_amazon_awsiot.c *
example_audio_mp3_pcm.c *
L] example boastc *
example_coap.c 1 *
EXample._eap.C *
example_entry.c x
example_fatfs.c "

5) Add include directories to project

SPROJ_DIRS\..\..\..\component\common\network\coap\include

April 21, 2017

S REALTEK

Document Number: UM0150

Options for node "application”

ped

¥D5100/200/I¢ +

Lt Factory 5ettings
General Options » (] Muiti-file Comnpilatiorn
Runtime Checking Digcard Unuzed Publics
Assembler Language 2 Code Optimizations Output List Preprocessor |4 |+
Qutput Convert
Custom Build []lgnore standard include directories
Build Actions Additional include directories: {one per line)
Lirker SPROJ_DIRSY. A\ A Ncomponent'commonimediatcodecimpd A
Debugger EPROJ_DIREY. %M component commontmediartp_codec mjp
Sirmulator EPROJ_DIRSY. M\ \componentvcommon ymedia muxer
Angel EPROJ_DIREY. M5 component\vcommon networdhitp 2 nghttp
SPROJ DIRS.. MM component common'networks \coap includ fid
CMSIS DAP
GDB Server Preinclude file:
IAR. ROM-moni |
IHet/ITAGjet _ _
I-Link/Trace Defined symbols: {one per line) _
I Stellaris CONFIG_FLATFORM_81954 [] Preprocessor output to file
Macraigor Freserve u:.n.mmerlts .
BE micro Generate Hine directives
RDI
STLIMK
Third-Party Dri

Core

3.2 Example Execution

Build project and download image to Ameba. A sample of example execution result is logged as

below:

Wait for WIFI connection

Wait for WIFI connection

Wait for WIFI connection

Interface 0 IP address

192.168.1.11

Received 11 bytes from '134.102.218.18:13078"

April 21, 2017

10

S REALTEK

Document Number: UM0150

.token len:
.token ptr:
.coap_status:
.msg_code:
.msg_type:
.content format:
.msg_id:

.uri path len:
.uri path ptr:
.payload len:

.payload ptr:

(null)
0 COAP STATUS OK

2.05 COAP MSG CODE RESPONSE CONTENT
20 COAP MSG_TYPE ACKNOWLEDGEMENT

0 COAP CT TEXT PLAIN

9

(null)

world

April 21, 2017

11

