first commit

This commit is contained in:
pvvx 2016-09-23 07:21:45 +03:00
commit c399bf5be0
806 changed files with 421674 additions and 0 deletions

View file

@ -0,0 +1,23 @@
/*
* Routines to access hardware
*
* Copyright (c) 2013 Realtek Semiconductor Corp.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*/
#ifndef _DEVICE_LOCK_H_
#define _DEVICE_LOCK_H_
typedef enum _RT_DEV_LOCK_E
{
RT_DEV_LOCK_EFUSE = 0,
RT_DEV_LOCK_FLASH = 1,
RT_DEV_LOCK_MAX = 2
}RT_DEV_LOCK_E;
void device_mutex_lock(RT_DEV_LOCK_E device);
void device_mutex_unlock(RT_DEV_LOCK_E device);
#endif //_DEVICE_LOCK_H_

View file

@ -0,0 +1,127 @@
/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#ifndef __MAILBOX_H_
#define __MAILBOX_H_
#include "hal_api.h"
#include "osdep_api.h"
#include "hal_util.h"
#ifdef CONFIG_FREERTOS
#include "queue.h"
#endif
#define MBOX_WAIT_NO_TIMEOUT 0xffffffff // waiting for send/receive message with no timeout
#define MBOX_WAIT_NONE 0 // No wait for send/receive message
typedef enum _MAILBOX_ID_ {
MBOX_ID_WLAN = 0,
MBOX_ID_UART = 1,
MBOX_ID_I2C = 2,
MBOX_ID_I2S = 3,
MBOX_ID_SPI = 4,
MBOX_ID_SDIO = 5,
MBOX_ID_SDIO_MP = 6,
MBOX_ID_MAX = 0xff
} MAILBOX_ID;
#if defined(CONFIG_SDIO_DEVICE_EN) && defined(CONFIG_SDIO_DEVICE_NORMAL)
typedef enum _MSG_TYPE_SDIO {
MSG_SDIO_RX_PKT=1, // request to send a SDIO RX packet to the host side
MSG_SDIO_C2H=2, // request to send a C2H message
MSG_SDIO_RPWM=3, // request to set the RPWM
MSG_SDIO_MP_LOOP_TXPKT=4, // request to loopback this TX packet
MSG_SDIO_MAX=0xff
} MSG_TYPE_SDIO;
#endif // end of "#ifdef CONFIG_SDIO_DEVICE_EN"
/* the data structure of a MailBox to deliver message blocks */
typedef struct _RTL_MAILBOX_ {
void *mbox_hdl; // the mailbox handle which return from OS create queue API
_Sema *pWakeSema; // the semaphore to wakeup the message receiving task
_LIST mbox_list; // the link list to chain all created mailbox
u8 mbox_id; /* the ID of this Mailbox, this ID is
used to locate the MBox for send/get message */
} RTL_MAILBOX, *PRTL_MAILBOX;
/* the data structure of a message block */
typedef struct _RTL_MSG_BLK {
u8 MsgType; // the message type
u8 Reserved; // reserved
u16 DateLen; // the vaild data length of the pBuf
u32 Para; // the optional parameters associated with this message type
u8 *pBuf; // point to a data buffer associated with this message type
} MSG_BLK, *PMSG_BLK;
/* the data structure for system level message block management */
typedef struct _RTL_MBOX_ROOT_ {
_LIST mbox_list; // the link list of all created mailbox
_Mutex Mutex; // the Mutex to protect the mailbox create/delete procedure
u8 isInitialed; // is this Mailbox link-list initialed
} RTL_MBOX_ROOT, *PRTL_MBOX_ROOT;
// Export Funcction API
extern PRTL_MAILBOX RtlMailboxCreate(
IN u8 MboxID,
IN u32 MboxSize,
IN _Sema *pWakeSema
);
extern VOID RtlMailboxDel(
IN PRTL_MAILBOX MboxHdl
);
extern u8 RtlMailboxSendToBack(
IN u8 MboxID,
IN MSG_BLK *pMsg,
IN u32 MSToWait,
IN u8 IsFromISR
);
extern u8 RtlMailboxSendToFront(
IN u8 MboxID,
IN MSG_BLK *pMsg,
IN u32 MSToWait,
IN u8 IsFromISR
);
extern u8 RtlMailboxReceive(
IN u8 MboxID,
OUT MSG_BLK *pMsg,
IN u32 MSToWait,
IN u8 IsFromISR
);
extern u8 RtlMailboxPeek(
IN u8 MboxID,
OUT MSG_BLK *pMsg,
IN u32 MSToWait,
IN u8 IsFromISR
);
extern u32 RtlMailboxMsgWaiting(
IN u8 MboxID,
IN u8 IsFromISR
);
#endif // #ifndef __MAILBOX_H_

