

Document Number: UM0097

1

Multimedia framework user manual

The document describe how to use the multimedia framework

Document Number: UM0097

2

Table of Contents

1 Introduction Multi Media Framework (MMF) ..3

2 Implement source and sink ..4

2.1 Media Source and Sink Module ..4

2.2 MMF API Documentation ...5

2.3 MP3 API Documentation ..6

2.4 Mp3 Config Table Detail and supported frequencies ...7

2.4.1 Key Properties of an Mp3 File ...7

2.4.2 Mp3 Frequency table ...7

How to Run these Examples ..8

2.5 Media Single Stream – Source UVC Camera, Sink RTSP Stream8

2.6 Media Single Stream – Source I2S, Sink RTSP Stream ..15

2.7 Media Single Stream – Source UVC Camera, Sink SD Card ...16

2.8 Media Single Stream – Source RTP Stream, Sink I2S ..18

2.9 Media Multiple Streams – Source GEO Camera, Sink RTP Stream20

2.10 Media Multiple Streams – Source GEO Camera, Sink SD Card22

2.11 MP3 Media Streaming Over RTP (Source-RTP; Sink Mp3 I2S).23

2.12 MP3 Play Audio from SDCARD ..27

Document Number: UM0097

3

1 Introduction Multi Media Framework (MMF)
The Multimedia Framework (MMF) is used to handle all sorts of media applications on

Ameba. The MMF structure is as shown in the following chart.

There are two important entities in the MMF. One is the source that produces the resource and

the other is sink that consumes the resource. The source can be the file input, UVC camera, or

storage; the sink can be RTSP or other stream.

In order to use the MMF, the following aspects must be fulfilled.

 Define a valid source

 Define a valid sink

 Create OS message queues in application level for both source and sink module to

access. Module-specific configuration may be made if required.

 Call the MMF APIs to start the multimedia streaming.

SOURCE SINK

Document Number: UM0097

4

2 Implement source and sink
MMF allows users to define our own source and sink modules depending upon the

application. Although implementation details may be different, these basic rules of the MMF

structure should be a little bit similar. This section shall explain how to create a source and a

sink in MMF using the example UVC source and RTSP sink. Further explanations on how to run

the other examples are discussed in Section 3.

2.1 Media Source and Sink Module
MMF requires users to predefine both source and sink modules that implement create,

destroy, set_param, and handle function callbacks.

Media Source Module Media Sink Module

typedef struct _media_source_module{
void* (*create)(void);
void (*destroy)(void*);
int (*set_param)(void*, int, int);
int (*handle)(void*, void*);
}msrc_module_t;

typedef struct _media_sink_module{
void* (*create)(void);
void (*destroy)(void*);
int (*set_param)(void*, int, int);
int (*handle)(void*, void*);
}msink_module_t;

 (*create): pointer to the function that loads and initializes the source/sink stream of the
module. For example, for UVC source, it points to the function in which the UVC driver is
initialized and the corresponding context is returned.

 (*destroy): pointer to the function that de-initializes module instance and releases resource.
For example, for UVC source, it points to function in which UVC driver is de-initialized and
the corresponding context is released.

 (*set_param): pointer to function that sends the control command to the MMF layer or a
specific module. For example, for UVC source, it points to function that controls UVC
parameters (“frame height”, “frame width”, “framerate”, etc.) and MMF service task on/off.

 (*handle): pointer to the function that manipulates media data (how to produce data in
source or how to consume data in sink). Data is transferred from source to sink and vice
versa by means of OS message queue. Please note that MMF service task reacts differently
based on message exchange buffer status. The status codes are introduced as follows:

o #define STAT_INIT 0 //indicating buffer using at first time
o #define STAT_USED 1 //indicating buffer consumed by sink

 //(must update this status in sink handle)
o #define STAT_READY 2 //indicating buffer ready for use by source

 //(must update this status in source handle)
o #define STAT_RESERVED 3 //indicating buffer being processed or

//reserved and can’t be accessed right now

After msrc_module_t and msink_module_t structure are properly defined, user should declare
the customized source and sink modules in mmf_source_list.h and mmf_sink_list.h,
respectively. Thus, MMF can be aware of new-defined modules and these customized modules

Document Number: UM0097

5

can be executed. Some built-in source and sink module definitions can be found under the path
‘component\common\media\framework’.

