32 REALTEK

Realtek MQTT User Guide

This document provides guideline to use MQTT module in SDK.

T
(M\\ REA LTEK Document Number: UM0060

Table of Contents

1 MQTT Protocol INtrOdUCTIONceiiiiiiiiiiiiee e 3
1.1 MESSAZE FOIMAL ... e e e e et e e e e sana e e e e e naeeeeeeanens 3
1.2 ConNNECt aNd KEEP AlVE ...ttt e e st e e e naree s 4
1.3 PUDBIISH ..ttt st st a e et b e aee e 5
14 SUBDSCIIDE ...ttt ettt s 6
1.5 QUOS ettt e e s e e e s e ar e e e e e s s e s nnraees 6

P2 V[0 I 1Y o E OO UUTRPRRUP 8
21 IMQTTCIHENTINIE .ttt sttt st et e st e b e saeesabeesaeeenee 8
2.2 MOQTTCONNECT ...ttt et e e e s e s e e e e e e s s e s snnsnreeeeeeeas 9
2.3 MQTTPUDEISN ...ttt st st e e 9
2.4 MOQTTSUDSCIIDE ... s 10
2.5 MOQTTUNSUDSCIIDE ...ttt 11
2.6 MQTTDISCONNECT.eeiiiiieiiieiiiiieee et e e e e e s s s e e e e e s s e sennnreeeeeeeens 11

T |V [1 I I =3 4o | [PSPPSR 12
3.1 (00T o) = {U T | 4 o o NP SRR EPRP 12
3.2 EXample INTrodUCTIONccoiiiiieeeeee et e e e e aar e e eee e 14
33 EXamMPIE RUNNINE LOG.eeiiiiiiiiiiiiieieiee ettt eeeecirree e e e e e e esntraeee e e e e eeennanraeraeeeens 15

2016-06-14

T
(M\\ REA LTEK Document Number: UM0060

1 MQTT Protocol Introduction

MQ Telemetry Transport (MQTT) is a lightweight broker-based publish/subscribe messaging
protocol designed to be open, simple, lightweight and easy to implement.

These characteristics make it ideal for use in constrained environments, like low bandwidth or
unreliable network and embedded device with limited processor or memory resources.

Features of the protocol include the publish/subscribe message pattern, messaging transport
agnostic to the content of the payload, the use of TCP/IP, three qualities of service for message
delivery, a small transport overhead, and the Last Will and Testament mechanism.

1.1 Message format
The message header for each MQTT command message contains a fixed header. Some
messages also require a variable header and a payload.

Fixed header

bit 7 6 5 4 3 2 1 0

byte 1 Message Type DUP flag QoS level RETAIN
byte 2 Remaining Length

Message Type

The Message types are shown in the table below.

Mnemonic Enumeration | Description

Reserved 0 Reserved

CONNECT 1 Client request to connect to Server
CONNACK 2 Connect Acknowledgment

PUBLISH 3 Publish message

PUBACK 4 Publish Acknowledgment

PUBREC 5 Publish Received (assured delivery part 1)
PUBREL 6 Publish Release (assured delivery part 2)
PUBCOMP 7 Publish Complete (assured delivery part 3)

2016-06-14 3

T
(M\\ REA LTEK Document Number: UM0060

Mnemonic Enumeration | Description

SUBSCRIBE 8 Client Subscribe request
SUBACK 9 Subscribe Acknowledgment
UNSUBSCRIBE | 10 Client Unsubscribe request
UNSUBACK 11 Unsubscribe Acknowledgment
PINGREQ 12 PING Request

PINGRESP 13 PING Response

DISCONNECT |14 Client is Disconnecting
Reserved 15 Reserved

1.2 Connect and Keep Alive

CONNECT/ CONNACK/ DISCONNECT

When a TCP/IP socket connection is established from a client to a server, a protocol level
session must be created using a CONNECT flow. The client sends a CONNECT message to a
server. The server sends a CONNACK message in response to the CONNECT message from the
client.

If the server does not receive a CONNECT message within a reasonable amount of time after
the TCP/IP connection is established, the server should close the connection.

If the client does not receive a CONNACK message from the server within a reasonable amount
of time, the client should close the TCP/IP socket connection, and restart the session by
opening a new socket to the server and issuing a CONNECT message.

In both of these scenarios, a "reasonable" amount of time depends on the type of application
and the communications infrastructure.

If a client with the same Client ID is already connected to the server, the "older" client must be
disconnected by the server before completing the CONNECT flow of the new client.