View file

@ -0,0 +1,343 @@
/******************************************************************************
*
* Name: sys-support.h - System type support for Linux
* $Revision: 1.1.1.1 $
*
*****************************************************************************/
#ifndef __OS_SUPPORT_H__
#define __OS_SUPPORT_H__
#include <FreeRTOS.h>
#include <basic_types.h>
#include "os_support.h"
//#include "diag.h"
#if 0
#define __init
#define __exit
#define __devinit
#define __devexit
#endif
#define RTL_HZ 100
#define SemaInit(sem, value) vSemaphoreCreateBinary(sem)
#define SemaPost(sem) xSemaphoreGive(sem)
#define SemaWait(sem, block_time) xSemaphoreTake(sem, block_time)
//#define printk DiagPrintf
#define SpinLockInit(lock) do { } while (0)
#define SpinLock(x) do { } while (0)
#define SpinUnlock(x) do { } while (0)
#define SpinLockBh(x) do { } while (0)
#define SpinUnlockBh(x) do { } while (0)
#ifdef PLATFORM_FREERTOS
#define RestoreFlags() portEXIT_CRITICAL()
#define SaveAndCli() portENTER_CRITICAL()
#define SpinLockIrqSave(lock, flags) SaveAndCli()
#define SpinUnlockIrqRestore(l, f) RestoreFlags()
#else
#define RestoreFlags(x) portENABLE_INTERRUPTS()
#define SaveAndCli(x) portDISABLE_INTERRUPTS()
#define SpinLockIrqSave(lock, flags) SaveAndCli(flags)
#define SpinUnlockIrqRestore(l, f) RestoreFlags(f)
#endif
//#define RtlKmalloc(size, flag) pvPortMallocAligned(size, 0)
#define RtlKmalloc(size, flag) pvPortMalloc(size)
#define RtlKfree(pv) vPortFreeAligned(pv)
#ifdef CONFIG_TIMER_MODULE
#define __Delay(t) HalDelayUs(t)
#else
static __inline__ u32 __Delay(u32 us)
{
DBG_8195A("No Delay: please enable hardware Timer\n");
}
#endif
#define Mdelay(t) __Delay(t*1000)
#define Udelay(t) __Delay(t)
#define ASSERT(_bool_) do { } while (0)
//#define panic_printk DiagPrintf
//#define sprintf DiagPrintf
//#define diag_sprintf DiagPrintf
//1TODO: Need check again; the below just for compile ok ; chris
/*
* ATOMIC_READ - read atomic variable
* @v: pointer of type atomic_t
*
* Atomically reads the value of @v. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
//#define AtomicRead(v) ((*v))
static __inline__ u32
AtomicRead(
IN atomic_t * v
)
{
#ifdef PLATFORM_FREERTOS
u32 Temp;
SaveAndCli();
Temp = v->counter;
RestoreFlags();
return Temp;
#else
u32 Temp, Flags;
SaveAndCli(Flags);
Temp = v->counter;
RestoreFlags(Flags);
return Temp;
#endif
}
/*
* ATOMIC_SET - set atomic variable
* @v: pointer of type atomic_t
* @i: required value
*
* Atomically sets the value of @v to @i. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
//#define AtomicSet(v,i) ((v)->counter = (i))
static __inline__ VOID
AtomicSet(
IN u32 i,
IN atomic_t * v
)
{
#ifdef PLATFORM_FREERTOS
SaveAndCli();
v->counter = i;
RestoreFlags();
#else
u32 Flags;
SaveAndCli(Flags);
v->counter = i;
RestoreFlags(Flags);
#endif
}
/*
* The MIPS I implementation is only atomic with respect to
* interrupts. R3000 based multiprocessor machines are rare anyway ...
*
* AtomicAdd - add integer to atomic variable
* @i: integer value to add
* @v: pointer of type atomic_t
*
* Atomically adds @i to @v. Note that the guaranteed useful range
* of an atomic_t is only 24 bits.
*/
static __inline__ VOID
AtomicAdd(
IN u32 i,
IN atomic_t * v
)
{
#ifdef PLATFORM_FREERTOS
SaveAndCli();
v->counter += i;
RestoreFlags();
#else
u32 Flags;
SaveAndCli(Flags);
v->counter += i;
RestoreFlags(Flags);
#endif
}
/*
* AtomicSub - subtract the atomic variable
* @i: integer value to subtract
* @v: pointer of type atomic_t
*
* Atomically subtracts @i from @v. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
static __inline__ void
AtomicSub(
IN u32 i,
IN atomic_t * v
)
{
#ifdef PLATFORM_FREERTOS
SaveAndCli();
v->counter -= i;
RestoreFlags();
#else
u32 Flags;
SaveAndCli(Flags);
v->counter -= i;
RestoreFlags(Flags);
#endif
}
static __inline__ u32
AtomicAddReturn(
IN u32 i,
IN atomic_t * v
)
{
#ifdef PLATFORM_FREERTOS
u32 Temp;
SaveAndCli();
Temp = v->counter;
Temp += i;
v->counter = Temp;
RestoreFlags();
return Temp;
#else
u32 Temp, Flags;
SaveAndCli(Flags);
Temp = v->counter;
Temp += i;
v->counter = Temp;
RestoreFlags(Flags);
return Temp;
#endif
}
static __inline__ u32
AtomicSubReturn(
IN u32 i,
IN atomic_t * v
)
{
#ifdef PLATFORM_FREERTOS
u32 Temp;
SaveAndCli();
Temp = v->counter;
Temp -= i;
v->counter = Temp;
RestoreFlags();
return Temp;
#else
u32 Temp, Flags;
SaveAndCli(Flags);
Temp = v->counter;
Temp -= i;
v->counter = Temp;
RestoreFlags(Flags);
return Temp;
#endif
}
/*
* ATOMIC_INC - increment atomic variable
* @v: pointer of type atomic_t
*
* Atomically increments @v by 1. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
#define AtomicInc(v) AtomicAdd(1,(v))
#define AtomicIncReturn(v) AtomicAddReturn(1,(v))
/*
* ATOMIC_DEC - decrement and test
* @v: pointer of type atomic_t
*
* Atomically decrements @v by 1. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
#define AtomicDec(v) AtomicSub(1,(v))
#define AtomicDecReturn(v) AtomicSubReturn(1,(v))
/*
* ATOMIC_DEC_AND_TEST - decrement by 1 and test
* @v: pointer of type atomic_t
*
* Atomically decrements @v by 1 and
* returns true if the result is 0, or false for all other
* cases. Note that the guaranteed
* useful range of an atomic_t is only 24 bits.
*/
#define AtomicDecAndTest(v) (AtomicSubReturn(1, (v)) == 0)
/* Not needed on 64bit architectures */
static __inline__ u32
__Div64_32(
IN __uint64_t *n,
IN u32 base
)
{
__uint64_t rem = *n;
__uint64_t b = base;
__uint64_t res, d = 1;
u32 high = rem >> 32;
/* Reduce the thing a bit first */
res = 0;
if (high >= base) {
high /= base;
res = (__uint64_t) high << 32;
rem -= (__uint64_t) (high*base) << 32;
}
while ((__int64_t)b > 0 && b < rem) {
b = b+b;
d = d+d;
}
do {
if (rem >= b) {
rem -= b;
res += d;
}
b >>= 1;
d >>= 1;
} while (d);
*n = res;
return rem;
}
#define DO_DIV(n,base) ({ \
unsigned int __base = (base); \
unsigned int __rem; \
(void)(((typeof((n)) *)0) == ((__uint64_t *)0)); \
if (((n) >> 32) == 0) { \
__rem = (unsigned int)(n) % __base; \
(n) = (unsigned int)(n) / __base; \
} else \
__rem = __Div64_32(&(n), __base); \
__rem; \
})
#endif /* __SYS_SUPPORT_H__ */

