realtek_ameba/rtthread_patch/os/rtthread_service.c

1147 lines
30 KiB
C

/* rtthread includes */
#include <osdep_service.h>
#include <rtthread_service.h>
#ifdef SECTION
#undef SECTION
#endif
#include <rthw.h>
#include <rtthread.h>
#include <stdio.h>
// #define RTTHREAD_SERVICE_DEBUG
#define RTTHREAD_SERVICE_DEBUG_LEVEL 2
/********************* os depended utilities ********************/
#ifdef RTTHREAD_SERVICE_DEBUG
#define DEBUG_LOG(_level, fmt, args...) if ((_level) >= RTTHREAD_SERVICE_DEBUG_LEVEL) rt_kprintf(fmt, args)
#else
#define DEBUG_LOG(level, fmt, args...)
#endif
#ifndef USE_MUTEX_FOR_SPINLOCK
#define USE_MUTEX_FOR_SPINLOCK 1
#endif
extern uint32_t pmu_yield_os_check(void);
extern _LONG_CALL_ void DelayUs(u32 us);
extern _LONG_CALL_ void DelayMs(u32 ms);
extern uint32_t pmu_set_sysactive_time(uint32_t timeout_ms);
void save_and_cli(void)
{
DEBUG_LOG(1, "L:%d fun:%s runing...\n", __LINE__, __FUNCTION__);
rt_enter_critical();
}
void restore_flags(void)
{
DEBUG_LOG(1, "L:%d fun:%s runing...\n", __LINE__, __FUNCTION__);
rt_exit_critical();
}
void cli(void)
{
DEBUG_LOG(1, "L:%d fun:%s runing...\n", __LINE__, __FUNCTION__);
rt_hw_interrupt_disable();
}
/* Not needed on 64bit architectures */
static unsigned int __div64_32(u64 *n, unsigned int base)
{
u64 rem = *n;
u64 b = base;
u64 res, d = 1;
unsigned int high = rem >> 32;
/* Reduce the thing a bit first */
res = 0;
if (high >= base) {
high /= base;
res = (u64) high << 32;
rem -= (u64) (high * base) << 32;
}
while ((u64)b > 0 && b < rem) {
b = b+b;
d = d+d;
}
do {
if (rem >= b) {
rem -= b;
res += d;
}
b >>= 1;
d >>= 1;
} while (d);
*n = res;
return rem;
}
/********************* os depended service ********************/
u8* _rtthread_malloc(u32 sz)
{
void *pbuf;
DEBUG_LOG(2, "L:%d fun:%s sz:%d\n", __LINE__, __FUNCTION__, sz);
pbuf = rt_malloc(sz);
return pbuf;
}
u8* _rtthread_zmalloc(u32 sz)
{
void *pbuf = rt_malloc(sz);
DEBUG_LOG(2, "L:%d fun:%s sz:%d\n", __LINE__, __FUNCTION__, sz);
if (pbuf != RT_NULL)
memset(pbuf, 0, sz);
return pbuf;
}
void _rtthread_mfree(u8 *pbuf, u32 sz)
{
DEBUG_LOG(2, "L:%d fun:%s\n", __LINE__, __FUNCTION__);
rt_free(pbuf);
}
static void _rtthread_memcpy(void* dst, void* src, u32 sz)
{
DEBUG_LOG(1, "L:%d fun:%s dst:0x%08x src:0x%08x sz:%d\n", __LINE__, __FUNCTION__, dst, src, sz);
memcpy(dst, src, sz);
}
static int _rtthread_memcmp(void *dst, void *src, u32 sz)
{
//under Linux/GNU/GLibc, the return value of memcmp for two same mem. chunk is 0
DEBUG_LOG(1, "L:%d fun:%s dst:0x%08x src:0x%08x sz:%d\n", __LINE__, __FUNCTION__, dst, src, sz);
if (!(memcmp(dst, src, sz)))
return 1;
return 0;
}
static void _rtthread_memset(void *pbuf, int c, u32 sz)
{
DEBUG_LOG(1, "L:%d fun:%s buf:0x%08x c:%c sz:%d\n", __LINE__, __FUNCTION__, pbuf, c, sz);
memset(pbuf, c, sz);
}
static void _rtthread_init_sema(_sema *sema, int init_val)
{
char name[RT_NAME_MAX];
static int ameba_sem = 0;
DEBUG_LOG(3, "L:%d fun:%s begin val:%d\n", __LINE__, __FUNCTION__, init_val);
memset(name, 0, RT_NAME_MAX);
snprintf(name, RT_NAME_MAX, "sem-%03d", ameba_sem);
*sema = rt_sem_create(name, init_val, RT_IPC_FLAG_FIFO);
if (*sema != RT_NULL)
ameba_sem ++;
DEBUG_LOG(3, "L:%d fun:%s end sema:0x%08x num:%d\n", __LINE__, __FUNCTION__, *sema, ameba_sem);
}
static void _rtthread_free_sema(_sema *sema)
{
RT_ASSERT(*sema != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s sema:0x%08x\n", __LINE__, __FUNCTION__, *sema);
rt_sem_delete(*sema);
*sema = RT_NULL;
}
static void _rtthread_up_sema(_sema *sema)