The DISCONNECT message is sent from the client to the server to indicate that it is about to
close its TCP/IP connection. This allows for a clean disconnection, rather than just dropping the
line.

2016-06-14 4

T
(M\\ REA LTEK Document Number: UM0060

Keep Alive timer

The Keep Alive timer is present in the variable header of a MQTT CONNECTmessage.

The Keep Alive timer, measured in seconds, defines the maximum time interval between
messages received from a client.

It enables the server to detect that the network connection to a client has dropped, without
having to wait for the long TCP/IP timeout.

If the server does not receive a message from the client within one and a half times the Keep
Alive time period (the client is allowed "grace" of half a time period), it disconnects the client as
if the client had sent a DISCONNECT message.

If a client does not receive a PINGRESP message within a Keep Alive time period after sending a
PINGREQ, it should close the TCP/IP socket connection.

The actual value is application-specific, but a typical value is a few minutes. The maximum value
is approximately 18 hours. A value of zero (0) means the client is not disconnected.

1.3 Publish

PUBLISH

A PUBLISH message is sent by a client or a server. Each PUBLISH message is associated with a
topic name (also known as the Subject or Channel).

PUBACK

A PUBACK message is the response to a PUBLISH message with QoS level 1. A PUBACK message
is sent by a server in response to a PUBLISH message from a publishing client, and by a
subscriber in response to a PUBLISH message from the server.

When the client receives the PUBACK message, it discards the original message, because it is
also received (and logged) by the server.

PUBREC / PUBREL / PUBCOMP
A PUBREC message is the response to a PUBLISH message with QoS level 2.

A PUBREL message is the third message in the QoS 2 protocol flow.

2016-06-14 5

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#connect
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#disconnect
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#pingresp
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#pingreq
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish

T
(M\\ REA LTEK Document Number: UM0060

A PUBCOMP message is the fourth and last message in the QoS 2 protocol flow.

1.4 Subscribe

SUBSCRIBE

The SUBSCRIBE message allows a client to register an interest in one or more topic names with
the server. Messages published to these topics are delivered from the server to the client as
PUBLISH messages. The SUBSCRIBE message also specifies the QoS level at which the subscriber
wants to receive published messages.

A server may start sending PUBLISH messages due to the subscription before the client receives
the SUBACK message.

A server may choose to grant a lower level of QoS than the client requested.
SUBACK

A SUBACK message is sent by the server to the client to confirm receipt of a SUBSCRIBE
message. A SUBACK message contains a list of granted QoS levels. Each level corresponds to a
topic name in the corresponding SUBSCRIBE message.

UNSUBSCRIBE

An UNSUBSCRIBE message is sent by the client to the server to unsubscribe from named topics.
The client unsubscribes from the list of topics named in the payload.

UNSUBACK

The UNSUBACK message is sent by the server to the client to confirm receipt of an
UNSUBSCRIBE message.

1.5 Qos

MQTT delivers messages according to the levels defined in a Quality of Service (QoS). The levels
are described below:

QoS level 0: At most once delivery

Client | Message and direction Server

2016-06-14 6

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#publish
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#subscribe
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#unsubscribe

T
(M\\ REA LTEK Document Number: UM0060

Client | Message and direction Server
QoS=0 PUBLISI;' Action: Publish message to subscribers

QoS level 1: At least once delivery

Client | Message and direction Server
QoS=0 _P_HI?_I_'{?_I;I Action: Publish message to subscribers

QoS level 2: Exactly once delivery

Client Metssage'z and Server
direction
Action: Store message
QoS =2 or
bUP =0 PUBLISH .
MessagelD=x [S Actions:
Action: Store message e Store message ID
e Publish message to subscribers
PUBREC
P Message ID = x
Actions:
e Publish message to subscribers
PUBREL .
Message ID = x ___l_J ______ g Delete message
or
Action: Delete message ID
Action: Discard PUBCOMP
Message ID = x
message N

2016-06-14 7

S:if REALTEK

Document Number: UMO0060

2 MQTT APIs

The MQTT APIs are provided in MQTTClient library for environments of FreeRTOS. It is built on
top of MQTTPacket. MQTTPacket is the lowest level library, the simplest and smallest, but
hardest to use. It simply deals with serialization and deserialization of MQTT packets.

This sub-section lists the provided APIs for MQTT operations.

2.1 MQTTClientlInit

This function triggers to create an MQTT client object.

Syntax

void MQTTClientInit(
MQTTClient* client,
Network* network,
unsigned int command_timeout_ms,
unsigned char* sendbuf,
size_t sendbuf_size,
unsigned char* readbuf,

size_t readbuf_size

);

Parameters
client
The client object to use.

network
The network object to use.

command_timeout_ms
Command timeout in milliseconds.

sendbuf
Send buffer.

sendbuf _size
Send buffer size.

readbuf
Read buffer.