View file

@ -0,0 +1,215 @@
/******************************************************************************
*
* Name: sys-support.h - System type support for Linux
* $Revision: 1.1.1.1 $
*
*****************************************************************************/
#ifndef __OS_TIMER_H__
#define __OS_TIMER_H__
#include "diag.h"
#include "os_support.h"
#include "timers.h"
#define JIFFIES xTaskGetTickCount()
enum {
TIMER_NO_INIT = 0,
TIMER_INIT = 1,
TIMER_START = 2,
TIMER_DISABLE = 3
};
struct TIMER_LIST {
xTimerHandle TimeHdl;
u32 Flag;
unsigned long Data;
VOID (*Function)(void *);
u32 TimerID;
};
static inline VOID
InitTimer(
IN struct TIMER_LIST *Timer
)
{
#ifdef RTK_MODE_TIMER
u32 data = Timer->Data;
#endif
#ifndef PLATFORM_FREERTOS
u32 Flags;
#endif
u32 TimerID = Timer->TimerID;
VOID (*Function)(VOID *) = Timer->Function;
// xTimerHandle timer_handle;
#ifdef PLATFORM_FREERTOS
SaveAndCli();
#else
SaveAndCli(Flags);
#endif
if (Timer->Flag != TIMER_DISABLE) {
if (Timer->Flag == TIMER_NO_INIT) {
Timer->TimeHdl = xTimerCreate( (const char *)"Timer", // Just a test name, not used by the kernel.
( 100 ), // The timer period in ticks.
pdFALSE, // The timers will auto-reload themselves when they expire.
( void * ) TimerID, // Assign each timer a unique id equal to its array index.
Function
#ifdef RTK_MODE_TIMER
,data // Each timer calls the same callback when it expires.
#endif
);
if (NULL == Timer->TimeHdl) {
DBG_ERROR_LOG("\rInitial Timer fail !!!!!!!!!\n");
}
else {
TimerID++;
}
Timer->Flag = TIMER_INIT;
}
else if (Timer->Flag == TIMER_START) {
xTimerStop(Timer->TimeHdl,0);
Timer->Flag = TIMER_DISABLE;
}
}
#ifdef PLATFORM_FREERTOS
RestoreFlags();
#else
RestoreFlags(Flags);
#endif
}
static inline void
ModTimer(
IN struct TIMER_LIST *Timer,
IN u32 TimeoutTicks
)
{
#ifndef PLATFORM_FREERTOS
u32 Flags;
#endif
void (*Function)(void *) = Timer->Function;
#ifdef PLATFORM_FREERTOS
SaveAndCli();
#else
SaveAndCli(Flags);
#endif
if (Timer->Flag == TIMER_NO_INIT) {
if (Timer->Function) {
Timer->TimeHdl = xTimerCreate((const char *)"Timer", // Just a text name, not used by the kernel.
( 100 ), // The timer period in ticks.
pdFALSE, // The timers will auto-reload themselves when they expire.
( void * ) Timer->TimerID, // Assign each timer a unique id equal to its array index.
Function
#ifdef RTK_MODE_TIMER
,Timer->Data // Each timer calls the same callback when it expires.
#endif
);
if (NULL == Timer->TimeHdl) {
DBG_ERROR_LOG("\rInitial Timer fail !!!!!!!!!\n");
}
else {
Timer->TimerID++;
}
Timer->Flag = TIMER_INIT;
}
else {
//printf("###mod_timer() not initilized, timer->flag=%d timer->function=%p timeout_ticks=%llu###\n", timer->flag, timer->function, timeout_ticks);
#ifdef PLATFORM_FREERTOS
RestoreFlags();
#else
RestoreFlags(Flags);
#endif
return;
}
}
else if (Timer->Flag == TIMER_START) {
xTimerStop(Timer->TimeHdl,0);
Timer->Flag = TIMER_DISABLE;
}
TimeoutTicks -= xTaskGetTickCount();
if (TimeoutTicks <= 0)
TimeoutTicks = 2;
if (xTimerStart(Timer->TimeHdl, TimeoutTicks ))
Timer->Flag = TIMER_START;
else
DBG_ERROR_LOG("\r###mod_timer() - no slots available###\n");
#ifdef PLATFORM_FREERTOS
RestoreFlags();
#else
RestoreFlags(Flags);
#endif
}
static inline int
TimerPending (
IN const struct TIMER_LIST *Timer
)
{
if (Timer->TimeHdl && Timer->Flag != TIMER_NO_INIT)
return 1;
else
return 0;
}
static inline void
DelTimerSync(
IN struct TIMER_LIST *Timer
)
{
#ifdef PLATFORM_FREERTOS
SaveAndCli();
#else
u32 Flags;
SaveAndCli(Flags);
#endif
if (Timer->TimeHdl && Timer->Flag != TIMER_INIT) {
if (Timer->Flag == TIMER_START)
xTimerStop(Timer->TimeHdl, 0);
xTimerDelete(Timer->TimeHdl, 0);
Timer->Flag = TIMER_NO_INIT;
}
#ifdef PLATFORM_FREERTOS
RestoreFlags();
#else
RestoreFlags(Flags);
#endif
}
/*
* These inlines deal with timer wrapping correctly. You are
* strongly encouraged to use them
* 1. Because people otherwise forget
* 2. Because if the timer wrap changes in future you wont have to
* alter your driver code.
*
* time_after(a,b) returns true if the time a is after time b.
*
* Do this with "<0" and ">=0" to only test the sign of the result. A
* good compiler would generate better code (and a really good compiler
* wouldn't care). Gcc is currently neither.
*/
#define TIME_AFTER(a,b) ((long)(b) - (long)(a) < 0)
#define TIMER_BEFORE(a,b) TIME_AFTER(b,a)
#define TIME_AFTER_EQ(a,b) ((long)(a) - (long)(b) >= 0)
#define TIMER_BEFORE_EQ(a,b) TIME_AFTER_EQ(b,a)
#endif //__OS_TIMER_H__