{
if (*sema == RT_NULL)
{
rt_kprintf("err!! up sema is NULL\n");
return;
}
DEBUG_LOG(2, "L:%d fun:%s sema:0x%08x\n", __LINE__, __FUNCTION__, *sema);
rt_sem_release(*sema);
}
static void _rtthread_up_sema_from_isr(_sema *sema)
{
if (*sema == RT_NULL)
{
rt_kprintf("err!! up sema from isr is NULL\n");
return;
}
DEBUG_LOG(2, "L:%d fun:%s sema:0x%08x\n", __LINE__, __FUNCTION__, *sema);
rt_sem_release(*sema);
}
static u32 _rtthread_down_sema(_sema *sema, u32 timeout)
{
rt_int32_t tick;
RT_ASSERT(*sema != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s sema:0x%08x timeout:%d\n", __LINE__, __FUNCTION__, *sema, timeout);
if(timeout >= RT_TICK_MAX / 2)
tick = RT_WAITING_FOREVER;
else
tick = rtw_ms_to_systime(timeout);
if(rt_sem_take(*sema, tick) != RT_EOK)
return RT_FALSE;
return RT_TRUE;
}
static void _rtthread_mutex_init(_mutex *pmutex)
{
char name[RT_NAME_MAX];
static int ameba_mutex = 0;
DEBUG_LOG(3, "L:%d fun:%s begin\n", __LINE__, __FUNCTION__);
memset(name, 0, RT_NAME_MAX);
snprintf(name, RT_NAME_MAX, "mux-%03d", ameba_mutex);
*pmutex = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
if (*pmutex != RT_NULL)
ameba_mutex ++;
DEBUG_LOG(3, "L:%d fun:%s end pmutex:0x%08x\n", __LINE__, __FUNCTION__, *pmutex);
}
static void _rtthread_mutex_free(_mutex *pmutex)
{
RT_ASSERT(*pmutex != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s pmutex:0x%08x\n", __LINE__, __FUNCTION__, *pmutex);
rt_mutex_delete(*pmutex);
*pmutex = RT_NULL;
}
static void _rtthread_mutex_get(_lock *plock)
{
RT_ASSERT(*plock != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s pmutex:0x%08x\n", __LINE__, __FUNCTION__, *plock);
rt_mutex_take(*plock, RT_WAITING_FOREVER);
}
static int _rtthread_mutex_get_timeout(_lock *plock, u32 timeout_ms)
{
rt_int32_t tick;
RT_ASSERT(*plock != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s plock:0x%08x timeout_ms:%d\n", __LINE__, __FUNCTION__, *plock, timeout_ms);
if(timeout_ms >= RT_TICK_MAX / 2)
tick = RT_WAITING_FOREVER;
else
tick = rtw_ms_to_systime(timeout_ms);
return rt_mutex_take(*plock, tick);
}
static void _rtthread_mutex_put(_lock *plock)
{
if (*plock == RT_NULL)
{
rt_kprintf("err!! mutex put is null\n");
return;
}
DEBUG_LOG(2, "L:%d fun:%s pmutex:0x%08x\n", __LINE__, __FUNCTION__, *plock);
rt_mutex_release(*plock);
}
static void _rtthread_enter_critical(_lock *plock, _irqL *pirqL)
{
DEBUG_LOG(1, "L:%d fun:%s *pirqL:0x%08x\n", __LINE__, __FUNCTION__, *pirqL);
rt_enter_critical();
}
static void _rtthread_exit_critical(_lock *plock, _irqL *pirqL)
{
DEBUG_LOG(1, "L:%d fun:%s *pirqL:0x%08x\n", __LINE__, __FUNCTION__, *pirqL);
rt_exit_critical();
}
// static rt_base_t level;
static void _rtthread_enter_critical_from_isr(_lock *plock, _irqL *pirqL)
{
DEBUG_LOG(1, "L:%d fun:%s *pirqL:0x%08x\n", __LINE__, __FUNCTION__, *pirqL);
*pirqL = rt_hw_interrupt_disable();
}
static void _rtthread_exit_critical_from_isr(_lock *plock, _irqL *pirqL)
{
DEBUG_LOG(1, "L:%d fun:%s *pirqL:0x%08x\n", __LINE__, __FUNCTION__, *pirqL);
rt_hw_interrupt_enable(*pirqL);
}
static int _rtthread_enter_critical_mutex(_mutex *pmutex, _irqL *pirqL)
{
RT_ASSERT(*pmutex != RT_NULL);
DEBUG_LOG(1, "L:%d fun:%s *pirqL:0x%08x\n", __LINE__, __FUNCTION__, *pirqL);
if(rt_mutex_take(*pmutex, RT_WAITING_FOREVER) != RT_EOK)
return RT_FALSE;
return RT_TRUE;
}
static void _rtthread_exit_critical_mutex(_mutex *pmutex, _irqL *pirqL)
{
if (*pmutex == RT_NULL)
{
rt_kprintf("err!! critical mutex is null\n");
return;
}
DEBUG_LOG(1, "L:%d fun:%s *pirqL:0x%08x\n", __LINE__, __FUNCTION__, *pirqL);
