

Realtek MQTT User Guide

This document provides guideline to use MQTT module in SDK.

Document Number: UM0060

2017-05-05 2

Table of Contents

1 MQTT Protocol Introduction ... 3

1.1 Message format ... 3

1.2 Connect and Keep Alive ... 4

1.3 Publish .. 5

1.4 Subscribe .. 6

1.5 Qos ... 6

2 MQTT APIs ... 8

2.1 MQTTClientInit ... 8

2.2 MQTTConnect .. 9

2.3 MQTTPublish .. 9

2.4 MQTTSubscribe .. 10

2.5 MQTTUnsubscribe ... 11

2.6 MQTTDisconnect.. 11

3 MQTT Example .. 12

3.1 Configuration ... 12

3.2 Example Introduction .. 14

3.3 Example Running Log ... 15

Document Number: UM0060

2017-05-05 3

1 MQTT Protocol Introduction
MQ Telemetry Transport (MQTT) is a lightweight broker-based publish/subscribe messaging

protocol designed to be open, simple, lightweight and easy to implement.

These characteristics make it ideal for use in constrained environments, like low bandwidth or

unreliable network and embedded device with limited processor or memory resources.

Features of the protocol include the publish/subscribe message pattern, messaging transport

agnostic to the content of the payload, the use of TCP/IP, three qualities of service for message

delivery, a small transport overhead, and the Last Will and Testament mechanism.

1.1 Message format
The message header for each MQTT command message contains a fixed header. Some

messages also require a variable header and a payload.

Fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type DUP flag QoS level RETAIN

byte 2 Remaining Length

Message Type

The Message types are shown in the table below.

Mnemonic Enumeration Description

Reserved 0 Reserved

CONNECT 1 Client request to connect to Server

CONNACK 2 Connect Acknowledgment

PUBLISH 3 Publish message

PUBACK 4 Publish Acknowledgment

PUBREC 5 Publish Received (assured delivery part 1)

PUBREL 6 Publish Release (assured delivery part 2)

PUBCOMP 7 Publish Complete (assured delivery part 3)

Document Number: UM0060

2017-05-05 4

Mnemonic Enumeration Description

SUBSCRIBE 8 Client Subscribe request

SUBACK 9 Subscribe Acknowledgment

UNSUBSCRIBE 10 Client Unsubscribe request

UNSUBACK 11 Unsubscribe Acknowledgment

PINGREQ 12 PING Request

PINGRESP 13 PING Response

DISCONNECT 14 Client is Disconnecting

Reserved 15 Reserved

1.2 Connect and Keep Alive

CONNECT/ CONNACK/ DISCONNECT

When a TCP/IP socket connection is established from a client to a server, a protocol level

session must be created using a CONNECT flow. The client sends a CONNECT message to a

server. The server sends a CONNACK message in response to the CONNECT message from the

client.

If the server does not receive a CONNECT message within a reasonable amount of time after
the TCP/IP connection is established, the server should close the connection.

If the client does not receive a CONNACK message from the server within a reasonable amount
of time, the client should close the TCP/IP socket connection, and restart the session by
opening a new socket to the server and issuing a CONNECT message.

In both of these scenarios, a "reasonable" amount of time depends on the type of application
and the communications infrastructure.

If a client with the same Client ID is already connected to the server, the "older" client must be
disconnected by the server before completing the CONNECT flow of the new client.

The DISCONNECT message is sent from the client to the server to indicate that it is about to

close its TCP/IP connection. This allows for a clean disconnection, rather than just dropping the

line.

Document Number: UM0060

2017-05-05 5

Keep Alive timer

The Keep Alive timer is present in the variable header of a MQTT CONNECTmessage.

The Keep Alive timer, measured in seconds, defines the maximum time interval between

messages received from a client.

It enables the server to detect that the network connection to a client has dropped, without

having to wait for the long TCP/IP timeout.

If the server does not receive a message from the client within one and a half times the Keep

Alive time period (the client is allowed "grace" of half a time period), it disconnects the client as

if the client had sent a DISCONNECT message.

If a client does not receive a PINGRESP message within a Keep Alive time period after sending a

PINGREQ, it should close the TCP/IP socket connection.

The actual value is application-specific, but a typical value is a few minutes. The maximum value

is approximately 18 hours. A value of zero (0) means the client is not disconnected.

1.3 Publish

PUBLISH

A PUBLISH message is sent by a client or a server. Each PUBLISH message is associated with a

topic name (also known as the Subject or Channel).

PUBACK

A PUBACK message is the response to a PUBLISH message with QoS level 1. A PUBACK message

is sent by a server in response to a PUBLISH message from a publishing client, and by a

subscriber in response to a PUBLISH message from the server.

When the client receives the PUBACK message, it discards the original message, because it is

also received (and logged) by the server.

PUBREC / PUBREL / PUBCOMP

A PUBREC message is the response to a PUBLISH message with QoS level 2.

