

Realtek Ameba-1 Power Modes

Document Number: AN0045

August 12, 2015 2

Table of Contents

1 Power State ... 3

1.1 Deep Sleep Mode .. 3

1.2 Deep Standby Mode ... 4

1.3 Sleep Mode ... 4

1.3.1 Wakeup from sleep mode by UART .. 4

1.3.1.1 Solution A, select a UART RX pin which is also a GPIO interrupt pin 5

1.3.1.2 Solution B, Parallel UART RX with another GPIO interrupt pin 7

1.4 Power domain ... 7

1.5 Pull control .. 8

2 FreeRTOS Low Power Feature ... 9
2.1 FreeRTOS tickless design... 9

2.2 Wakelock Feature ... 11

2.3 Use Ameba sleep in tickless .. 13

2.4 Wakelock AT command .. 14

3 Put UART into tickless design .. 15
4 Put WLAN into tickless design... 16

4.1 IEEE 802.11 power management .. 16

4.2 Ameba LPS... 16

4.3 Ameba IPS ... 17

5 Measure Power Consumption .. 19
5.1 Hardware preparation .. 19

5.2 Build SDK example .. 21

Document Number: AN0045

August 12, 2015 3

1 Power State
Ameba supports three low power modes which are deep sleep mode, deep standby mode, and

sleep mode. Deep sleep mode turn off more power domain than deep standby mode, and deep

standby mode turn off more power domain than sleep mode. Various power modes can only

switch back to run mode before change to other mode, as shown in Figure 1.1:

Figure 1.1. Ameba Power Mode

1.1 Deep Sleep Mode
Power Domain: Deep sleep mode turn off power domain including cortex-M3 core, system

clock, SRAM, SDRAM, and regulator. Peripherals are turned off except wakeup source which

serve one wake-up pin and one low precision timer to wake up system. All of the registers are

turned off expect the ones that are used to kept wake-up pin. System restarts after wakeup.

Wakeup Sources:

- GPIOB_1

- General purpose timer

Each wakeup sources can be OR’ed, that means, either one condition fire up triggers wakeup

event. (Ex. Both GPIOB_1 and lower precision timer can wakeup device).

Document Number: AN0045

August 12, 2015 4

1.2 Deep Standby Mode
Power Domain: Deep standby mode turn off power domain including cortex-M3 core,

system clock, SRAM, SDRAM, and regulator. Peripherals are turned off except wakeup source

which serve 4 GPIO and one timer to wake up system. Only around 200 bytes of registers are

kept for wakeup usage, other registers are turned off. System restarts after wakeup.

Wakeup Sources:

- GPIOA_5

- GPIOC_7

- GPIOD_5

- GPIOE_3

- system timer

Each wakeup sources can be OR’ed.

1.3 Sleep Mode
Power Domain: Sleep mode turn off power domain including cortex-M3 core, and system

clock. System is not required to restart after wakeup.

Wakeup Sources:

- GPIO interrupt

- system timer

- general purpose timer

- wlan protocol

1.3.1 Wakeup from sleep mode by UART

UART (or log UART) is not in wakeup sources of sleep mode. To support wake from UART, we

can treat UART signal as GPIO interrupt signal and then wake system by GPIO interrupt. Please

note that it requires ~3ms for UART_RX to be ready to receive.

Below are 2 solutions:

Document Number: AN0045

August 12, 2015 5

(A) Select a UART RX pin which is also an a GPIO interrupt pin

(B) Parallel UART RX with another GPIO interrupt pin.

Solution A costs no extra pin, but not all UART RX pin are also GPIO interrupt pin. So solution 1

needs select specific UART in pinmux.

Solution B costs 1 extra GPIO interrupt pin, but it provides flexible choice on UART pin selection.

Table 1.3.1 shows the choices in different package:

Package Solution A Solution B

8195AM UART RX PA_0/PD_4
(Other UART RX pin are not GPIO interrupt pin)

Feasible

8711AM N/A

Feasible

8711AF UART RX PA_0
(Other UART RX pin are not GPIO interrupt pin)

Feasible

Table 1.3.1 UART wakeup selections on different package

Below sections describe how Solution A and B are implemented.