View file

@ -0,0 +1,561 @@
/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#ifndef __OSDEP_API_H_
#define __OSDEP_API_H_
#include "os_timer.h"
#include "os_support.h"
#include "semphr.h"
#if 0
/* Structure used to pass parameters to each task. */
typedef struct SEMAPHORE_PARAMETERS
{
xSemaphoreHandle xSemaphore;
// volatile unsigned long *pulSharedVariable;
portTickType xBlockTime;
} xSemaphoreParameters;
#endif
//#define RTW_STATUS_TIMEDOUT -110
#define MAX_SEMA_COUNT 32 /* the maximum count of a semaphore */
typedef xSemaphoreHandle _Sema;
typedef xSemaphoreHandle _Mutex;
typedef u32 _Lock;
typedef struct TIMER_LIST _Timer;
//typedef unsigned char _buffer;
typedef unsigned long _IRQL;
//typedef struct net_device * _nic_hdl;
typedef xTaskHandle _THREAD_HDL_;
typedef VOID THREAD_RETURN;
typedef VOID* THREAD_CONTEXT;
#ifndef mdelay
#define mdelay(t) ((t/portTICK_RATE_MS)>0)?(vTaskDelay(t/portTICK_RATE_MS)):(vTaskDelay(1))
#endif
#ifndef udelay
#define udelay(t) ((t/(portTICK_RATE_MS*1000))>0)?vTaskDelay(t/(portTICK_RATE_MS*1000)):(vTaskDelay(1))
#endif
/* to delete/start/stop a timer it will send a message to the timer task through a message queue,
so we define the max wait time for message sending */
#define RTL_TIMER_API_MAX_BLOCK_TIME 1000 // unit is ms
#define RTL_TIMER_API_MAX_BLOCK_TICKS (RTL_TIMER_API_MAX_BLOCK_TIME/portTICK_RATE_MS)
typedef VOID
(*RTL_TIMER_CALL_BACK)(
void *pContext
);
typedef struct _RTL_TIMER{
#ifdef PLATFORM_FREERTOS
xTimerHandle TimerHandle; // the timer handle of created FreeRTOS soft-timer
#endif
RTL_TIMER_CALL_BACK CallBackFunc; // Callback function of this timer
u32 msPeriod; // The period of this timer
void *Context; // Timer specific context.
u8 isPeriodical; // is a periodical timer
u8 TimerName[35]; // the Name of timer
}RTL_TIMER, *PRTL_TIMER;
__inline static VOID
RtlEnterCritical(VOID)
{
portENTER_CRITICAL();
}
__inline static VOID
RtlExitCritical(VOID)
{
portEXIT_CRITICAL();
}
__inline static VOID
RtlEnterCriticalBh(
IN _Lock *plock,
IN _IRQL *pirqL
)
{
SpinLockBh(plock);
}
__inline static VOID
RtlExitCriticalBh(
IN _Lock *plock,
IN _IRQL *pirqL
)
{
SpinUnlockBh(plock);
}
__inline static u32
RtlEnterCriticalMutex(
IN _Mutex *pmutex,
IN _IRQL *pirqL
)
{
u32 ret = 0;
xSemaphoreTake(*pmutex, portMAX_DELAY);
return ret;
}
__inline static VOID
RtlExitCriticalMutex(
IN _Mutex *pmutex,
IN _IRQL *pirqL
)
{
xSemaphoreGive(*pmutex);
}
__inline static VOID
RtlInitTimer(
IN _Timer *ptimer,
IN VOID *Data,
IN VOID (*pfunc)(VOID *),
IN VOID* cntx
)
{
ptimer->Function = pfunc;
ptimer->Data = (unsigned long)cntx;
InitTimer(ptimer);
}
__inline static VOID
RtlSetTimer(
IN _Timer *ptimer,
IN u32 delay_time
)
{
ModTimer(ptimer , (JIFFIES+(delay_time*RTL_HZ/1000)));
}
__inline static VOID
RtlCancelTimer(
IN _Timer *ptimer,
IN u8 *bcancelled
)
{
DelTimerSync(ptimer);
*bcancelled= _TRUE;//TRUE ==1; FALSE==0
}
__inline static u32
RtlSystime2Ms(
IN u32 systime
)
{
return systime * 1000 / RTL_HZ;
}
__inline static u32
RtlMs2Systime(
IN u32 ms
)
{
return ms * RTL_HZ / 1000;
}
extern u8* RtlZmalloc(u32 sz);
extern u8* RtlMalloc(u32 sz);
extern VOID RtlMfree(u8 *pbuf, u32 sz);
extern VOID* RtlMalloc2d(u32 h, u32 w, u32 size);
extern VOID RtlMfree2d(VOID *pbuf, u32 h, u32 w, u32 size);
extern VOID RtlInitSema(_Sema *sema, u32 init_val);
extern VOID RtlFreeSema(_Sema *sema);
extern VOID RtlUpSema(_Sema *sema);
extern VOID RtlUpSemaFromISR(_Sema *sema);
extern u32 RtlDownSema(_Sema *sema);
extern u32 RtlDownSemaWithTimeout(_Sema *sema, u32 ms);
extern VOID RtlMutexInit(_Mutex *pmutex);
extern VOID RtlMutexFree(_Mutex *pmutex);
extern VOID RtlSpinlockInit(_Lock *plock);
extern VOID RtlSpinlockFree(_Lock *plock);
extern VOID RtlSpinlock(_Lock *plock);
extern VOID RtlSpinunlock(_Lock *plock);
extern VOID RtlSpinlockEx(_Lock *plock);
extern VOID RtlSpinunlockEx(_Lock *plock);
extern VOID RtlSleepSchedulable(u32 ms);
extern VOID RtlMsleepOS(u32 ms);
extern VOID RtlUsleepOS(u32 us);
extern VOID RtlMdelayOS(u32 ms);
extern VOID RtlUdelayOS(u32 us);
//extern VOID rtw_mdelay_os(u32 ms);
//extern VOID rtw_udelay_os(u32 us);
//1TODO: Need Check if we need add this api
extern VOID RtlYieldOS(VOID);
#define RtlUpMutex(mutex) RtlUpSema(mutex)
#define RtlDownMutex(mutex) RtlDownSema(mutex)
__inline static u8
RtlCancelTimerEx(
IN _Timer *ptimer
)
{
DelTimerSync(ptimer);
return 0;
}
static __inline VOID
ThreadEnter(
IN char *name
)
{
DBG_8195A("\rRTKTHREAD_enter %s\n", name);
}
#define ThreadExit() do{DBG_8195A("\rRTKTHREAD_exit %s\n", __FUNCTION__);}while(0)
__inline static VOID
FlushSignalsThread(VOID)
{
#ifdef PLATFORM_LINUX
if (signal_pending (current))
{
flush_signals(current);
}
#endif
}
#define RTL_RND(sz, r) ((((sz)+((r)-1))/(r))*(r))
#define RTL_RND4(x) (((x >> 2) + (((x & 3) == 0) ? 0: 1)) << 2)
__inline static u32
RtlRnd4(
IN u32 sz
)
{
u32 val;
val = ((sz >> 2) + ((sz & 3) ? 1: 0)) << 2;
return val;
}
__inline static u32
RtlRnd8(
IN u32 sz
)
{
u32 val;
val = ((sz >> 3) + ((sz & 7) ? 1: 0)) << 3;
return val;
}
__inline static u32
RtlRnd128(
IN u32 sz
)
{
u32 val;
val = ((sz >> 7) + ((sz & 127) ? 1: 0)) << 7;
return val;
}
__inline
static u32 RtlRnd256(
IN u32 sz
)
{
u32 val;
val = ((sz >> 8) + ((sz & 255) ? 1: 0)) << 8;
return val;
}
__inline static u32
RtlRnd512(
IN u32 sz
)
{
u32 val;
val = ((sz >> 9) + ((sz & 511) ? 1: 0)) << 9;
return val;
}
__inline static u32
BitShift(
IN u32 BitMask
)
{
u32 i;
for (i = 0; i <= 31; i++)
if (((BitMask>>i) & 0x1) == 1) break;
return i;
}
//#ifdef __GNUC__
#ifdef PLATFORM_LINUX
#define STRUCT_PACKED __attribute__ ((packed))
#else
#define STRUCT_PACKED
#endif
//Atomic integer operations
#define RTL_ATOMIC_T atomic_t
static inline VOID
RTL_ATOMIC_SET(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
AtomicSet(i,v);
}
static inline uint32_t
RTL_ATOMIC_READ(
IN RTL_ATOMIC_T *v
)
{
return AtomicRead(v);
}
static inline VOID
RTL_ATOMIC_ADD(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
AtomicAdd(i,v);
}
static inline VOID
RTL_ATOMIC_SUB(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
AtomicSub(i,v);
}
static inline VOID
RTL_ATOMIC_INC(
IN RTL_ATOMIC_T *v
)
{
AtomicInc(v);
}
static inline VOID
RTL_ATOMIC_DEC(
IN RTL_ATOMIC_T *v
)
{
AtomicDec(v);
}
static inline u32
RTL_ATOMIC_ADD_RETURN(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
return AtomicAddReturn(i,v);
}
static inline u32
RTL_ATOMIC_SUB_RETURN(
IN RTL_ATOMIC_T *v,
IN u32 i
)
{
return AtomicSubReturn(i,v);
}
static inline u32
RTL_ATOMIC_INC_RETURN(
IN RTL_ATOMIC_T *v
)
{
return AtomicIncReturn(v);
}
static inline u32
RTL_ATOMIC_DEC_RETURN(
IN RTL_ATOMIC_T *v
)
{
return AtomicDecReturn(v);
}
extern u64 RtlModular64(u64 x, u64 y);
/* Macros for handling unaligned memory accesses */
#if 0
#define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1]))
#define RTW_PUT_BE16(a, val) \
do { \
(a)[0] = ((u16) (val)) >> 8; \
(a)[1] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_LE16(a) ((u16) (((a)[1] << 8) | (a)[0]))
#define RTW_PUT_LE16(a, val) \
do { \
(a)[1] = ((u16) (val)) >> 8; \
(a)[0] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \
((u32) (a)[2]))
#define RTW_PUT_BE24(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[2] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE32(a) ((((u32) (a)[0]) << 24) | (((u32) (a)[1]) << 16) | \
(((u32) (a)[2]) << 8) | ((u32) (a)[3]))
#define RTW_PUT_BE32(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[3] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE32(a) ((((u32) (a)[3]) << 24) | (((u32) (a)[2]) << 16) | \
(((u32) (a)[1]) << 8) | ((u32) (a)[0]))
#define RTW_PUT_LE32(a, val) \
do { \
(a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[0] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE64(a) ((((u64) (a)[0]) << 56) | (((u64) (a)[1]) << 48) | \
(((u64) (a)[2]) << 40) | (((u64) (a)[3]) << 32) | \
(((u64) (a)[4]) << 24) | (((u64) (a)[5]) << 16) | \
(((u64) (a)[6]) << 8) | ((u64) (a)[7]))
#define RTW_PUT_BE64(a, val) \
do { \
(a)[0] = (u8) (((u64) (val)) >> 56); \
(a)[1] = (u8) (((u64) (val)) >> 48); \
(a)[2] = (u8) (((u64) (val)) >> 40); \
(a)[3] = (u8) (((u64) (val)) >> 32); \
(a)[4] = (u8) (((u64) (val)) >> 24); \
(a)[5] = (u8) (((u64) (val)) >> 16); \
(a)[6] = (u8) (((u64) (val)) >> 8); \
(a)[7] = (u8) (((u64) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE64(a) ((((u64) (a)[7]) << 56) | (((u64) (a)[6]) << 48) | \
(((u64) (a)[5]) << 40) | (((u64) (a)[4]) << 32) | \
(((u64) (a)[3]) << 24) | (((u64) (a)[2]) << 16) | \
(((u64) (a)[1]) << 8) | ((u64) (a)[0]))
#endif
extern PRTL_TIMER
RtlTimerCreate(
IN char *pTimerName,
IN u32 TimerPeriodMS,
IN RTL_TIMER_CALL_BACK CallbckFunc,
IN void *pContext,
IN u8 isPeriodical
);
extern VOID
RtlTimerDelete(
IN PRTL_TIMER pTimerHdl
);
extern u8
RtlTimerStart(
IN PRTL_TIMER pTimerHdl,
IN u8 isFromISR
);
extern u8
RtlTimerStop(
IN PRTL_TIMER pTimerHdl,
IN u8 isFromISR
);
extern u8
RtlTimerReset(
IN PRTL_TIMER pTimerHdl,
IN u8 isFromISR
);
extern u8
RtlTimerChangePeriod(
IN PRTL_TIMER pTimerHdl,
IN u32 NewPeriodMS,
IN u8 isFromISR
);
#endif //#ifndef __OSDEP_API_H_