2016-06-14 8

T
M REA LTEK Document Number: UM0060

readbuf size
Read buffer size.

Return Value
None.

Remarks
None.

2.2 MQTTConnect

This function triggers to send an MQTT connect packet down the network and wait for a
Connack.

Syntax

int MQTTConnect (
MQTTClient* c,
MQTTPacket_connectData* options
)i

Parameters
c
The client object to use.

options
Connect options.

Return Value
Return O if success, otherwise return -1.

Remarks
None.

2.3 MQTTPublish

This function triggers to send an MQTT publish packet and wait for all acks to complete for all
QoSs.

Syntax

int MQTTPublish (
MQTTClient* c,

const char* topicName,

2016-06-14 9

T
M REA LTEK Document Number: UM0060

MQTTMessage* message
5

Parameters
c
The client object to use.

topicName
The topic to publish to.

message
The message to send.

Return Value
Return 0 if success, otherwise return -1.

Remarks
None.

2.4 MQTTSubscribe

This function triggers to send an MQTT subscribe packet and wait for suback before returning.

Syntax

int MQTTSubscribe (
MQTTClient* c,

const char* topicFilter,
enum QoS qos,

messageHandler messageHandler

);

Parameters
c
The client object to use.

topicFilter
The topic filter to subscribe to.

gos
Expected gos of publish message.

messageHandler

2016-06-14 10

T
M REA LTEK Document Number: UM0060

Message handler.

Return Value
Return 0 if success, otherwise return -1.

Remarks
None.

2.5 MQTTUnsubscribe

This function triggers to send an MQTT unsubscribe packet and wait for unsuback before
returning.

Syntax

int MQTTUnsubscribe (
MQTTClient* c,

const char* topicFilter

);

Parameters
c
The client object to use.

topicFilter
The topic filter to unsubscribe from.

Return Value
Return 0 if success, otherwise return -1.

Remarks
None.

2.6 MQTTDisconnect

This function triggers to send an MQTT disconnect packet and close the connection.

Syntax

int MQTTDisconnect (
MQTTClient* ¢

2016-06-14 11

T
M REA LTEK Document Number: UM0060

Parameters

c
The client object to use.

Return Value
Return O if success, otherwise return -1.

Remarks
None.

3 MQTT Example

3.1 Configuration

An example to use the APIs explained in previous sections is provided in example_mqtt.c. To
execute this example automatically when booting, configuration should be set as below.

1) Add patch files to paths:

component\common\application\mqtt\MQTTClient\
component\common\application\mqtt\MQTTPacket\

component\common\example\mqtt\

2) The CONFIG_EXAMPLE_MAQTT in platform_opts.h must be enabled as follows.

/* platform_opts.h *./
#define CONFIG_EXAMPLE_MQTT 1

To manage connection exception, LWIP_TCP_KEEPALIVE and LWIP_UART_ADAPTER in
Iwipopts.h must be enabled as follows.

/* lwipopts.h */
#tdefine LWIP_TCP_KEEPALIVE 1
#define LWIP_UART_ADAPTER 1

3) Add example_mqtt() to Example_entry.c.

2016-06-14 12

T
M REA LTEK Document Number: UM0060

#if CONFIG_EXAMPLE_MQTT
#include <mqtt/example_mqtt.h>

t#endif

void example_entry(void)

{

#if CONFIG_EXAMPLE_MQTT
example_mqtt();

#endif

}

4) Add MQTT related files to IAR project.

=1 [netwark

[api

(Dapp

(1 googlenest

[0 bwip

CImdns

o O
MOTTClient.c =1 (] utilities

QT TConnectClient.c E (53] arduino_wifi
MOTTConnectSener.c —& (Jexample
MOTTDeserializePublish.c example_eap.c
tMOTTFarmat.c example_entry.c
MOTTFreertos.c example_fatfs.c
WMOTTPacket o example_get_beacon_frame.c
MQTT SerializePublish.c zi:m:z—afg'“
MOTTSubscribeClientc - -

B MOTTSubscribeServer c poiemp e Teaste
MOTTUnsubscribeClient.c

WOTTUnsubscribeServer.c

=

example_mugtt.c
example_socket_select.c

L

EEEI R

5) Add include directories to project.