2.2 MMF API Documentation
This section discusses the usage of MMF APIs.

msrc_context* mmf_source_open(msrc_module_t* source)

Create MMF source context instance.
msrc_module_t* source: specify which source module class to be created.
Return value: a pointer to source context instance.

void mmf_source_close(msrc_context* ctx)

Release the resource related to source context instance and lower level memory.
msrc_context* ctx: pointer to source context instance that is ready to be released.

int mmf_source_ctrl(msrc_context* ctx, int cmd, int arg)

Set control command to a specific source context instance.

msrc_context* ctx: pointer to a specific source context instance.

int cmd: the input command code, needs to be defined in mmf_common.h.

int arg: relevant value along with the input command code. Pass 0 if not applicable.

int mmf_source_get_frame(msrc_context* ctx, exch_buf_t *exbuf)

Prepare one frame or block of data and add its reference to message exchange buffer.

msrc_context* ctx: pointer to a specific source context instance.

exch_buf_t *exbuf: pointer to the message exchange buffer used to convey media frame.

msink_context* mmf_sink_open(msink_module_t *sink)

The functionality is similar to “mmf_source_open”.

void mmf_sink_close(msink_context* ctx)

The functionality is similar to “mmf_source_close”.

int mmf_sink_ctrl(msink_context* ctx, int cmd, int arg)

The functionality is similar to “mmf_source_ctrl”.

int mmf_sink_put_frame(msink_context* ctx, exch_buf_t* exbuf)

Dereference one frame or block of data from message exchange buffer.
msink_context* ctx: pointer to a specific sink context instance.

Document Number: UM0097

6

exch_buf_t *exbuf: pointer to the message exchange buffer used to convey media frame.

2.3 MP3 API Documentation
This section discusses the usage of MP3 APIs.

mp3_decoder_t mp3_create(void);

Creates the mp3 decoder instance and allocates required memory.
Input Parameter: No input parameters required
Return value: a pointer to the mp3_decoder_t structure. This must be created locally in the
application before calling the create function.

int mp3_decode(mp3_decoder_t *dec, void *buf, int bytes, signed short *out,
mp3_info_t *info);

After creation of the mp3 decoder instance use this API to initiate the actual decoding process.
Input Parameters:
mp3_decoder_t* dec:-Pass the mp3 decoder instance that was obtained using the create
function mentioned before.
void* buf:- The buffer pointer to the input frame of the mp3 data that needs to be decoded.
int bytes:- The number of bytes in the input mp3 data buffer.
signed short *out:- Pointer to the buffer where the decoded mp3 data will be present after
the decoding process is over.
mp3_info_t *info:- This structure is used to identify the frequency of the decoded mp3 data
and number of channels and the number of decoded bytes in each frame of the output data,
details regarding this structure is found in the g711_decoder.h file.

Return Value:
Int, this integer returns the actual number of bytes that were successfully decoded from the
input buffer provided to the mp3 decode function, based on this value the part of the input
buffer that was not decoded must be provided again in the next iteration for decoding.

void mp3_done(mp3_decoder_t *dec);

Release the memory allocated for the mp3 instance and delete the mp3 instance.

Input Parameters:
mp3_decoder_t* dec :- The original instance created using mp3_create needs to be passed in

as the input to this parameter.

Output Parameter:

None

Document Number: UM0097

7

2.4 Mp3 Config Table Detail and supported frequencies
In order to use the Mp3 decoder and hear the output audio in a smooth and uninterrupted

manner the I2S driver must be configured with the right output frequency, the number of

channels in the audio data and the I2S DMA page size must match the exact number of

decoded bytes per frame of the mp3 in order to hear clear and uninterrupted audio from the

I2S output.

2.4.1 Key Properties of an Mp3 File
 Bit-Rate

This determines the number of bits contained in one second of the mp3 file. The

bit rate of the mp3 file determines the size of each input frame. The input frame

is decoded by the mp3 decoder to produce the output buffer that contains the

raw audio data.

 Frequency

This determines the sampling frequency of the input audio signal. This is an

important parameter that determines the size of the decoded output frame. In

case the audio is being played by means of I2S, the I2S driver must be initialized

to the right frequency in order to be able to hear the audio clearly.

 Number of Channels

An mp3 audio file can have one or two channels; this parameter determines the

audio that needs to be played in the left and right channel respectively.