1.3.1.1 Solution A, select a UART RX pin which is also a GPIO interrupt pin

Let’s take PA_0 (UART RX) and PA_4 (UART TX) as example. Please refer Figure 1.3.2:

Figure 1.3.2 Use UART to wake Ameba

Document Number: AN0045

August 12, 2015 6

Please note that if module sends some characters to wakeup Ameba, “it requires ~3ms for

UART_RX to be ready to receive”. There are two methods to handle this condition:

Method 1: implement a simple protocol:

(1) Sending a character to Ameba for wakeup usage before sending any data.

(2) Ameba receives this character, make sure system won’t enter sleep again and send back a

character for acknowledgement usage.

(3) The module receives the acknowledgement. Sending desired UART data with an ending

character.

(4) Ameba receives this data and gets back to sleep.

Figure 1.3.3 shows this scenario:

Figure 1.3.3 A simple protocol to send data to Ameba

Method 2: Enter Sleep mode without disabling PLL

Document Number: AN0045

August 12, 2015 7

If PLL clock is reserved during sleep mode, UART_RX requires no delay to back to ready for

receive.

Please set FREERTOS_PMU_TICKLESS_PLL_RESERVED to 1 in platform_opt.h

#define FREERTOS_PMU_TICKLESS_PLL_RESERVED 1

1.3.1.2 Solution B, Parallel UART RX with another GPIO interrupt pin

Let’s take PA_6 (UART RX), PA_7 (UART TX), and PC_1 (GPIO interrupt) as example: Ref Figure

1.3.4:

Figure 1.3.4 Use UART and parallel with GPIO interrupt to wake ameba

It’s similar to Solution A excepts that it uses an extra GPIO interrupt pin to wake system. It can

also use same protocol which described in Solution A to send desired UART data.

Please note that UART_Rx requires ~3ms after system wake up to back to ready to receive.

Please refer to previous section in Solution A for suggested methodologies.

1.4 Power domain
Table 1.4.1 shows the comparison of power domain in various power saving mode:

Document Number: AN0045

August 12, 2015 8

Table 1.4.1 Power domain comparison

Table 1.4.2 shows the comparison of wakeup source and wakeup procedure.

Table 1.4.2. Wake sources comparison

1.5 Pull control
It needs doing I/O pull control when enter deep sleep, deep standby, and sleep mode.

Otherwise it result power leakage. For example, UART voltage level is high. If we pull down uart

pin or not pull, then power leakage happens. So we need make sure each pin has proper pull

control. In SDK, example pm_deepsleep and pm_deepstandby provide a reference pull control

for EVB board.

Document Number: AN0045

August 12, 2015 9

2 FreeRTOS Low Power Feature

2.1 FreeRTOS tickless design
FreeRTOS support a low power feature called tickless. It is implemented in idle task which has

lowest priority. It means it is invoked when there is no other task under running. Its idea is

place the microcontroller into a low power state if it expects there will be no event in nearly

future. It calculates expected idle time by looking timer task list. Then it performs suspend

action by using ARM instruction “WFI” (Wait For Interrupt) which makes the processor suspend

execution (Clock is stopped) until interrupt happened. The interrupts include timer which set by

FreeRTOS with value equal to expected idle time. So every time idle task is invoked, it calculates

the expected idle time, setup timer and then put process into suspend. Picture 2.1 illustrate the

simplified call flow.

Picture 2.1 FreeRTOS Tickless in idle task

Document Number: AN0045

August 12, 2015 10

At step 1, it calculates expected idle time. Then it does some condition check. For example, it

checks if the idle time is larger than configEXPECTED_IDLE_TIME_BEFORE_SLEEP, otherwise it

aborts suppressing tick process.

Step 2 and step 7 are un-implemented macro. It is for tracing sleep process before/after

vPortSuppressTickAndSleep(). Although it may abort sleep process inside

vPortSuppressTickAndSLeep(), so we can consider Step 2 as First gate before entering sleep.

After step 2, there are some tasks. It double check sleep conditions, backup timer related

registers, and check if some interrupt happens at this moment.

Step 3 and step 5 are un-implemented macro which are actually enter/leave sleep. So we can

consider Step 3 as second gate before entering sleep.

After Step 3, it is enter sleep. FreeRTOS uses WFI which is AMR instruction for sleep.

Document Number: AN0045

August 12, 2015 11

2.2 Wakelock Feature
In some situations, we need system keep awake to receive certain events. Otherwise event

might be missed when system is under sleep. An idea of wakelock is introduced that system

cannot sleep if some module holding wakelock.