rt_mutex_release(*pmutex);
}
static void _rtthread_spinlock_init(_lock *plock)
{
#if USE_MUTEX_FOR_SPINLOCK
char name[RT_NAME_MAX];
static int ameba_spin = 0;
DEBUG_LOG(3, "L:%d fun:%s begin\n", __LINE__, __FUNCTION__);
memset(name, 0, RT_NAME_MAX);
snprintf(name, RT_NAME_MAX, "spn-03d", ameba_spin);
*plock = rt_mutex_create(name, RT_IPC_FLAG_FIFO);
if (*plock != RT_NULL)
ameba_spin ++;
DEBUG_LOG(3, "L:%d fun:%s end plock:0x%08x ameba_spin:%d\n", __LINE__, __FUNCTION__, *plock, ameba_spin);
#endif
}
static void _rtthread_spinlock_free(_lock *plock)
{
#if USE_MUTEX_FOR_SPINLOCK
// RT_ASSERT(*plock != RT_NULL);
if (*plock == RT_NULL)
return;
DEBUG_LOG(2, "L:%d fun:%s plock:0x%08x\n", __LINE__, __FUNCTION__, *plock);
rt_mutex_delete(*plock);
*plock = NULL;
#endif
}
static void _rtthread_spinlock(_lock *plock)
{
#if USE_MUTEX_FOR_SPINLOCK
RT_ASSERT(*plock != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s plock:0x%08x\n", __LINE__, __FUNCTION__, *plock);
rt_mutex_take(*plock, RT_WAITING_FOREVER);
#endif
}
static void _rtthread_spinunlock(_lock *plock)
{
#if USE_MUTEX_FOR_SPINLOCK
if (*plock == RT_NULL)
{
rt_kprintf("err!! spinunlock is null\n");
return;
}
DEBUG_LOG(2, "L:%d fun:%s plock:0x%08x\n", __LINE__, __FUNCTION__, *plock);
rt_mutex_release(*plock);
#endif
}
static void _rtthread_spinlock_irqsave(_lock *plock, _irqL *irqL)
{
#if USE_MUTEX_FOR_SPINLOCK
if (*plock == RT_NULL)
rt_kprintf("err!! spinlock irqsave null\n");
DEBUG_LOG(2, "L:%d fun:%s plock:0x%08x irqL:0x%08x\n", __LINE__, __FUNCTION__, *plock, *irqL);
*irqL = 0xdeadbeff;
while (rt_mutex_take(*plock, 0) != RT_EOK)
{
rt_kprintf("spinlock_irqsave failed!\n");
}
#endif
}
static void _rtthread_spinunlock_irqsave(_lock *plock, _irqL *irqL)
{
#if USE_MUTEX_FOR_SPINLOCK
if (*plock == RT_NULL)
rt_kprintf("err!! spinunlock irqsave null\n");
DEBUG_LOG(2, "L:%d fun:%s plock:0x%08x irqL:0x%08x\n", __LINE__, __FUNCTION__, *plock, *irqL);
rt_mutex_release(*plock);
#endif
}
static int _rtthread_init_xqueue( _xqueue* queue, const char* name, u32 message_size, u32 number_of_messages )
{
DEBUG_LOG(3, "L:%d fun:%s begin name:%s size:%d msgs:%d\n", __LINE__, __FUNCTION__, name, message_size, number_of_messages);
*queue = rt_mq_create(name, message_size, number_of_messages, RT_IPC_FLAG_FIFO);
if (*queue == RT_NULL)
{
rt_kprintf("err!! create xqueue fail\n");
return -1;
}
DEBUG_LOG(3, "L:%d fun:%s end queue:0x%08x\n", __LINE__, __FUNCTION__, *queue);
return 0;
}
static int _rtthread_push_to_xqueue( _xqueue* queue, void* message, u32 timeout_ms )
{
RT_ASSERT(*queue != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s queue:0x%08x timeout_ms:%d\n", __LINE__, __FUNCTION__, *queue, timeout_ms);
if (rt_mq_send(*queue, message, ((rt_mq_t)*queue)->msg_size) != RT_EOK)
{
return -1;
}
return 0;
}
static int _rtthread_pop_from_xqueue( _xqueue* queue, void* message, u32 timeout_ms )
{
rt_uint32_t tick;
RT_ASSERT(*queue != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s queue:0x%08x msg:0x%08x timeout_ms:%d\n", __LINE__, __FUNCTION__, *queue, message, timeout_ms);
if(timeout_ms >= RT_TICK_MAX / 2)
tick = RT_WAITING_FOREVER;
else
tick = rtw_ms_to_systime(timeout_ms);
if (rt_mq_recv(*queue, message, ((rt_mq_t)*queue)->msg_size, tick) != RT_EOK)
{
return -1;
}
return 0;
}
static int _rtthread_deinit_xqueue( _xqueue* queue )
{
RT_ASSERT(*queue != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s queue:0x%08x\n", __LINE__, __FUNCTION__, *queue);
rt_mq_delete(*queue);