The mp3 audio data properties can be checked using any media player. Most

common media players like vlc and Audacity can be used to check the frequency

and number of channels present in the mp3 file.

2.4.2 Mp3 Frequency table
This frequency table helps map the frequency and the number of channels in the mp3 files to

the size of the output buffer that needs to be used to accumulate the decoded output of the

mp3 decoder. The frequencies supported by the mp3 decoder are listed below.

Frequency(hz) Channels Decoded Bytes

8000 1 1152

8000 2 2304

16000 1 1152

16000 2 2304

22050 1 1152

22050 2 2304

24000 1 1152

Document Number: UM0097

8

24000 2 2304

32000 1 2304

32000 2 4608

44100 1 2304

44100 2 4608

48000 1 2304

48000 2 4608

In order to hear clear audio from the examples, the I2S driver should be initialized to the right

frequency and the I2S DMA page size must be set to the value of decoded bytes by using the

table shown above. These details are provided in the start of the mp3 example as well as shown

below.

How to Run these Examples
The following sections provide the examples of using the MMF and can be used as

references to create customized applications.

2.5 Media Single Stream – Source UVC Camera, Sink
RTSP Stream
Please refer to following steps to understand how to run the MMF example with source

as UVC camera and sink as RTSP stream.

Pre-requisites

 Ameba board

 UVC camera (E.g., Logitech C170)

 USB cable is used to connect with PC.

Document Number: UM0097

9

 WiFi connection for sending RTSP streaming out

 USB OTG cable is used to connect UVC camera to Ameba board.

Hardware Setup

 Connect the mini-USB OTG cable to the port, labelled as “con3”, on the underside of the

Ameba board as shown in the following figure.

 Next, connect the USB camera to the mini-USB OTG cable which is connected with the

Ameba board as shown in the following figure.

 Finally, connect the standard micro-USB cable to the port, labelled as “con1”, on the

upper side of the Ameba board, as shown in the figure bellow, and connect the other

end to the PC.

Document Number: UM0097

10

Software Setup

 Once the hardware setup is completed as mentioned above, please refer to the

software setup steps in order to run the example. First, please open the IAR workspace,

Project.eww in EWARM-RELEASE folder, and then the default workspace, Debug, is

loaded as shown in the following figure.

 In order to use the UVC features, please select the UVC workspace. In the list box,

please select the UVC option as shown below.

Document Number: UM0097

11

 After the UVC workspace is selected, the appropriate example, part of the workspace,

needs to be enabled. Please open the platform_opts.h file in IAR IDE as shown below.

Then, please set the “CONFIG_EXAMPLE_MEDIA_SS” to be “1”as shown in following

figure and, thus, the media single stream example is enabled. The example code can be

found in the project path, utilitiesexampleexample_media_ss.c.

 Once all the configurations have been satisfied, please right click on project name,

applications - UVC, in the left sidebar of IAR IDE as shown below and select “Rebuild All”

option to build this project.

Document Number: UM0097

12

Flashing and Testing

 Before flashing the Ameba board, please set up a serial monitor via Tera Term or PuTTY

and set up serial port to be COMX/38400, X: Port number. Once the build process is

done and the Ameba board is connected, the flashing can be started by clicking the

following in IAR IDE.

ProjectDownloadDownload Active Application

Document Number: UM0097

13

 The download and flashing process consumes more time. Please wait a moment. While

the process is done, Please compare the messages in the Debug Log Window of the IAR

project with that in the figure bellow. If the messages are similar or the same, the

software is successfully flashed onto the Ameba board.

 Next, please press the reset button on the Ameba board to restart the system. The log

messages are shown as that in the following figure via Tera Term or PuTTY.

 Next, it is going to set Ameba board to connect with an AP for RTSP streaming purpose.

Please use the following AT commands to join a WiFi network via Tera Term or Putty.

The following figure is an example for your reference.

ATW0=<Name of WiFi SSID>: Set the WiFi AP to be connected

ATW1=<Password>: Set the WiFi AP password

ATWC: Initiate the connection

Document Number: UM0097

14

 While the log message, “RTSP stream enabled”, is shown in the log console, please open

the VLC media player, click “MediaOpen Network Stream” option in menu bar, and

type in: “rtsp://xxx.xxx.xxx.xxx:yyy/test.sdp” before clicking play button.

xxx.xxx.xxx.xxx: the Ameba IP address.

yyy: RTSP server port number (default is 554).

