rtl00TstMinAmebaV35a/component/os/os_dep/include/osdep_api.h
2016-09-23 07:21:45 +03:00

561 lines
11 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#ifndef __OSDEP_API_H_
#define __OSDEP_API_H_
#include "os_timer.h"
#include "os_support.h"
#include "semphr.h"
#if 0
/* Structure used to pass parameters to each task. */
typedef struct SEMAPHORE_PARAMETERS
{
xSemaphoreHandle xSemaphore;
// volatile unsigned long *pulSharedVariable;
portTickType xBlockTime;
} xSemaphoreParameters;
#endif
//#define RTW_STATUS_TIMEDOUT -110
#define MAX_SEMA_COUNT 32 /* the maximum count of a semaphore */
typedef xSemaphoreHandle _Sema;
typedef xSemaphoreHandle _Mutex;
typedef u32 _Lock;
typedef struct TIMER_LIST _Timer;
//typedef unsigned char _buffer;
typedef unsigned long _IRQL;
//typedef struct net_device * _nic_hdl;
typedef xTaskHandle _THREAD_HDL_;
typedef VOID THREAD_RETURN;
typedef VOID* THREAD_CONTEXT;
#ifndef mdelay
#define mdelay(t) ((t/portTICK_RATE_MS)>0)?(vTaskDelay(t/portTICK_RATE_MS)):(vTaskDelay(1))
#endif
#ifndef udelay
#define udelay(t) ((t/(portTICK_RATE_MS*1000))>0)?vTaskDelay(t/(portTICK_RATE_MS*1000)):(vTaskDelay(1))
#endif
/* to delete/start/stop a timer it will send a message to the timer task through a message queue,
so we define the max wait time for message sending */
#define RTL_TIMER_API_MAX_BLOCK_TIME 1000 // unit is ms
#define RTL_TIMER_API_MAX_BLOCK_TICKS (RTL_TIMER_API_MAX_BLOCK_TIME/portTICK_RATE_MS)
typedef VOID
(*RTL_TIMER_CALL_BACK)(
void *pContext
);
typedef struct _RTL_TIMER{
#ifdef PLATFORM_FREERTOS
xTimerHandle TimerHandle; // the timer handle of created FreeRTOS soft-timer
#endif
RTL_TIMER_CALL_BACK CallBackFunc; // Callback function of this timer
u32 msPeriod; // The period of this timer
void *Context; // Timer specific context.
u8 isPeriodical; // is a periodical timer
u8 TimerName[35]; // the Name of timer
}RTL_TIMER, *PRTL_TIMER;
__inline static VOID
RtlEnterCritical(VOID)
{
portENTER_CRITICAL();
}
__inline static VOID
RtlExitCritical(VOID)
{
portEXIT_CRITICAL();
}
__inline static VOID
RtlEnterCriticalBh(
IN _Lock *plock,
IN _IRQL *pirqL
)
{
SpinLockBh(plock);
}
__inline static VOID
RtlExitCriticalBh(
IN _Lock *plock,
IN _IRQL *pirqL
)
{
SpinUnlockBh(plock);
}
__inline static u32
RtlEnterCriticalMutex(
IN _Mutex *pmutex,
IN _IRQL *pirqL
)
{
u32 ret = 0;
xSemaphoreTake(*pmutex, portMAX_DELAY);
return ret;
}
__inline static VOID
RtlExitCriticalMutex(
IN _Mutex *pmutex,
IN _IRQL *pirqL
)
{
xSemaphoreGive(*pmutex);
}
__inline static VOID
RtlInitTimer(
IN _Timer *ptimer,
IN VOID *Data,
IN VOID (*pfunc)(VOID *),
IN VOID* cntx
)
{
ptimer->Function = pfunc;
ptimer->Data = (unsigned long)cntx;
InitTimer(ptimer);
}
__inline static VOID
RtlSetTimer(
IN _Timer *ptimer,
IN u32 delay_time
)
{
ModTimer(ptimer , (JIFFIES+(delay_time*RTL_HZ/1000)));
}
__inline static VOID
RtlCancelTimer(
IN _Timer *ptimer,
IN u8 *bcancelled
)
{
DelTimerSync(ptimer);
*bcancelled= _TRUE;//TRUE ==1; FALSE==0
}
__inline static u32
RtlSystime2Ms(
IN u32 systime
)
{
return systime * 1000 / RTL_HZ;
}