View file

@ -0,0 +1,582 @@
/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#ifndef __OSDEP_SERVICE_H_
#define __OSDEP_SERVICE_H_
/* OS dep feature enable */
#include <autoconf.h>
#define CONFIG_LITTLE_ENDIAN
#if defined(CONFIG_PLATFORM_8195A) || defined(CONFIG_PLATFORM_8711B)
#define CONFIG_PLATFORM_AMEBA_X
#endif
#if defined(CONFIG_PLATFORM_8195A)
#define CONFIG_USE_TCM_HEAP 1 /* USE TCM HEAP */
#define USE_MUTEX_FOR_SPINLOCK 1
#endif
#if defined(CONFIG_PLATFORM_AMEBA_X)
#define CONFIG_MEM_MONITOR MEM_MONITOR_SIMPLE
#else
#define CONFIG_MEM_MONITOR MEM_MONITOR_LEAK
#endif
/* Define compilor specific symbol */
//
// inline function
//
#if defined ( __ICCARM__ )
#define __inline__ inline
#define __inline inline
#define __inline_definition //In dialect C99, inline means that a function's definition is provided
//only for inlining, and that there is another definition
//(without inline) somewhere else in the program.
//That means that this program is incomplete, because if
//add isn't inlined (for example, when compiling without optimization),
//then main will have an unresolved reference to that other definition.
// Do not inline function is the function body is defined .c file and this
// function will be called somewhere else, otherwise there is compile error
#elif defined ( __CC_ARM )
#define __inline__ __inline //__linine__ is not supported in keil compilor, use __inline instead
#define inline __inline
#define __inline_definition // for dialect C99
#elif defined ( __GNUC__ )
#define __inline__ inline
#define __inline inline
#define __inline_definition inline
#endif
#include <stdio.h>
#if defined(CONFIG_PLATFORM_8195A) || defined(CONFIG_PLATFORM_8711B)
#include "platform_autoconf.h"
#else
#ifndef SUCCESS
#define SUCCESS 0
#endif
#ifndef FAIL
#define FAIL (-1)
#endif
#ifndef _SUCCESS
#define _SUCCESS 1
#endif
#ifndef _FAIL
#define _FAIL 0
#endif
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE (!FALSE)
#endif
#define _TRUE TRUE
#define _FALSE FALSE
#endif
#if defined( PLATFORM_FREERTOS)
#include "freertos_service.h"
#elif defined( PLATFORM_ECOS)
#include "ecos/ecos_service.h"
#endif
#define RTW_MAX_DELAY 0xFFFFFFFF
#define RTW_WAIT_FOREVER 0xFFFFFFFF
/* Definitions returned by xTaskGetSchedulerState(). */
#define OS_SCHEDULER_NOT_STARTED 0
#define OS_SCHEDULER_RUNNING 1
#define OS_SCHEDULER_SUSPENDED 2
struct timer_list {
_timerHandle timer_hdl;
unsigned long data;
void (*function)(void *);
};
typedef thread_return (*thread_func_t)(thread_context context);
typedef void (*TIMER_FUN)(void *context);
typedef int (*event_handler_t)(char *buf, int buf_len, int flags, void *user_data);
#define CONFIG_THREAD_COMM_SEMA
struct task_struct {
const char *task_name;
_thread_hdl_ task; /* I: workqueue thread */
#ifdef CONFIG_THREAD_COMM_SIGNAL
const char *name; /* I: workqueue thread name */
u32 queue_num; /* total signal num */
u32 cur_queue_num; /* cur signal num should < queue_num */
#elif defined(CONFIG_THREAD_COMM_SEMA)
_sema wakeup_sema;
_sema terminate_sema;
// _queue work_queue; //TODO
#endif
u32 blocked;
u32 callback_running;
};
typedef struct {
_xqueue event_queue;
struct task_struct thread;
}rtw_worker_thread_t;
typedef struct
{
event_handler_t function;
char *buf;
int buf_len;
int flags;
void *user_data;
} rtw_event_message_t;
struct worker_timer_entry {
struct list_head list;
_timerHandle timer_hdl;
rtw_event_message_t message;
rtw_worker_thread_t *worker_thread;
u32 timeout;
};
#ifdef CONFIG_THREAD_COMM_SIGNAL
struct work_struct;
typedef void (*work_func_t)(void *context);
struct work_struct {
_list list;
u32 data;
work_func_t func;
void *context;
struct task_struct *used_wq;
};
struct delayed_work {
struct work_struct work;
struct timer_list timer;
};
#endif
#ifdef CONFIG_MEM_MONITOR
//----- ------------------------------------------------------------------
// Memory Monitor
//----- ------------------------------------------------------------------
#define MEM_MONITOR_SIMPLE 0x1
#define MEM_MONITOR_LEAK 0x2
#define MEM_MONITOR_FLAG_WIFI_DRV 0x1
#define MEM_MONITOR_FLAG_WPAS 0x2
#if CONFIG_MEM_MONITOR & MEM_MONITOR_LEAK
struct mem_entry {
struct list_head list;
int size;
void *ptr;
};
#endif
void init_mem_monitor(_list *pmem_table, int *used_num);
void deinit_mem_monitor(_list *pmem_table, int *used_num);
void add_mem_usage(_list *pmem_table, void *ptr, int size, int *used_num, int flag);
void del_mem_usage(_list *pmem_table, void *ptr, int *used_num, int flag);
int get_mem_usage(_list *pmem_table);
#endif
/*********************************** OSDEP API *****************************************/
u8* _rtw_vmalloc(u32 sz);
u8* _rtw_zvmalloc(u32 sz);
void _rtw_vmfree(u8 *pbuf, u32 sz);
u8* _rtw_zmalloc(u32 sz);
u8* _rtw_malloc(u32 sz);
void _rtw_mfree(u8 *pbuf, u32 sz);
#ifdef CONFIG_MEM_MONITOR
u8* rtw_vmalloc(u32 sz);
u8* rtw_zvmalloc(u32 sz);
void rtw_vmfree(u8 *pbuf, u32 sz);
u8* rtw_zmalloc(u32 sz);
u8* rtw_malloc(u32 sz);
void rtw_mfree(u8 *pbuf, u32 sz);
#else
#define rtw_vmalloc _rtw_vmalloc
#define rtw_zvmalloc _rtw_zvmalloc
#define rtw_vmfree _rtw_vmfree
#define rtw_zmalloc _rtw_zmalloc
#define rtw_malloc _rtw_malloc
#define rtw_mfree _rtw_mfree
#endif
#define rtw_free(buf) rtw_mfree((u8 *)buf, 0)
void* rtw_malloc2d(int h, int w, int size);
void rtw_mfree2d(void *pbuf, int h, int w, int size);
void rtw_memcpy(void* dst, void* src, u32 sz);
int rtw_memcmp(void *dst, void *src, u32 sz);
void rtw_memset(void *pbuf, int c, u32 sz);
void rtw_init_listhead(_list *list);
u32 rtw_is_list_empty(_list *phead);
void rtw_list_insert_head(_list *plist, _list *phead);
void rtw_list_insert_tail(_list *plist, _list *phead);
void rtw_list_delete(_list *plist);
void rtw_init_sema(_sema *sema, int init_val);
void rtw_free_sema(_sema *sema);
void rtw_up_sema(_sema *sema);