Also, please select ‘Show more options’ checkbox if advanced setting is required.

Document Number: UM0097

15

2.6 Media Single Stream – Source I2S, Sink RTSP Stream
Please refer to following steps to understand how to run the MMF example with source

as ALC5651 in I2S codec and sink as RTSP stream.

Pre-requisites

 Ameba board

 ALC5651 Ext. board

 Audio connection cable (3.5mm)

 USB cable is used to connect with PC.

 WiFi connection for sending RTSP streaming out

 VLC media player on the testing PC

Procedures

 Please set “CONFIG_EXAMPLE_MEDIA_SS” to be “1” in “platform_opts.h”. The example

code can be found in the project path, utilitiesexampleexample_media_ss.c.

 Please set “SRC_I2S” to be “1” in “example_media_ss.c” and other source definitions

are set to be “0” as shown in the following figure.

In addition, the source code of SRC_I2S is in

mmf_source_i2s_file.[c/h](component\common\media\framework\mmf_source_modu

les)

Document Number: UM0097

16

 Please compile the project and download the application into Ameba board as

described in the previous section.

 Next, please connect the ALC5651 Ext. board with Ameba board. Then, please also

connect the audio connection cable to line-in, labelled as “PH3”, on ALC5651 Ext. board.

 As described in the previous section, please connect both the testing PC and Ameba to

the same WiFi AP. As a result, the following figure can be shown. While the log message,

"rtsp stream enabled", is shown in the log console, it means that the RTSP server is

ready.

 Next, please open the VLC media player, click “MediaOpen Network Stream” option

in menu bar, and type in: “rtsp://xxx.xxx.xxx.xxx” before clicking play button.

xxx.xxx.xxx.xxx: the Ameba IP address.

Also, please select ‘Show more options’ checkbox if advanced setting is required.

2.7 Media Single Stream – Source UVC Camera, Sink SD
Card
Please refer to following steps to understand how to run the MMF example with source

as UVC camera and sink as SD card.

Pre-requisites

 Ameba board

Document Number: UM0097

17

 UVC camera

 USB cable is used to connect with PC.

 SD card and SD/MMC card connector

Procedures

 Please refer to the document (UM0073 Realtek Ameba-1 Storage User Manual.pdf) to

follow the steps in Section 2 to connect SD/MMC card connector with Ameba board.

Then, please also plug SD card into SD/MMC card connector.

 Please set “CONFIG_EXAMPLE_TIMELAPSE” to be “1” in “platform_opts.h”. The example

code can be found in the project path, utilitiesexampleexample_media_tl.c.

 Please compile the project and download the application into Ameba board as

described in the previous section.

 While the log message, "Streamon successful", is shown in the log console as the figure

bellow, it is going to write jpeg files into SD card.

 Please wait a while then pull out the SD card from the SD card connector on the Ameba

board. Then, please also connect SD card with another PC or laptop to check whether

the jpeg files exist or not, as shown in the figure bellow. Then, please download

“ffmpeg.exe” from FFmpeg website and execute the batch file, “lapse.bat”, in the path

(component\common\example\media_time_lapse) to generate a time-lapse mp4 file.

Document Number: UM0097

18

2.8 Media Single Stream – Source RTP Stream, Sink I2S
Please refer to following steps to understand how to run the MMF example with source

as RTP audio stream and sink as I2S.

Pre-requisites

 Ameba board

 ALC5651 Ext. board

 Earphone

 USB cable is used to connect with PC.

 WiFi connection for receiving RTP streaming

 VLC media player on the testing PC

Procedures

 Please set “CONFIG_EXAMPLE_MEDIA_AUDIO_FROM_RTP” to be “1” in

“platform_opts.h”. The example code can be found in the project path,

utilitiesexample example_media_audio_from_rtp.c.

 In order to achieve the better audio quality but not required, please try to modify the

following definitions for improving the WLAN performance for RTP packets. The

following is an example.

In lwipopts.h,

 PBUF_POOL_SIZE 20 => 40

 PBUF_POOL_BUFSIZE 500 => 250

DEFAULT_UDP_RECVMBOX_SIZE 6 => 24

 In opt.h,

 MEMP_NUM_NETBUF 2 => 24

 Please compile the project and download the application into Ameba board as

described in the previous section.