A PUBREL message is the third message in the QoS 2 protocol flow.

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#connect
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#disconnect
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#pingresp
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#pingreq
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish

Document Number: UM0060

2017-05-05 6

A PUBCOMP message is the fourth and last message in the QoS 2 protocol flow.

1.4 Subscribe

SUBSCRIBE

The SUBSCRIBE message allows a client to register an interest in one or more topic names with

the server. Messages published to these topics are delivered from the server to the client as

PUBLISH messages. The SUBSCRIBE message also specifies the QoS level at which the subscriber

wants to receive published messages.

A server may start sending PUBLISH messages due to the subscription before the client receives

the SUBACK message.

A server may choose to grant a lower level of QoS than the client requested.

SUBACK

A SUBACK message is sent by the server to the client to confirm receipt of a SUBSCRIBE

message. A SUBACK message contains a list of granted QoS levels. Each level corresponds to a

topic name in the corresponding SUBSCRIBE message.

UNSUBSCRIBE

An UNSUBSCRIBE message is sent by the client to the server to unsubscribe from named topics.

The client unsubscribes from the list of topics named in the payload.

UNSUBACK

The UNSUBACK message is sent by the server to the client to confirm receipt of an

UNSUBSCRIBE message.

1.5 Qos

MQTT delivers messages according to the levels defined in a Quality of Service (QoS). The levels

are described below:

QoS level 0: At most once delivery

Client Message and direction Server

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#subscribe
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#unsubscribe

Document Number: UM0060

2017-05-05 7

Client Message and direction Server

QoS = 0
PUBLISH
---------->

Action: Publish message to subscribers

QoS level 1: At least once delivery

Client Message and direction Server

QoS = 0
PUBLISH
---------->

Action: Publish message to subscribers

QoS level 2: Exactly once delivery

Client
Message and

direction
Server

QoS = 2
DUP = 0
Message ID = x

Action: Store message

PUBLISH
---------->

Action: Store message

or

Actions:

 Store message ID
 Publish message to subscribers

PUBREC
<----------

Message ID = x

Message ID = x
PUBREL
---------->

Actions:

 Publish message to subscribers
 Delete message

or

Action: Delete message ID

Action: Discard
message

PUBCOMP
<----------

Message ID = x

Document Number: UM0060

2017-05-05 8

2 MQTT APIs
The MQTT APIs are provided in MQTTClient library for environments of FreeRTOS. It is built on

top of MQTTPacket. MQTTPacket is the lowest level library, the simplest and smallest, but

hardest to use. It simply deals with serialization and deserialization of MQTT packets.

This sub-section lists the provided APIs for MQTT operations.

2.1 MQTTClientInit
This function triggers to create an MQTT client object.

Syntax

void MQTTClientInit(

 MQTTClient* client,

 Network* network,

 unsigned int command_timeout_ms,

 unsigned char* sendbuf,

 size_t sendbuf_size,

 unsigned char* readbuf,

 size_t readbuf_size

);

Parameters

client

The client object to use.

network

The network object to use.

command_timeout_ms

Command timeout in milliseconds.

sendbuf

Send buffer.

sendbuf_size

Send buffer size.

readbuf

Read buffer.

Document Number: UM0060

2017-05-05 9

readbuf_size

Read buffer size.

Return Value

None.

Remarks

None.

2.2 MQTTConnect
This function triggers to send an MQTT connect packet down the network and wait for a

Connack.

Syntax

int MQTTConnect (
 MQTTClient* c,
 MQTTPacket_connectData* options
);

Parameters

c

The client object to use.

options

Connect options.

Return Value

Return 0 if success, otherwise return -1.

Remarks

None.

2.3 MQTTPublish
This function triggers to send an MQTT publish packet and wait for all acks to complete for all

QoSs.

Syntax

int MQTTPublish (
 MQTTClient* c,

 const char* topicName,

Document Number: UM0060

2017-05-05 10

 MQTTMessage* message

);

Parameters

c

The client object to use.

topicName

The topic to publish to.

message

The message to send.

Return Value

Return 0 if success, otherwise return -1.

Remarks

None.

2.4 MQTTSubscribe
This function triggers to send an MQTT subscribe packet and wait for suback before returning.

Syntax

int MQTTSubscribe (
 MQTTClient* c,

 const char* topicFilter,

 enum QoS qos,

 messageHandler messageHandler

);

Parameters

c

The client object to use.

topicFilter

The topic filter to subscribe to.

qos

Expected qos of publish message.

messageHandler

Document Number: UM0060

2017-05-05 11

Message handler.

Return Value

Return 0 if success, otherwise return -1.

Remarks

None.

2.5 MQTTUnsubscribe
This function triggers to send an MQTT unsubscribe packet and wait for unsuback before

returning.