SPROJ_DIRS\..\..\..\component\common\application\mqgtt\MQTTClient
SPROJ_DIRS\..\..\..\component\common\application\mqgtt\MQTTPacket

2016-06-14 13

T
M REA LTEK Document Number: UM0060

e

Options for node "Project” | 28
Leisgoi [Factory Setiings]
General Options [T Multi-file: Carnpilatior
Runtime Checking Dizcard Urused Publics

Assembler | Dutput | List | Preprocessor |Diasnestics | MISEA-C:2004 |14 [
Output Converter
Custom Build
Build Actions
Lirker D Tenore standard include direc
Debugger pdditional ineclude directories: [ome per line)
Simulator | oninatworkilwindlwin wl 4 1ierchincludatlwin T i
Angel Edit Include Directories
CMSIS DAP
GDE Server
IAR ROM-monitor Include directany
Ljet/TTAGjet $PROJ_DIR$, 4.\ \componentscommonsapplicationmatty 0 TT Clisnt
J-Link/1-Trace .
. $PROJ_DIRES 55 scomponenthcommontapplicationsmgtts M A T TRack.et
TI Stellaris
Mag’aiggr <Click to add:
PE micro

3.2 Example Introduction

In the example, MQTT task is created to present MQTT connection and message processing,

including:

1) Check WIFI status and wait WIFI to be connected. MQTT will start after device connected
with AP and got IP.

2) Establish TCP/IP connection with MQTT server.

3) Send a CONNECT message to server and wait for a CONNACK message from server.

4) Subscribe to a topic, sending SUBSCRIBE to server and wait for SUBACK from server.

5) Publish message to server every 5 seconds.

6) Read and response message. Keep alive with server.

7) If mqtt status is set to MQTT_START, the client will close the TCP/IP socket connection, and

restart the session by opening a new socket to the server and issuing a CONNECT message.
The client will subscribe to the topic again.

Some strategies are used to manage connection exception.

2016-06-14 14

T
(M\\ REA LTEK Document Number: UM0060

1) Lwip_select is used to check data arrival and connection exception. Message is read only if
tcp data has arrived. If exception fd is set, MQTT will restart.

2) SO_KEEPALIVE and TCP_KEEPIDLE are set to clear TCP buffer when network is bad. For if
TCP buffer is full and can’t allocate more memory, the situation will last for about 20
minutes until MAX data retries reached, and then MQTT will not restart successfully during
this time for allocating memory failed.

3.3 Example Running Log

MQTT running log is shown below:

1) The device should connect WI-FI after initialized. The connected AP must connect to the
internet. Use AT command to connect WI-FI or wait for device auto connecting to WIFI If
CONFIG_EXAMPLE_WLAN_FAST_CONNECT is set.

2016-06-14 15

T
M REA LTEK Document Number: UM0060

WIFI initialized

init thread(51), Available heap @xc558
[5131]mgtt:Wait Wi-Fi to be connected.

[18142 Imgtt:Wait Wi-Fi to be connected.
[15153 Imgtt:Wait Wi-Fi to be connected.
[26164 Imgtt:Wait Wi-Fi to be connected.
ATH@=TP-LINK testing

[25175Imgtt:Wait Wi-Fi to be connected.
[ATWA]: AT WLAN SET SSID [TP-LINK testing]
[MEM] After do cmd, available heap 55752

ATWC

[ATWC]: _AT_WLAN JOIN_NET_

Joining BSS by SS5ID TP-LINK_testing...
RTL8195A[Driver]: set ssid [TP-LINK testing]
RTL8195A[Driver]: start auth to 8c:21:8a:5a:5a:0e
RTL8195A[Driver]: auth success, start assoc
RTL2195A[Driver]: association success{res=1)}
Connected after 1689ms.

Interface @ IP address : 192.168.1.188

Got IP after 2766ms.

[MEM] After do cmd, available heap 54808

#
[36286 Imgtt:MQTT start

2) MAQTT client starts to connect MQTT server until Wi-Fi is connected and IP address is
available. After TCP/IP socket connection is established, a protocol level session must be
created using a CONNECT flow. The server sends a CONNACK message in response to a
CONNECT message from a client. If not receiving CONNACK in 30s, mqtt status will be set to
MQTT_START.

In the example, the MQTT server address is “gpssensor.ddns.net” and the port is 1883.
“gpssensor.ddns.net” is used for test, and customer could build their own MQTT server.