 Next, please connect the ALC5651 Ext. board with Ameba board. Then, please also

connect the earphone to audio-out, labelled as “PH2”, on ALC5651 Ext. board.

 As described in the previous section, please connect both the testing PC and Ameba to

the same WiFi AP. As a result, the following figure can be shown. While the log message,

"wlan mode:2", is shown in the log console, it means that the RTP server is ready.

Document Number: UM0097

19

 Next, please open the VLC media player, click “MediaStream…” option in menu bar,

and add the WAV file (G711 only) as the bellow figure. Then, click “Stream”.

 In the window as the following figure, please click “Next” and, in the next window, set

the “New destination” to be “RTP Audio/Video Profile” and click “Add”.

 Please refer to the following figure and type the Ameba board’s IP address and the RTP

port (the default value is 16384). Then, click “Next”.

Document Number: UM0097

20

 In this step, please select the profile as shown in the following figure and click “Next”.

 Finally, the VLC generated stream output string is the same as that in the bellow figure,

and click “Stream” to start the RTP transmission. Please also check the earphone

plugged in the ALC5651 Ext. board whether the voice is out or not.

2.9 Media Multiple Streams – Source GEO Camera, Sink
RTP Stream
Please refer to following steps to understand how to run the MMF example with source

as GEO camera and sink as RTSP stream.

Pre-requisites

 Ameba board

 GEO camera

Document Number: UM0097

21

 USB cable is used to connect with PC.

 WiFi connection for sending RTSP streaming out

 USB OTG cable is used to connect GEO camera to Ameba board.

Procedures

 As the Hardware Setup is presented in Section 3.1, please connect GEO camera, instead

of UVC camera, to the Ameba board.

 Please set “CONFIG_EXAMPLE_MEDIA_MS” to be “1” in “platform_opts.h”. The example

code can be found in the project path, utilitiesexample example_media_ms.c.

 In order to achieve the better streaming quality but not required, please try to modify

the following definition for improving the WLAN performance for RTSP packets. The

following is an example.

In rtw_opt_skbuf.c,

 MAX_SKB_BUF_NUM 8 => 12

 Please compile the project and download the application into Ameba board as

described in the previous section.

 As described in the previous section, please connect both the testing PC and Ameba to

the same WiFi AP. As a result, the following figure can be shown. While the log message,

"Streamon successful", is shown in the log console, it means that the RTSP server is

ready.

 Next, please open the VLC media player, click “MediaOpen Network Stream” option

in menu bar, and type in: “rtsp://xxx.xxx.xxx.xxx:yyy/test.sdp” before clicking play

button.

xxx.xxx.xxx.xxx: the Ameba IP address.

yyy: RTSP server port number (default is 554).

 Please check whether both video and audio work normally or not by the VLC media

player, in the testing PC, as shown in the figure as bellow.

Document Number: UM0097

22

2.10 Media Multiple Streams – Source GEO Camera, Sink
SD Card
Please refer to following steps to understand how to run the MMF example with source

as GEO camera and sink as SD card.

Pre-requisites

 Ameba board

 GEO camera

 USB cable is used to connect with PC.

 SD card and SD/MMC card connector

Procedures

 Please refer to the document (UM0073 Realtek Ameba-1 Storage User Manual.pdf) to

follow the steps in Section 2 to connect SD/MMC card connector with Ameba board.

Then, please also plug SD card into SD/MMC card connector.

 Please set “CONFIG_EXAMPLE_MEDIA_GEO_MP4” to be “1” in “platform_opts.h”. The

example code can be found in the project path, utilitiesexample

example_media_geo_mp4.c.

 Please compile the project and download the application into Ameba board as

described in the previous section.

 While the log message, "Streamon successful", is shown in the log console as the figure

bellow, it is going to write mp4 file into SD card.

Document Number: UM0097

23

 Please wait a while then pull out the SD card from the SD card connector on the Ameba

board. Then, please also connect SD card with another PC or laptop to check whether

the mp4 files exist or not, as shown in the figure bellow, and whether both audio and

video work normally by the VLC media player or not.

2.11 MP3 Media Streaming Over RTP (Source-RTP; Sink
Mp3 I2S).

This example highlights the streaming of mp3 files over wifi to the ameba and decoding of the

mp3 locally in the ameba board and audio output from the audio jack. The example has two

methods to provide audio output.

 Audio output using the ALC5651 board.