return 0;
}
static u32 _rtthread_get_current_time(void)
{
return (u32)rt_tick_get();
}
static u32 _rtthread_systime_to_ms(u32 systime)
{
return systime * 1000 / RT_TICK_PER_SECOND;
}
static u32 _rtthread_systime_to_sec(u32 systime)
{
return systime / RT_TICK_PER_SECOND;
}
static u32 _rtthread_ms_to_systime(u32 ms)
{
return rt_tick_from_millisecond(ms);
}
static u32 _rtthread_sec_to_systime(u32 sec)
{
return sec * RT_TICK_PER_SECOND;
}
static void _rtthread_msleep_os(int ms)
{
DEBUG_LOG(2, "L:%d fun:%s ms:%d\n", __LINE__, __FUNCTION__, ms);
#if defined(CONFIG_PLATFORM_8195A)
rt_thread_delay(rt_tick_from_millisecond(ms));
#elif defined(CONFIG_PLATFORM_8711B)
if (pmu_yield_os_check())
rt_thread_delay(rt_tick_from_millisecond(ms));
else
DelayMs(ms);
#endif
}
static void _rtthread_usleep_os(int us)
{
#if defined(STM32F2XX) || defined(STM32F4XX) || defined(STM32F10X_XL)
// rtthread does not provide us level delay. Use busy wait
WLAN_BSP_UsLoop(us);
#elif defined(CONFIG_PLATFORM_8195A)
//DBG_ERR("%s: Please Implement micro-second delay\n", __FUNCTION__);
#elif defined(CONFIG_PLATFORM_8711B)
DelayUs(us);
#endif
}
static void _rtthread_mdelay_os(int ms)
{
rt_thread_delay(rt_tick_from_millisecond(ms));
}
static void _rtthread_udelay_os(int us)
{
#if defined(STM32F2XX) || defined(STM32F4XX) || defined(STM32F10X_XL)
// rtthread does not provide us level delay. Use busy wait
WLAN_BSP_UsLoop(us);
#elif defined(CONFIG_PLATFORM_8195A)
HalDelayUs(us);
#elif defined(CONFIG_PLATFORM_8711B)
DelayUs(us);
#else
#error "Please implement hardware dependent micro second level sleep here"
#endif
}
static void _rtthread_yield_os(void)
{
#if defined(CONFIG_PLATFORM_8195A)
rt_thread_yield();
#elif defined(CONFIG_PLATFORM_8711B)
if (pmu_yield_os_check())
rt_thread_yield();
else
DelayMs(1);
#endif
}
static void _rtthread_ATOMIC_SET(ATOMIC_T *v, int i)
{
atomic_set(v,i);
}
static int _rtthread_ATOMIC_READ(ATOMIC_T *v)
{
return atomic_read(v);
}
static void _rtthread_ATOMIC_ADD(ATOMIC_T *v, int i)
{
save_and_cli();
v->counter += i;
restore_flags();
}
static void _rtthread_ATOMIC_SUB(ATOMIC_T *v, int i)
{
save_and_cli();
v->counter -= i;
restore_flags();
}
static void _rtthread_ATOMIC_INC(ATOMIC_T *v)
{
_rtthread_ATOMIC_ADD(v, 1);
}
static void _rtthread_ATOMIC_DEC(ATOMIC_T *v)
{
_rtthread_ATOMIC_SUB(v, 1);
}
static int _rtthread_ATOMIC_ADD_RETURN(ATOMIC_T *v, int i)
{
int temp;
save_and_cli();
temp = v->counter;
temp += i;
v->counter = temp;
restore_flags();
return temp;
}
static int _rtthread_ATOMIC_SUB_RETURN(ATOMIC_T *v, int i)
{
int temp;
save_and_cli();
temp = v->counter;
temp -= i;
v->counter = temp;
restore_flags();
return temp;
}
static int _rtthread_ATOMIC_INC_RETURN(ATOMIC_T *v)
{
return _rtthread_ATOMIC_ADD_RETURN(v, 1);
}
static int _rtthread_ATOMIC_DEC_RETURN(ATOMIC_T *v)
{
return _rtthread_ATOMIC_SUB_RETURN(v, 1);
}
static u64 _rtthread_modular64(u64 n, u64 base)
{
unsigned int __base = (base);
unsigned int __rem;
if (((n) >> 32) == 0) {
__rem = (unsigned int)(n) % __base;
(n) = (unsigned int)(n) / __base;
}
else
__rem = __div64_32(&(n), __base);
return __rem;
}
/* Refer to ecos bsd tcpip codes */
static int _rtthread_arc4random(void)
{
u32 res = _rtthread_get_current_time();
static unsigned long seed = 0xDEADB00B;
#if CONFIG_PLATFORM_8711B
if(random_seed){
seed = random_seed;
random_seed = 0;
}
#endif
seed = ((seed & 0x007F00FF) << 7) ^
((seed & 0x0F80FF00) >> 8) ^ // be sure to stir those low bits
(res << 13) ^ (res >> 9); // using the clock too!