2016-06-14 16

S REALTEK

Document Number: UMO0060

[38288 mgtt:
[28288 mgtt:
[3e331]mgtt:
[38694 Imgtt:
[38786 mgtt:
[38717 Imgtt:
[31858mgtt:

[31869 Imgtt:

MQTT start

Connect Network "gpssensor.ddns.net”
addr = 52.27.59.196
"gpssensor.ddns.net” Connected
Start MQTT connection

Set mqtt status to MQTT_CONNECT

Read packet type is CONNACK

MQTT Connected

3) MAQTT client subscribes to topic “LASS/Test/Pm25Ameba/#”. After receiving SUBACK, mqtt
status is set to MQTT_RUNNING. The client starts to receive PUBLISH message from server.

[31878]mgtt:Subscribe to Topic: LASS/Test/Pm25Ameba/#

[31893 mgtt:Set mgtt status to MQTT_SUBTOPIC

[33414])mgtt:Read packet type is SUBACK

[33425])mgtt:grantedQos: 2

[33433)mgtt:Set mgtt status to MQTT_RUMMING

[33944)mgtt:Read packet type is PUBLISH

[33955]mgtt:Message arrived on topic LASS/Test/Pm25Ameba/FT1_@18: one

4) If mqtt status is MQTT_RUNNING, the client will publish message every 5s. The published
topic is “LASS/Test/Pm25Ameba/FT1_018”. Since the subscribed topic filter s
“LASS/Test/Pm25Ameba/#”, the client will receive the message it has published to server.

2016-06-14 17

T
M REA LTEK Document Number: UM0060

[26975]Imgtt:Publish Topic LASS/Test/Pm25Ameba/FT1_@18 : 1
[37336]mgtt:Read packet type is PUBACK
[38796]mgqtt:Read packet type is PUELISH

[38887Imgtt:Message arrived on topic LASS/Test/Pm25Ameba/FT1_018: hello from AMEBA 1

[38831]mgtt:send PUBACK

[42839]mgtt:Publish Topic LASS/Test/Pm25Ameba/FT1_818 : 2
[43415]mgtt:Read packet type is PUBACK

[44844 mgtt:Read packet type is PUBLISH

[44855]mgtt:Message arrived on topic LASS/Test/Pm25Ameba/FT1_818: hello from AMEBA 2

5) If except_fds is set or read packet type is -1, mqtt status will be set to MQTT_START.
except_fds is set for connection closed by server or by client because of KEEPALIVE timeout.
Read packet type is -1 for connection closed by server.

2016-06-14 18

T
M REAI-TEK Document Number: UM0060

[2585769 mgtt:except fds is set

[2585779]mgtt:Set mgtt status to MQTT_START
[2585792|mgtt:MQTT start

[2585799 | mgtt:Connect Network "gpssensor.ddns.net"”
[2585848|mgtt:addr = 52.27.59.196

[258637@]mgtt: "gpssensor.ddns.net” Connected
[2586383 |mgtt:Start MQTT connection

[2586394 |mgtt:Set mgtt status to MQTT_COMMECT
[251e863 Imgtt:Read packet type is CONNACK

[2518875 mgtt:MQTT Connected

[251@0884 Imgtt:Subscribe to Topic: LASS/Test/Pm2SAmeba/#
[251@1@@]mgtt:Set mgtt status to MQTT_SUBTOPIC
[2518727 Imgqtt:Read packet type is SUBACK
[2518739)mgtt:grantedQosS: 2

(2518747 [mgtt:Set mgtt status to MQTT_RUNNING
[2511352 |mgtt:Read packet type is PUBLISH

[2511364 mgqtt:Message arrived on topic LASS/Test/Pm25Ameba/FT1_©18: one

[1068837 Imgtt:send PUBACK
[1069845]matt:Read packet type is gl
[1069855]mgtt:5et mgQtt status to MQTT_START
[1069868]mgtt :MQTT start

[1069876]mgtt:Connect Metwork "gpssensor.ddns.net”

2016-06-14 19

	1 MQTT Protocol Introduction
	1.1 Message format
	1.2 Connect and Keep Alive
	1.3 Publish
	1.4 Subscribe
	1.5 Qos

	2 MQTT APIs
	2.1 MQTTClientInit
	Syntax
	Parameters
	Return Value
	Remarks

	2.2 MQTTConnect
	Syntax
	Parameters
	Return Value
	Remarks

	2.3 MQTTPublish
	Syntax
	Parameters
	Return Value
	Remarks

	2.4 MQTTSubscribe
	Syntax
	Parameters
	Return Value
	Remarks

	2.5 MQTTUnsubscribe
	Syntax
	Parameters
	Return Value
	Remarks

	2.6 MQTTDisconnect
	Syntax
	Parameters
	Return Value
	Remarks

	3 MQTT Example
	3.1 Configuration
	3.2 Example Introduction
	3.3 Example Running Log