 Audio output using SGTL5000 board.

Document Number: UM0097

24

Pre-requisites

 Ameba board

 USB cable is used to connect with PC.

 ALC5651 Extension board or SGTL5000 Extension board.

 3.5mm Audio jack to hear audio output.

Procedures

 In platform_opts.h edit the macro “CONFIG_EXAMPLE_MP3_STREAM_RTP” and set it to

1.

 By default the example uses the ALC5651 extension board is used for audio output but

in case you wish to use the SGTL5000 audio extension board please set the macro

“CONFIG_EXAMPLE_MP3_STREAM_SGTL5000” to one as well in the platform_opts.h file.

 The ALC5651 extension board fits like a shield on the AMEBA but in order to setup the

SGTL5000 board please refer to :- http://www.amebaiot.com/en/standard-sdk-i2s-

audio-demo/

 Once the macros are set please re-build the application project and flash the AMEBA

board appropriately.

 Once flashed reset the AMEBA board and connect the board to wi-fi using the AT

Commands and ensure the board gets an ip address as shown below.

 Once this is done, Open vlc media player on any other device connected to the same

wifi network. Select the stream option(media->stream) as shown below.

http://www.amebaiot.com/en/standard-sdk-i2s-audio-demo/
http://www.amebaiot.com/en/standard-sdk-i2s-audio-demo/

Document Number: UM0097

25

 Once you select stream, use add and select the mp3 file that you wish to stream over

rtp as shown below.

 Once you select the mp3 file click the stream option and proceed to the next window.

Click next again and till you reach the “Destination Support” tab and select the

destination as “RTP Audio/Video Profile” as shown below and click “Add”

 Once in add, please enter the ip address of the ameba board that was assigned when

you connected to the wifi hotspot. Enter the base port address as: - 16384 as shown

below.

Document Number: UM0097

26

 Click next and select the streaming option “Video – H.264+MP3(MP4)” after this click

the settings button just beside the dropdown menu as shown below.

 Once in the settings option MP3 from the checkboxes as shown below.

 Once the mp3 option is selected, go to the “Audio Codec” tab and select the checkbox

“Keep original audio track” as shown below.

Document Number: UM0097

27

 Once the audio codec is set, click save, then click next and click “stream”

 Once the streaming begins in vlc media player, connect the audio jack to the AMEBA in

order to hear the audio output in the earphones. Both AMEBA and the device where vlc

media player is streaming should be connected to the same Wi-Fi network.

 To ensure smooth playback with better RTP performance, try utilizing the following

options as shown below.
in lwipopts.h,

 PBUF_POOL_SIZE 20 => 40 (just an example)

 PBUF_POOL_BUFSIZE 500 => 250

 DEFAULT_UDP_RECVMBOX_SIZE 6 => 24 (just an example)

 in opt.h,

 MEMP_NUM_NETBUF 2 => 24 (just an example)

 TCPIP_MBOX_SIZE 6 => 6 (just an example)

2.12 MP3 Play Audio from SDCARD
This highlights the use of the mp3 example for playing the mp3 media from SDCARD.

Pre-requisites

 Ameba board

 USB cable is used to connect with PC.

 ALC5651 Extension board or SGTL5000 Extension board.

 3.5mm Audio jack to hear audio output.

 SDCARD sniffer in order to read SDCARD.

Procedures

 In platform_opts.h edit the macro “CONFIG_EXAMPLE_AUDIO_MP3” and set it to 1.

 Set the Config parameters in the beginning of the example file as shown below.

 The “I2S_DMA_PAGE_SIZE”, “NUM_CHANNELS” and “SAMPLING_FREQ” also need to be

set appropriately.

Document Number: UM0097

28

 As shown above the I2S_DMA_PAGE_SIZE should be set to the value of decoded bytes

for the particular frequency and number of channels using the frequency mapping table

that is mentioned in section 2.4.2 and also provided in the c file as comments.

 Rebuild the project and download and flash the binary onto the Ameba board.

 Once the software is downloaded, connect the SDCARD sniffer and the audio output

board to the appropriate pins on the Ameba board.

 Load the mp3 file onto the SDCARD and rename the file as “AudioSDTest.mp3” this is

very essential for the mp3 file to be detected properly by the software.

 Once the SDCARD is ready, insert it into the SD sniffer and press the reset button, the

audio should start playing from the audio jack.