return (int)seed;
}
static int _rtthread_get_random_bytes(void *buf, u32 len)
{
#if 1 //becuase of 4-byte align, we use the follow code style.
unsigned int ranbuf;
unsigned int *lp;
int i, count;
count = len / sizeof(unsigned int);
lp = (unsigned int *) buf;
for(i = 0; i < count; i ++) {
lp[i] = _rtthread_arc4random();
len -= sizeof(unsigned int);
}
if(len > 0) {
ranbuf = _rtthread_arc4random();
_rtthread_memcpy(&lp[i], &ranbuf, len);
}
return 0;
#else
unsigned long ranbuf, *lp;
lp = (unsigned long *)buf;
while (len > 0) {
ranbuf = _rtthread_arc4random();
*lp++ = ranbuf; //this op need the pointer is 4Byte-align!
len -= sizeof(ranbuf);
}
return 0;
#endif
}
static u32 _rtthread_GetFreeHeapSize(void)
{
return 16 * 1024;
}
#ifndef RT_USING_LWIP
#define RT_LWIP_TCPTHREAD_PRIORITY 10
#endif
static int _rtthread_create_task(struct task_struct *ptask, const char *name,
u32 stack_size, u32 priority, thread_func_t func, void *thctx)
{
rt_thread_t tid;
DEBUG_LOG(3, "L:%d fun:%s begin name:%s stack_size:%d priority:%d func:0x%08x thctx:0x%08x\n", \
__LINE__, __FUNCTION__, name, stack_size, priority, func, thctx);
rt_memset(ptask, 0, sizeof(struct task_struct));
ptask->task_name = name;
ptask->blocked = 0;
ptask->callback_running = 0;
_rtthread_init_sema(&ptask->wakeup_sema, 0);
if (ptask->wakeup_sema == RT_NULL)
{
rt_kprintf("L:%d create wakeup sem fail\n");
goto _thread_err;
}
_rtthread_init_sema(&ptask->terminate_sema, 0);
if (ptask->terminate_sema == RT_NULL)
{
rt_kprintf("L:%d terminate sem fail\n");
goto _thread_err;
}
stack_size = (stack_size * 3);
priority = RT_LWIP_TCPTHREAD_PRIORITY + priority;
if(priority >= RT_THREAD_PRIORITY_MAX)
priority = RT_THREAD_PRIORITY_MAX - 1;
tid = rt_thread_create(name, func, thctx, stack_size, priority, 10);
if (tid == RT_NULL)
{
rt_kprintf("L:%d thread create fail\n");
goto _thread_err;
}
ptask->task = tid;
rt_thread_startup(tid);
DEBUG_LOG(3, "L:%d fun:%s end stack_size:%d priority:%d wakeup:0x%08x terminate:0x%08x\n", \
__LINE__, __FUNCTION__, stack_size, priority, ptask->wakeup_sema, ptask->terminate_sema);
return RT_TRUE;
_thread_err:
if (ptask->wakeup_sema)
_rtthread_free_sema(&ptask->wakeup_sema);
if (ptask->terminate_sema)
_rtthread_free_sema(&ptask->terminate_sema);
rt_memset(ptask, 0, sizeof(struct task_struct));
return RT_FALSE;
}
static void _rtthread_delete_task(struct task_struct *ptask)
{
if (!ptask->task)
{
rt_kprintf("_rtthread_delete_task(): ptask is NULL!\n");
return;
}
DEBUG_LOG(2, "L:%d fun:%s name:%s\n", __LINE__, __FUNCTION__, ptask->task_name);
ptask->blocked = 1;
_rtthread_up_sema(&ptask->wakeup_sema);
_rtthread_down_sema(&ptask->terminate_sema, TIMER_MAX_DELAY);
_rtthread_free_sema(&ptask->wakeup_sema);
_rtthread_free_sema(&ptask->terminate_sema);
ptask->task = 0;
}
void _rtthread_wakeup_task(struct task_struct *ptask)
{
DEBUG_LOG(2, "L:%d fun:%s name:%s\n", __LINE__, __FUNCTION__, ptask->task_name);
_rtthread_up_sema(&ptask->wakeup_sema);
}
static void _rtthread_thread_enter(char *name)
{
DEBUG_LOG(3, "L:%d fun:%s name:%s\n", __LINE__, __FUNCTION__, name);
}
static void _rtthread_thread_exit(void)
{
DEBUG_LOG(3, "L:%d fun:%s\n", __LINE__, __FUNCTION__);
}
_timerHandle _rtthread_timerCreate( const signed char *pcTimerName,
osdepTickType xTimerPeriodInTicks,
u32 uxAutoReload,
void * pvTimerID,
TIMER_FUN pxCallbackFunction )
{