__inline static u32
RtlMs2Systime(
IN u32 ms
)
{
return ms * RTL_HZ / 1000;
}
extern u8* RtlZmalloc(u32 sz);
extern u8* RtlMalloc(u32 sz);
extern VOID RtlMfree(u8 *pbuf, u32 sz);
extern VOID* RtlMalloc2d(u32 h, u32 w, u32 size);
extern VOID RtlMfree2d(VOID *pbuf, u32 h, u32 w, u32 size);
extern VOID RtlInitSema(_Sema *sema, u32 init_val);
extern VOID RtlFreeSema(_Sema *sema);
extern VOID RtlUpSema(_Sema *sema);
extern VOID RtlUpSemaFromISR(_Sema *sema);
extern u32 RtlDownSema(_Sema *sema);
extern u32 RtlDownSemaWithTimeout(_Sema *sema, u32 ms);
extern VOID RtlMutexInit(_Mutex *pmutex);
extern VOID RtlMutexFree(_Mutex *pmutex);
extern VOID RtlSpinlockInit(_Lock *plock);
extern VOID RtlSpinlockFree(_Lock *plock);
extern VOID RtlSpinlock(_Lock *plock);
extern VOID RtlSpinunlock(_Lock *plock);
extern VOID RtlSpinlockEx(_Lock *plock);
extern VOID RtlSpinunlockEx(_Lock *plock);
extern VOID RtlSleepSchedulable(u32 ms);
extern VOID RtlMsleepOS(u32 ms);
extern VOID RtlUsleepOS(u32 us);
extern VOID RtlMdelayOS(u32 ms);
extern VOID RtlUdelayOS(u32 us);
//extern VOID rtw_mdelay_os(u32 ms);
//extern VOID rtw_udelay_os(u32 us);
//1TODO: Need Check if we need add this api
extern VOID RtlYieldOS(VOID);
#define RtlUpMutex(mutex) RtlUpSema(mutex)
#define RtlDownMutex(mutex) RtlDownSema(mutex)
__inline static u8
RtlCancelTimerEx(
IN _Timer *ptimer
)
{
DelTimerSync(ptimer);
return 0;
}
static __inline VOID
ThreadEnter(
IN char *name
)
{
DBG_8195A("\rRTKTHREAD_enter %s\n", name);
}
#define ThreadExit() do{DBG_8195A("\rRTKTHREAD_exit %s\n", __FUNCTION__);}while(0)
__inline static VOID
FlushSignalsThread(VOID)
{
#ifdef PLATFORM_LINUX
if (signal_pending (current))
{
flush_signals(current);
}
#endif
}
#define RTL_RND(sz, r) ((((sz)+((r)-1))/(r))*(r))
#define RTL_RND4(x) (((x >> 2) + (((x & 3) == 0) ? 0: 1)) << 2)
__inline static u32
RtlRnd4(
IN u32 sz
)
{
u32 val;
val = ((sz >> 2) + ((sz & 3) ? 1: 0)) << 2;
return val;
}
__inline static u32
RtlRnd8(
IN u32 sz
)
{
u32 val;
val = ((sz >> 3) + ((sz & 7) ? 1: 0)) << 3;
return val;
}
__inline static u32
RtlRnd128(
IN u32 sz
)
{
u32 val;
val = ((sz >> 7) + ((sz & 127) ? 1: 0)) << 7;
return val;
}
__inline
static u32 RtlRnd256(
IN u32 sz
)
{
u32 val;
val = ((sz >> 8) + ((sz & 255) ? 1: 0)) << 8;
return val;
}
__inline static u32
RtlRnd512(
IN u32 sz
)
{
u32 val;
val = ((sz >> 9) + ((sz & 511) ? 1: 0)) << 9;
return val;
}
__inline static u32
BitShift(
IN u32 BitMask
)
{
u32 i;
for (i = 0; i <= 31; i++)
if (((BitMask>>i) & 0x1) == 1) break;
return i;
}
//#ifdef __GNUC__
#ifdef PLATFORM_LINUX
#define STRUCT_PACKED __attribute__ ((packed))
#else
#define STRUCT_PACKED
#endif
//Atomic integer operations
#define RTL_ATOMIC_T atomic_t
static inline VOID
RTL_ATOMIC_SET(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
AtomicSet(i,v);
}
static inline uint32_t
RTL_ATOMIC_READ(
IN RTL_ATOMIC_T *v
)
{
return AtomicRead(v);
}
static inline VOID
RTL_ATOMIC_ADD(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
AtomicAdd(i,v);
}
static inline VOID
RTL_ATOMIC_SUB(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