Syntax

int MQTTUnsubscribe (
 MQTTClient* c,

 const char* topicFilter

);

Parameters

c

The client object to use.

topicFilter

The topic filter to unsubscribe from.

Return Value

Return 0 if success, otherwise return -1.

Remarks

None.

2.6 MQTTDisconnect
This function triggers to send an MQTT disconnect packet and close the connection.

Syntax

int MQTTDisconnect (
 MQTTClient* c

);

Document Number: UM0060

2017-05-05 12

Parameters

c

The client object to use.

Return Value

Return 0 if success, otherwise return -1.

Remarks

None.

3 MQTT Example

3.1 Configuration
An example to use the APIs explained in previous sections is provided in example_mqtt.c. To

execute this example automatically when booting, configuration should be set as below.

1) Add patch files to paths:

component\common\application\mqtt\MQTTClient\

component\common\application\mqtt\MQTTPacket\

component\common\example\mqtt\

2) The CONFIG_EXAMPLE_MQTT in platform_opts.h must be enabled as follows.

/* platform_opts.h *./

#define CONFIG_EXAMPLE_MQTT 1

To manage connection exception, LWIP_TCP_KEEPALIVE and LWIP_UART_ADAPTER in

lwipopts.h must be enabled as follows.

/* lwipopts.h */
#define LWIP_TCP_KEEPALIVE 1
#define LWIP_UART_ADAPTER 1

3) Add example_mqtt() to Example_entry.c.

Document Number: UM0060

2017-05-05 13

#if CONFIG_EXAMPLE_MQTT

#include <mqtt/example_mqtt.h>

#endif

void example_entry(void)

{

#if CONFIG_EXAMPLE_MQTT

 example_mqtt();

#endif

}

4) Add MQTT related files to IAR project.

5) Add include directories to project.

$PROJ_DIR$\..\..\..\component\common\application\mqtt\MQTTClient

$PROJ_DIR$\..\..\..\component\common\application\mqtt\MQTTPacket

Document Number: UM0060

2017-05-05 14

3.2 Example Introduction

In the example, MQTT task is created to present MQTT connection and message processing，

including:

1) Check WIFI status and wait WIFI to be connected. MQTT will start after device connected

with AP and got IP.

2) Establish TCP/IP connection with MQTT server.

3) Send a CONNECT message to server and wait for a CONNACK message from server.

4) Subscribe to a topic, sending SUBSCRIBE to server and wait for SUBACK from server.

5) Publish message to server every 5 seconds.

6) Read and response message. Keep alive with server.

7) If mqtt status is set to MQTT_START, the client will close the TCP/IP socket connection, and

restart the session by opening a new socket to the server and issuing a CONNECT message.

The client will subscribe to the topic again.

Some strategies are used to manage connection exception.

Document Number: UM0060

2017-05-05 15

1) Lwip_select is used to check data arrival and connection exception. Message is read only if

tcp data has arrived. If exception fd is set, MQTT will restart.

2) SO_KEEPALIVE and TCP_KEEPIDLE are set to clear TCP buffer when network is bad. For if

TCP buffer is full and can’t allocate more memory, the situation will last for about 20

minutes until MAX data retries reached, and then MQTT will not restart successfully during

this time for allocating memory failed.

3.3 Example Running Log
MQTT running log is shown below:

1) The device should connect WI-FI after initialized. The connected AP must connect to the

internet. Use AT command to connect WI-FI or wait for device auto connecting to WIFI If

CONFIG_EXAMPLE_WLAN_FAST_CONNECT is set.

Document Number: UM0060

2017-05-05 16

2) MQTT client starts to connect MQTT server until Wi-Fi is connected and IP address is

available. After TCP/IP socket connection is established, a protocol level session must be

created using a CONNECT flow. The server sends a CONNACK message in response to a

CONNECT message from a client. If not receiving CONNACK in 30s, mqtt status will be set to

MQTT_START.

In the example, the MQTT server address is “gpssensor.ddns.net” and the port is 1883.

“gpssensor.ddns.net” is used for test, and customer could build their own MQTT server.

Document Number: UM0060

2017-05-05 17

3) MQTT client subscribes to topic “LASS/Test/Pm25Ameba/#”. After receiving SUBACK, mqtt

status is set to MQTT_RUNNING. The client starts to receive PUBLISH message from server.

4) If mqtt status is MQTT_RUNNING, the client will publish message every 5s. The published

topic is “LASS/Test/Pm25Ameba/FT1_018”. Since the subscribed topic filter is

“LASS/Test/Pm25Ameba/#”, the client will receive the message it has published to server.

Document Number: UM0060

2017-05-05 18

5) If except_fds is set or read packet type is -1, mqtt status will be set to MQTT_START.

except_fds is set for connection closed by server or by client because of KEEPALIVE timeout.

Read packet type is -1 for connection closed by server.

Document Number: UM0060

2017-05-05 19