rt_timer_t timer;
rt_tick_t time;
rt_uint8_t flag;
DEBUG_LOG(3, "L:%d fun:%s begin name:%s reload:%d tick:%d fun:0x%08x ID:0x%08x\n",
__LINE__, __FUNCTION__, pcTimerName, uxAutoReload, xTimerPeriodInTicks, pxCallbackFunction, pvTimerID);
if(uxAutoReload == 1)
flag = (RT_TIMER_FLAG_SOFT_TIMER | RT_TIMER_FLAG_PERIODIC);
else
flag = (RT_TIMER_FLAG_SOFT_TIMER | RT_TIMER_FLAG_ONE_SHOT);
if( xTimerPeriodInTicks >= (RT_TICK_MAX / 2) )
time = (RT_TICK_MAX / 2) - 1;
else
time = xTimerPeriodInTicks;
timer = rt_timer_create(pcTimerName, pxCallbackFunction, RT_NULL, time, flag);
if(timer == RT_NULL)
{
rt_kprintf("timer create fail\n");
return RT_NULL;
}
timer->parameter = timer;
DEBUG_LOG(3, "L:%d fun:%s end timer:0x%08x\n", __LINE__, __FUNCTION__, timer);
return (_timerHandle)timer;
}
u32 _rtthread_timerDelete(_timerHandle xTimer, osdepTickType xBlockTime)
{
DEBUG_LOG(3, "L:%d fun:%s timer:0x%08x\n", __LINE__, __FUNCTION__, xTimer);
RT_ASSERT(xTimer != RT_NULL);
rt_timer_delete(xTimer);
return RT_TRUE;
}
u32 _rtthread_timerIsTimerActive( _timerHandle xTimer )
{
rt_timer_t pxTimer = (rt_timer_t)xTimer;
DEBUG_LOG(3, "L:%d fun:%s timer:0x%08x\n", __LINE__, __FUNCTION__, xTimer);
if(!xTimer)
{
rt_kprintf("err!! timer is active null\n");
return 0;
}
return (pxTimer->parent.flag & RT_TIMER_FLAG_ACTIVATED) ? 1 : 0;
}
u32 _rtthread_timerStop(_timerHandle xTimer, osdepTickType xBlockTime)
{
RT_ASSERT(xTimer != RT_NULL);
DEBUG_LOG(3, "L:%d fun:%s timer:0x%08x\n", __LINE__, __FUNCTION__, xTimer);
if (rt_timer_stop(xTimer) != RT_EOK)
{
// rt_kprintf("timer stop fail\n");
return RT_FALSE;
}
return RT_TRUE;
}
u32 _rtthread_timerChangePeriod( _timerHandle xTimer, osdepTickType xNewPeriod, osdepTickType xBlockTime )
{
int time;
RT_ASSERT(xTimer != RT_NULL);
DEBUG_LOG(3, "L:%d fun:%s timer:0x%08x new_tick:%d\n", __LINE__, __FUNCTION__, xTimer, xNewPeriod);
if(xNewPeriod == 0)
time = 1;
else if(xNewPeriod >= (RT_TICK_MAX / 2))
time = (RT_TICK_MAX / 2) - 1;
else
time = xNewPeriod;
rt_timer_stop(xTimer);
rt_timer_control(xTimer, RT_TIMER_CTRL_SET_TIME, (void *)&time);
if(rt_timer_start(xTimer) != RT_EOK)
{
rt_kprintf("change time and timer start fail\n");
return RT_FALSE;
}
return RT_TRUE;
}
void *_rtthread_timerGetID( _timerHandle xTimer )
{
return xTimer;
}
u32 _rtthread_timerStart( _timerHandle xTimer, osdepTickType xBlockTime )
{
RT_ASSERT(xTimer != RT_NULL);
DEBUG_LOG(3, "L:%d fun:%s timer:0x%08x\n", __LINE__, __FUNCTION__, xTimer);
if(rt_timer_start(xTimer) != RT_EOK)
{
rt_kprintf("change time and timer start fail\n");
return RT_FALSE;
}
return RT_TRUE;
}
u32 _rtthread_timerStartFromISR( _timerHandle xTimer, osdepBASE_TYPE *pxHigherPriorityTaskWoken )
{
DEBUG_LOG(1, "L:%d fun:%s timer:0x%08x\n", __LINE__, __FUNCTION__, xTimer);
if (xTimer == RT_NULL)
{
rt_kprintf("timer start from isr null\n");
return RT_FALSE;
}
if(rt_timer_start(xTimer) != RT_EOK)
{
rt_kprintf("timer start from isr fail\n");
return RT_FALSE;
}
return RT_TRUE;
}
u32 _rtthread_timerStopFromISR( _timerHandle xTimer, osdepBASE_TYPE *pxHigherPriorityTaskWoken )
{
DEBUG_LOG(1, "L:%d fun:%s timer:0x%08x\n", __LINE__, __FUNCTION__, xTimer);
if (xTimer == RT_NULL)
{
rt_kprintf("timer start from isr null\n");
return RT_FALSE;
}
if(rt_timer_stop(xTimer) != RT_EOK)
{
rt_kprintf("timer stop from isr fail\n");
return RT_FALSE;
}
return RT_TRUE;
}