void rtw_up_sema_from_isr(_sema *sema);
u32 rtw_down_sema(_sema *sema);
u32 rtw_down_timeout_sema(_sema *sema, u32 timeout);
void rtw_mutex_init(_mutex *pmutex);
void rtw_mutex_free(_mutex *pmutex);
void rtw_mutex_put(_mutex *pmutex);
void rtw_mutex_get(_mutex *pmutex);
int rtw_mutex_get_timeout(_mutex *pmutex, u32 timeout_ms);
void rtw_enter_critical(_lock *plock, _irqL *pirqL);
void rtw_exit_critical(_lock *plock, _irqL *pirqL);
void rtw_enter_critical_from_isr(_lock *plock, _irqL *pirqL);
void rtw_exit_critical_from_isr(_lock *plock, _irqL *pirqL);
void rtw_enter_critical_bh(_lock *plock, _irqL *pirqL);
void rtw_exit_critical_bh(_lock *plock, _irqL *pirqL);
int rtw_enter_critical_mutex(_mutex *pmutex, _irqL *pirqL);
void rtw_exit_critical_mutex(_mutex *pmutex, _irqL *pirqL);
void rtw_spinlock_init(_lock *plock);
void rtw_spinlock_free(_lock *plock);
void rtw_spinlock_init(_lock *plock);
void rtw_spinlock_free(_lock *plock);
void rtw_spin_lock(_lock *plock);
void rtw_spin_unlock(_lock *plock);
void rtw_spinlock_irqsave(_lock *plock, _irqL *irqL);
void rtw_spinunlock_irqsave(_lock *plock, _irqL *irqL);
int rtw_init_xqueue( _xqueue* queue, const char* name, u32 message_size, u32 number_of_messages );
int rtw_push_to_xqueue( _xqueue* queue, void* message, u32 timeout_ms );
int rtw_pop_from_xqueue( _xqueue* queue, void* message, u32 timeout_ms );
int rtw_deinit_xqueue( _xqueue* queue );
void rtw_init_queue(_queue *pqueue);
void rtw_deinit_queue(_queue *pqueue);
u32 rtw_is_queue_empty(_queue *pqueue);
u32 rtw_queue_empty(_queue *pqueue);
u32 rtw_end_of_queue_search(_list *queue, _list *pelement);
_list* rtw_get_queue_head(_queue *queue);
u32 rtw_get_current_time(void);
u32 rtw_systime_to_ms(u32 systime);
u32 rtw_systime_to_sec(u32 systime);
u32 rtw_ms_to_systime(u32 ms);
u32 rtw_sec_to_systime(u32 sec);
s32 rtw_get_passing_time_ms(u32 start);
s32 rtw_get_time_interval_ms(u32 start, u32 end);
void rtw_msleep_os(int ms);
void rtw_usleep_os(int us);
u32 rtw_atoi(u8* s);
void rtw_mdelay_os(int ms);
void rtw_udelay_os(int us);
void rtw_yield_os(void);
//Atomic integer operations
void ATOMIC_SET(ATOMIC_T *v, int i);
int ATOMIC_READ(ATOMIC_T *v);
void ATOMIC_ADD(ATOMIC_T *v, int i);
void ATOMIC_SUB(ATOMIC_T *v, int i);
void ATOMIC_INC(ATOMIC_T *v);
void ATOMIC_DEC(ATOMIC_T *v);
int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i);
int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i);
int ATOMIC_INC_RETURN(ATOMIC_T *v);
int ATOMIC_DEC_RETURN(ATOMIC_T *v);
int ATOMIC_DEC_AND_TEST(ATOMIC_T *v);
u64 rtw_modular64(u64 x, u64 y);
int rtw_get_random_bytes(void* dst, u32 size);
u32 rtw_getFreeHeapSize(void);
void flush_signals_thread(void);
void rtw_acquire_wakelock(void);
void rtw_release_wakelock(void);
/*********************************** Thread related *****************************************/
int rtw_create_task(struct task_struct *task, const char *name, u32 stack_size, u32 priority, thread_func_t func, void *thctx);
void rtw_delete_task(struct task_struct * task);
void rtw_wakeup_task(struct task_struct *task);
int rtw_create_worker_thread( rtw_worker_thread_t* worker_thread, u8 priority, u32 stack_size, u32 event_queue_size );
int rtw_delete_worker_thread( rtw_worker_thread_t* worker_thread );
#if 0 //TODO
void rtw_init_delayed_work(struct delayed_work *dwork, work_func_t func, const char *name);
void rtw_deinit_delayed_work(struct delayed_work *dwork);
int rtw_queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, u32 delay, void* context);
BOOLEAN rtw_cancel_delayed_work(struct delayed_work *dwork);
#endif
void rtw_thread_enter(char *name);
void rtw_thread_exit(void);
u8 rtw_get_scheduler_state(void);
#ifdef PLATFORM_LINUX
#define rtw_warn_on(condition) WARN_ON(condition)
#else
#define rtw_warn_on(condition) do {} while (0)
#endif
/*********************************** Timer related *****************************************/
_timerHandle rtw_timerCreate( const signed char *pcTimerName,
osdepTickType xTimerPeriodInTicks,
u32 uxAutoReload,
void * pvTimerID,
TIMER_FUN pxCallbackFunction );
u32 rtw_timerDelete( _timerHandle xTimer,
osdepTickType xBlockTime );
u32 rtw_timerIsTimerActive( _timerHandle xTimer );
u32 rtw_timerStop( _timerHandle xTimer,
osdepTickType xBlockTime );
u32 rtw_timerChangePeriod( _timerHandle xTimer,
osdepTickType xNewPeriod,
osdepTickType xBlockTime );
/*********************************** OSDEP API end *****************************************/
#define LIST_CONTAINOR(ptr, type, member) \
((type *)((char *)(ptr)-(SIZE_T)((char *)&((type *)ptr)->member - (char *)ptr)))
#define time_after(a,b) ((long)(b) - (long)(a) < 0)
#define time_before(a,b) time_after(b,a)
#define time_after_eq(a,b) ((long)(a) - (long)(b) >= 0)
#define time_before_eq(a,b) time_after_eq(b,a)
#define _RND(sz, r) ((((sz)+((r)-1))/(r))*(r))
#define RND4(x) (((x >> 2) + (((x & 3) == 0) ? 0: 1)) << 2)
__inline static u32 _RND4(u32 sz)
{
u32 val;
val = ((sz >> 2) + ((sz & 3) ? 1: 0)) << 2;
return val;
}
__inline static u32 _RND8(u32 sz)
{
u32 val;
val = ((sz >> 3) + ((sz & 7) ? 1: 0)) << 3;
return val;
}
__inline static u32 _RND128(u32 sz)
{
u32 val;
val = ((sz >> 7) + ((sz & 127) ? 1: 0)) << 7;
return val;
}
__inline static u32 _RND256(u32 sz)
{
u32 val;
val = ((sz >> 8) + ((sz & 255) ? 1: 0)) << 8;
return val;
}
__inline static u32 _RND512(u32 sz)
{
u32 val;
val = ((sz >> 9) + ((sz & 511) ? 1: 0)) << 9;
return val;
}
__inline static u32 bitshift(u32 bitmask)
{
u32 i;
for (i = 0; i <= 31; i++)
if (((bitmask>>i) & 0x1) == 1) break;
return i;
}
/* Macros for handling unaligned memory accesses */
#define RTW_GET_BE16(a) ((u16) (((a)[0] << 8) | (a)[1]))
#define RTW_PUT_BE16(a, val) \
do { \
(a)[0] = ((u16) (val)) >> 8; \
(a)[1] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_LE16(a) ((u16) (((a)[1] << 8) | (a)[0]))