AtomicSub(i,v);
}
static inline VOID
RTL_ATOMIC_INC(
IN RTL_ATOMIC_T *v
)
{
AtomicInc(v);
}
static inline VOID
RTL_ATOMIC_DEC(
IN RTL_ATOMIC_T *v
)
{
AtomicDec(v);
}
static inline u32
RTL_ATOMIC_ADD_RETURN(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
return AtomicAddReturn(i,v);
}
static inline u32
RTL_ATOMIC_SUB_RETURN(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
return AtomicSubReturn(i,v);
}
static inline u32
RTL_ATOMIC_INC_RETURN(
IN RTL_ATOMIC_T *v
)
{
return AtomicIncReturn(v);
}
static inline u32
RTL_ATOMIC_DEC_RETURN(
IN RTL_ATOMIC_T *v
)
{
return AtomicDecReturn(v);
}
extern u64 RtlModular64(u64 x, u64 y);
/* Macros for handling unaligned memory accesses */
#if 0
#define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1]))
#define RTW_PUT_BE16(a, val) \
do { \
(a)[0] = ((u16) (val)) >> 8; \
(a)[1] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_LE16(a) ((u16) (((a)[1] << 8) | (a)[0]))
#define RTW_PUT_LE16(a, val) \
do { \
(a)[1] = ((u16) (val)) >> 8; \
(a)[0] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \
((u32) (a)[2]))
#define RTW_PUT_BE24(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[2] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE32(a) ((((u32) (a)[0]) << 24) | (((u32) (a)[1]) << 16) | \
(((u32) (a)[2]) << 8) | ((u32) (a)[3]))
#define RTW_PUT_BE32(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[3] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE32(a) ((((u32) (a)[3]) << 24) | (((u32) (a)[2]) << 16) | \
(((u32) (a)[1]) << 8) | ((u32) (a)[0]))
#define RTW_PUT_LE32(a, val) \
do { \
(a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[0] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE64(a) ((((u64) (a)[0]) << 56) | (((u64) (a)[1]) << 48) | \
(((u64) (a)[2]) << 40) | (((u64) (a)[3]) << 32) | \
(((u64) (a)[4]) << 24) | (((u64) (a)[5]) << 16) | \
(((u64) (a)[6]) << 8) | ((u64) (a)[7]))
#define RTW_PUT_BE64(a, val) \
do { \
(a)[0] = (u8) (((u64) (val)) >> 56); \
(a)[1] = (u8) (((u64) (val)) >> 48); \
(a)[2] = (u8) (((u64) (val)) >> 40); \
(a)[3] = (u8) (((u64) (val)) >> 32); \
(a)[4] = (u8) (((u64) (val)) >> 24); \
(a)[5] = (u8) (((u64) (val)) >> 16); \
(a)[6] = (u8) (((u64) (val)) >> 8); \
(a)[7] = (u8) (((u64) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE64(a) ((((u64) (a)[7]) << 56) | (((u64) (a)[6]) << 48) | \
(((u64) (a)[5]) << 40) | (((u64) (a)[4]) << 32) | \
(((u64) (a)[3]) << 24) | (((u64) (a)[2]) << 16) | \
(((u64) (a)[1]) << 8) | ((u64) (a)[0]))
#endif
extern PRTL_TIMER
RtlTimerCreate(
IN char *pTimerName,
IN u32 TimerPeriodMS,
IN RTL_TIMER_CALL_BACK CallbckFunc,
IN void *pContext,
IN u8 isPeriodical
);
extern VOID
RtlTimerDelete(
IN PRTL_TIMER pTimerHdl
);
extern u8
RtlTimerStart(
IN PRTL_TIMER pTimerHdl,
IN u8 isFromISR
);
extern u8
RtlTimerStop(
IN PRTL_TIMER pTimerHdl,
IN u8 isFromISR
);
extern u8
RtlTimerReset(
IN PRTL_TIMER pTimerHdl,
IN u8 isFromISR
);
extern u8
RtlTimerChangePeriod(
IN PRTL_TIMER pTimerHdl,
IN u32 NewPeriodMS,
IN u8 isFromISR
);
#endif //#ifndef __OSDEP_API_H_