u32 _rtthread_timerResetFromISR( _timerHandle xTimer, osdepBASE_TYPE *pxHigherPriorityTaskWoken )
{
DEBUG_LOG(1, "L:%d fun:%s timer:0x%08x\n", __LINE__, __FUNCTION__, xTimer);
if (xTimer == RT_NULL)
{
rt_kprintf("timer Reset from isr null\n");
return RT_FALSE;
}
if(rt_timer_stop(xTimer) != RT_EOK)
{
rt_kprintf("timer Reset from isr stop fail\n");
return RT_FALSE;
}
if(rt_timer_start(xTimer) != RT_EOK)
{
rt_kprintf("timer Reset from isr start fail\n");
return RT_FALSE;
}
return RT_TRUE;
}
u32 _rtthread_timerChangePeriodFromISR( _timerHandle xTimer,
osdepTickType xNewPeriod,
osdepBASE_TYPE *pxHigherPriorityTaskWoken )
{
int time;
DEBUG_LOG(1, "L:%d fun:%s timer:0x%08x\n", __LINE__, __FUNCTION__, xTimer);
if (xTimer == RT_NULL)
{
rt_kprintf("timer Change Period from isr null\n");
return RT_FALSE;
}
if(xNewPeriod == 0)
time = 1;
else if(xNewPeriod >= (RT_TICK_MAX / 2))
time = (RT_TICK_MAX / 2) - 1;
else
time = xNewPeriod;
rt_timer_stop(xTimer);
rt_timer_control(xTimer, RT_TIMER_CTRL_SET_TIME, (void *)&time);
if(rt_timer_start(xTimer) != RT_EOK)
{
rt_kprintf("timer Change Period from isr start fail\n");
return RT_FALSE;
}
return RT_TRUE;
}
u32 _rtthread_timerReset( _timerHandle xTimer,
osdepTickType xBlockTime )
{
RT_ASSERT(xTimer != RT_NULL);
DEBUG_LOG(2, "L:%d fun:%s timer:0x%08x\n", __LINE__, __FUNCTION__, xTimer);
rt_timer_stop(xTimer);
if(rt_timer_start(xTimer) != RT_EOK)
{
rt_kprintf("timer reset fail\n");
return RT_FALSE;
}
return RT_TRUE;
}
void _rtthread_acquire_wakelock(void)
{
#if defined(CONFIG_PLATFORM_8195A)
#if defined(configUSE_WAKELOCK_PMU) && (configUSE_WAKELOCK_PMU == 1)
pmu_acquire_wakelock(PMU_WLAN_DEVICE);
#endif
#elif defined(CONFIG_PLATFORM_8711B)
#if defined(configUSE_WAKELOCK_PMU) && (configUSE_WAKELOCK_PMU == 1)
if (pmu_yield_os_check())
pmu_acquire_wakelock(PMU_WLAN_DEVICE);
#endif
#endif
}
void _rtthread_release_wakelock(void)
{
#if defined(CONFIG_PLATFORM_8195A)
#if defined(configUSE_WAKELOCK_PMU) && (configUSE_WAKELOCK_PMU == 1)
pmu_release_wakelock(PMU_WLAN_DEVICE);
#endif
#elif defined(CONFIG_PLATFORM_8711B)
#if defined(configUSE_WAKELOCK_PMU) && (configUSE_WAKELOCK_PMU == 1)
if (pmu_yield_os_check())
pmu_release_wakelock(PMU_WLAN_DEVICE);
#endif
#endif
}
void _rtthread_wakelock_timeout(uint32_t timeout)
{
#if defined(CONFIG_PLATFORM_8195A)
#elif defined(CONFIG_PLATFORM_8711B)
if (pmu_yield_os_check())
pmu_set_sysactive_time(/*PMU_WLAN_DEVICE, */timeout);
else
printf("can't aquire wake during suspend flow!!\n");
#endif
}
u8 _rtthread_get_scheduler_state(void)
{
rt_thread_t thread = rt_thread_self();
u8 state = thread->stat;
switch(state){
case RT_THREAD_INIT: state = OS_SCHEDULER_NOT_STARTED; break;
case RT_THREAD_RUNNING: state = OS_SCHEDULER_RUNNING; break;
case RT_THREAD_SUSPEND: state = OS_SCHEDULER_SUSPENDED; break;
}
rt_kprintf("[func]:%s [line]:%d state:%d\n", __FUNCTION__, __LINE__, state);
return state;
}
const struct osdep_service_ops osdep_service = {
_rtthread_malloc, //rtw_vmalloc
_rtthread_zmalloc, //rtw_zvmalloc
_rtthread_mfree, //rtw_vmfree
_rtthread_malloc, //rtw_malloc
_rtthread_zmalloc, //rtw_zmalloc
_rtthread_mfree, //rtw_mfree
_rtthread_memcpy, //rtw_memcpy
_rtthread_memcmp, //rtw_memcmp
_rtthread_memset, //rtw_memset
_rtthread_init_sema, //rtw_init_sema
_rtthread_free_sema, //rtw_free_sema
_rtthread_up_sema, //rtw_up_sema