#define RTW_PUT_LE16(a, val) \
do { \
(a)[1] = ((u16) (val)) >> 8; \
(a)[0] = ((u16) (val)) & 0xff; \
} while (0)
#define RTW_GET_BE24(a) ((((u32) (a)[0]) << 16) | (((u32) (a)[1]) << 8) | \
((u32) (a)[2]))
#define RTW_PUT_BE24(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[2] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE32(a) ((((u32) (a)[0]) << 24) | (((u32) (a)[1]) << 16) | \
(((u32) (a)[2]) << 8) | ((u32) (a)[3]))
#define RTW_PUT_BE32(a, val) \
do { \
(a)[0] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[3] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE32(a) ((((u32) (a)[3]) << 24) | (((u32) (a)[2]) << 16) | \
(((u32) (a)[1]) << 8) | ((u32) (a)[0]))
#define RTW_PUT_LE32(a, val) \
do { \
(a)[3] = (u8) ((((u32) (val)) >> 24) & 0xff); \
(a)[2] = (u8) ((((u32) (val)) >> 16) & 0xff); \
(a)[1] = (u8) ((((u32) (val)) >> 8) & 0xff); \
(a)[0] = (u8) (((u32) (val)) & 0xff); \
} while (0)
#define RTW_GET_BE64(a) ((((u64) (a)[0]) << 56) | (((u64) (a)[1]) << 48) | \
(((u64) (a)[2]) << 40) | (((u64) (a)[3]) << 32) | \
(((u64) (a)[4]) << 24) | (((u64) (a)[5]) << 16) | \
(((u64) (a)[6]) << 8) | ((u64) (a)[7]))
#define RTW_PUT_BE64(a, val) \
do { \
(a)[0] = (u8) (((u64) (val)) >> 56); \
(a)[1] = (u8) (((u64) (val)) >> 48); \
(a)[2] = (u8) (((u64) (val)) >> 40); \
(a)[3] = (u8) (((u64) (val)) >> 32); \
(a)[4] = (u8) (((u64) (val)) >> 24); \
(a)[5] = (u8) (((u64) (val)) >> 16); \
(a)[6] = (u8) (((u64) (val)) >> 8); \
(a)[7] = (u8) (((u64) (val)) & 0xff); \
} while (0)
#define RTW_GET_LE64(a) ((((u64) (a)[7]) << 56) | (((u64) (a)[6]) << 48) | \
(((u64) (a)[5]) << 40) | (((u64) (a)[4]) << 32) | \
(((u64) (a)[3]) << 24) | (((u64) (a)[2]) << 16) | \
(((u64) (a)[1]) << 8) | ((u64) (a)[0]))
struct osdep_service_ops {
u8* (*rtw_vmalloc)(u32 sz);
u8* (*rtw_zvmalloc)(u32 sz);
void (*rtw_vmfree)(u8 *pbuf, u32 sz);
u8* (*rtw_malloc)(u32 sz);
u8* (*rtw_zmalloc)(u32 sz);
void (*rtw_mfree)(u8 *pbuf, u32 sz);
void (*rtw_memcpy)(void* dst, void* src, u32 sz);
int (*rtw_memcmp)(void *dst, void *src, u32 sz);
void (*rtw_memset)(void *pbuf, int c, u32 sz);
void (*rtw_init_sema)(_sema *sema, int init_val);
void (*rtw_free_sema)(_sema *sema);
void (*rtw_up_sema)(_sema *sema);
void (*rtw_up_sema_from_isr)(_sema *sema);
u32 (*rtw_down_timeout_sema)(_sema *sema, u32 timeout);
void (*rtw_mutex_init)(_mutex *pmutex);
void (*rtw_mutex_free)(_mutex *pmutex);
void (*rtw_mutex_get)(_mutex *pmutex);
int (*rtw_mutex_get_timeout)(_mutex *pmutex, u32 timeout_ms);
void (*rtw_mutex_put)(_mutex *pmutex);
void (*rtw_enter_critical)(_lock *plock, _irqL *pirqL);
void (*rtw_exit_critical)(_lock *plock, _irqL *pirqL);
void (*rtw_enter_critical_from_isr)(_lock *plock, _irqL *pirqL);
void (*rtw_exit_critical_from_isr)(_lock *plock, _irqL *pirqL);
void (*rtw_enter_critical_bh)(_lock *plock, _irqL *pirqL);
void (*rtw_exit_critical_bh)(_lock *plock, _irqL *pirqL);
int (*rtw_enter_critical_mutex)(_mutex *pmutex, _irqL *pirqL);
void (*rtw_exit_critical_mutex)(_mutex *pmutex, _irqL *pirqL);
void (*rtw_spinlock_init)(_lock *plock);
void (*rtw_spinlock_free)(_lock *plock);
void (*rtw_spin_lock)(_lock *plock);
void (*rtw_spin_unlock)(_lock *plock);
void (*rtw_spinlock_irqsave)(_lock *plock, _irqL *irqL);
void (*rtw_spinunlock_irqsave)(_lock *plock, _irqL *irqL);
int (*rtw_init_xqueue)( _xqueue* queue, const char* name, u32 message_size, u32 number_of_messages );
int (*rtw_push_to_xqueue)( _xqueue* queue, void* message, u32 timeout_ms );
int (*rtw_pop_from_xqueue)( _xqueue* queue, void* message, u32 timeout_ms );
int (*rtw_deinit_xqueue)( _xqueue* queue );
u32 (*rtw_get_current_time)(void);
u32 (*rtw_systime_to_ms)(u32 systime);
u32 (*rtw_systime_to_sec)(u32 systime);
u32 (*rtw_ms_to_systime)(u32 ms);
u32 (*rtw_sec_to_systime)(u32 sec);
void (*rtw_msleep_os)(int ms);
void (*rtw_usleep_os)(int us);
void (*rtw_mdelay_os)(int ms);
void (*rtw_udelay_os)(int us);
void (*rtw_yield_os)(void);
void (*ATOMIC_SET)(ATOMIC_T *v, int i);
int (*ATOMIC_READ)(ATOMIC_T *v);
void (*ATOMIC_ADD)(ATOMIC_T *v, int i);
void (*ATOMIC_SUB)(ATOMIC_T *v, int i);
void (*ATOMIC_INC)(ATOMIC_T *v);
void (*ATOMIC_DEC)(ATOMIC_T *v);
int (*ATOMIC_ADD_RETURN)(ATOMIC_T *v, int i);
int (*ATOMIC_SUB_RETURN)(ATOMIC_T *v, int i);
int (*ATOMIC_INC_RETURN)(ATOMIC_T *v);
int (*ATOMIC_DEC_RETURN)(ATOMIC_T *v);
u64 (*rtw_modular64)(u64 x, u64 y);
int (*rtw_get_random_bytes)(void* dst, u32 size);
u32 (*rtw_getFreeHeapSize)(void);
int (*rtw_create_task)(struct task_struct *task, const char *name, u32 stack_size, u32 priority, thread_func_t func, void *thctx);
void (*rtw_delete_task)(struct task_struct *task);
void (*rtw_wakeup_task)(struct task_struct *task);
#if 0 //TODO
void (*rtw_init_delayed_work)(struct delayed_work *dwork, work_func_t func, const char *name);
void (*rtw_deinit_delayed_work)(struct delayed_work *dwork);
int (*rtw_queue_delayed_work)(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay, void* context);
BOOLEAN (*rtw_cancel_delayed_work)(struct delayed_work *dwork);
#endif
void (*rtw_thread_enter)(char *name);
void (*rtw_thread_exit)(void);
_timerHandle (*rtw_timerCreate)( const signed char *pcTimerName,
osdepTickType xTimerPeriodInTicks,
u32 uxAutoReload,
void * pvTimerID,
TIMER_FUN pxCallbackFunction );
u32 (*rtw_timerDelete)( _timerHandle xTimer,
osdepTickType xBlockTime );
u32 (*rtw_timerIsTimerActive)( _timerHandle xTimer );
u32 (*rtw_timerStop)( _timerHandle xTimer,
osdepTickType xBlockTime );
u32 (*rtw_timerChangePeriod)( _timerHandle xTimer,
osdepTickType xNewPeriod,
osdepTickType xBlockTime );
void (*rtw_acquire_wakelock)(void);
void (*rtw_release_wakelock)(void);
u8 (*rtw_get_scheduler_state)(void);
};
/*********************************** OSDEP API end *****************************************/
#endif //#ifndef __OSDEP_SERVICE_H_