_rtthread_up_sema_from_isr, //rtw_up_sema_from_isr
_rtthread_down_sema, //rtw_down_sema
_rtthread_mutex_init, //rtw_mutex_init
_rtthread_mutex_free, //rtw_mutex_free
_rtthread_mutex_get, //rtw_mutex_get
_rtthread_mutex_get_timeout,//rtw_mutex_get_timeout
_rtthread_mutex_put, //rtw_mutex_put
_rtthread_enter_critical, //rtw_enter_critical
_rtthread_exit_critical, //rtw_exit_critical
_rtthread_enter_critical_from_isr, //rtw_enter_critical_from_isr
_rtthread_exit_critical_from_isr, //rtw_exit_critical_from_isr
NULL, //rtw_enter_critical_bh
NULL, //rtw_exit_critical_bh
_rtthread_enter_critical_mutex, //rtw_enter_critical_mutex
_rtthread_exit_critical_mutex, //rtw_exit_critical_mutex
_rtthread_spinlock_init, //rtw_spinlock_init
_rtthread_spinlock_free, //rtw_spinlock_free
_rtthread_spinlock, //rtw_spin_lock
_rtthread_spinunlock, //rtw_spin_unlock
_rtthread_spinlock_irqsave, //rtw_spinlock_irqsave
_rtthread_spinunlock_irqsave, //rtw_spinunlock_irqsave
_rtthread_init_xqueue, //rtw_init_xqueue
_rtthread_push_to_xqueue, //rtw_push_to_xqueue
_rtthread_pop_from_xqueue, //rtw_pop_from_xqueue
_rtthread_deinit_xqueue, //rtw_deinit_xqueue
_rtthread_get_current_time, //rtw_get_current_time
_rtthread_systime_to_ms, //rtw_systime_to_ms
_rtthread_systime_to_sec, //rtw_systime_to_sec
_rtthread_ms_to_systime, //rtw_ms_to_systime
_rtthread_sec_to_systime, //rtw_sec_to_systime
_rtthread_msleep_os, //rtw_msleep_os
_rtthread_usleep_os, //rtw_usleep_os
_rtthread_mdelay_os, //rtw_mdelay_os
_rtthread_udelay_os, //rtw_udelay_os
_rtthread_yield_os, //rtw_yield_os
_rtthread_ATOMIC_SET, //ATOMIC_SET
_rtthread_ATOMIC_READ, //ATOMIC_READ
_rtthread_ATOMIC_ADD, //ATOMIC_ADD
_rtthread_ATOMIC_SUB, //ATOMIC_SUB
_rtthread_ATOMIC_INC, //ATOMIC_INC
_rtthread_ATOMIC_DEC, //ATOMIC_DEC
_rtthread_ATOMIC_ADD_RETURN, //ATOMIC_ADD_RETURN
_rtthread_ATOMIC_SUB_RETURN, //ATOMIC_SUB_RETURN
_rtthread_ATOMIC_INC_RETURN, //ATOMIC_INC_RETURN
_rtthread_ATOMIC_DEC_RETURN, //ATOMIC_DEC_RETURN
_rtthread_modular64, //rtw_modular64
_rtthread_get_random_bytes, //rtw_get_random_bytes
_rtthread_GetFreeHeapSize, //rtw_getFreeHeapSize
_rtthread_create_task, //rtw_create_task
_rtthread_delete_task, //rtw_delete_task
_rtthread_wakeup_task, //rtw_wakeup_task
_rtthread_thread_enter, //rtw_thread_enter
_rtthread_thread_exit, //rtw_thread_exit
_rtthread_timerCreate, //rtw_timerCreate,
_rtthread_timerDelete, //rtw_timerDelete,
_rtthread_timerIsTimerActive, //rtw_timerIsTimerActive,
_rtthread_timerStop, //rtw_timerStop,
_rtthread_timerChangePeriod, //rtw_timerChangePeriod
_rtthread_timerGetID, //rtw_timerGetID
_rtthread_timerStart, //rtw_timerStart
_rtthread_timerStartFromISR, //rtw_timerStartFromISR
_rtthread_timerStopFromISR, //rtw_timerStopFromISR
_rtthread_timerResetFromISR, //rtw_timerResetFromISR
_rtthread_timerChangePeriodFromISR, //rtw_timerChangePeriodFromISR
_rtthread_timerReset, //rtw_timerReset
_rtthread_acquire_wakelock, //rtw_acquire_wakelock
_rtthread_release_wakelock, //rtw_release_wakelock
_rtthread_wakelock_timeout, //rtw_wakelock_timeout
_rtthread_get_scheduler_state //rtw_get_scheduler_state
};
void vTaskDelay( const rt_uint32_t xTicksToDelay )
{
rt_thread_delay(xTicksToDelay);
}
void *pvPortMalloc( size_t xWantedSize )
{
return rt_malloc(xWantedSize);
}
void vPortFree( void *pv )
{
rt_free(pv);
}
uint32_t xTaskGetTickCount( void )
{
return rt_tick_get();
}