View file

@ -0,0 +1,66 @@
#ifndef STRUCT_HEAP_H
#define STRUCT_HEAP_H
//#include <stdio.h>
#include <stdint.h>
#include <osdep_service.h>
/* NOTE: struct size must be a 2's power! */
typedef struct _MemChunk
{
struct _MemChunk *next;
int size;
} MemChunk;
typedef MemChunk heap_buf_t;
/// A heap
typedef struct Heap
{
struct _MemChunk *FreeList; ///< Head of the free list
} Heap;
/**
* Utility macro to allocate a heap of size \a size.
*
* \param name Variable name for the heap.
* \param size Heap size in bytes.
*/
#define HEAP_DEFINE_BUF(name, size) \
heap_buf_t name[((size) + sizeof(heap_buf_t) - 1) / sizeof(heap_buf_t)]
/// Initialize \a heap within the buffer pointed by \a memory which is of \a size bytes
void tcm_heap_init(void);
/// Allocate a chunk of memory of \a size bytes from the heap
void *tcm_heap_allocmem(int size);
/// Free a chunk of memory of \a size bytes from the heap
void tcm_heap_freemem(void *mem, int size);
int tcm_heap_freeSpace(void);
#define HNEW(heap, type) \
(type*)tcm_heap_allocmem(heap, sizeof(type))
#define HNEWVEC(heap, type, nelem) \
(type*)tcm_heap_allocmem(heap, sizeof(type) * (nelem))
#define HDELETE(heap, type, mem) \
tcm_heap_freemem(heap, mem, sizeof(type))
#define HDELETEVEC(heap, type, nelem, mem) \
tcm_heap_freemem(heap, mem, sizeof(type) * (nelem))
/**
* \name Compatibility interface with C standard library
* \{
*/
void *tcm_heap_malloc(int size);
void *tcm_heap_calloc(int size);
void tcm_heap_free(void * mem);
/** \} */
#endif /* STRUCT_HEAP_H */