We implement wakelock api by implementing macro “traceLOW_POWER_IDLE_BEGIN” as a

function and check wakelock status. If there is no one holding wakelock, then system is permit

to sleep. If there are one or more modules holding wakelock, then we abort sleep.

Picture 2.2 illustrate the wakelock design:

Picture 2.2 wakelock feature in FreeRTOS Tickless design

We can see step 2 and step 7 are modified as condition check for wakelock.

A wakelock bit map is for storing the wakelock status. Each module has its own bit in wakelock

bit map. If the wakelock bit map equals to zero means there is no module holding wakelock. If

the wakelock bit map larger than zero means there is some module holding wakelock. Bit 0~15

are reserved for ameba system usage, and user can use bit 16~31.

Document Number: AN0045

August 12, 2015 12

Picture 2.3 wakelock bit map

Document Number: AN0045

August 12, 2015 13

2.3 Use Ameba sleep in tickless
By default FreeRTOS uses ARM WFI which only suppresses CPU tick. We can save more power

consumption if we use Ameba sleep. Picture 2.4 illustrate the modification:

Picture 2.4 wakelock feature in FreeRTOS Tickless design

Step 3, 4, 5 are modified. In Step 3, we turn off peripherals like log uart. Please note that CPU

tick won’t update during sleep because we close CPU. It means software timer may works

abnormal if we don’t update system tick. So we store system timestamp which get from

“us_ticker_api.h”.

Step 4 performs the sleep. System sleeps with expected idle time if there is no other interrupt

wake up system. The wakeup events include most events include system timer, gtimer, gpio

interrupt, wlan protocol interrupt.

In Step 5 we turn on peripherals like log uart. And we check how much time passes, and update

system tick accordingly.

Document Number: AN0045

August 12, 2015 14

2.4 Wakelock AT command
We provide AT command to use wakelock api. Below are the description

- Acquire wakelock

ATSL=a[bitmap]

Ex. ATSL=a[00010000], it acquires wakelock at bit 16

- Release wakelock

ATSL=r[bitmap]

Ex. ATSL=r[00010000], it releases wakelock at bit 16

- Query wakelock status

ATSL=?

It print current wakelock bit map. We can use this command to debug why system doesn’t

enter sleep

AT command is sent through log uart. However it is hard to enter any command if system is

under tickless. So we implement the simple uart protocol (Ref section 1.3.1) for log uart. It

means log uart module acquire wakelock if user press “Enter”, and release wakelock after user

complete a command.

If user want to enter several commands and don’t want system enter tickless mode. He can

follow below scenario:

1. ATSL=a[00010000]

2. Send desired several AT commands

3. ATSL=r[00010000]

Document Number: AN0045

August 12, 2015 15

3 Put UART into tickless design
Section 1.3.1 describe how to make uart wake system. We can also put uart simple protocol

into tickless design. Figure 3.1 illustrate the modification:

Figure 3.1 UART in tickless design

Document Number: AN0045

August 12, 2015 16

4 Put WLAN into tickless design
In IEEE 802.11 power save management, it allows station enter their own sleep state. It defines

station need keep awake in certain timestamp and may enter sleep state otherwise.

Wlan driver acquire wakelock to avoid system enter sleep in tickless design when wlan need

keep awake. And it release wakelock when it is permitted to enter sleep state.

Below sections describe IEEE 802.11 power save, and its implementation on Ameba include

tickless design.

4.1 IEEE 802.11 power management
IEEE 802.11 power management allows station enter power saving mode. Station cannot

receive any frames during power saving. Thus AP need buffers these frames and requires

station periodically wakeup to check beacon which has information of buffered frames. Picture

4.1 illustrates the timeline of power saving.

Picture 4.1 timeline of power saving

4.2 Ameba LPS

This feature is implemented in wlan driver. wlan driver enters LPS automatically without user

application involved.

Ameba LPS (Leisure Power Save) implements IEEE 802.11 power management. Wlan driver

enters LPS if flowing criteria meets:

Document Number: AN0045

August 12, 2015 17

(i) TX + RX packets count <= 8 in 2 seconds

(ii) RX packets count <= 2 in 2 seconds

It is checked in traffic status watch dog. The criteria are to keep high performance while traffic

is busy. After enter LPS, there is PMU (Power Management Unit) control state machines. Please

refer Picture 4.2:

Picture 4.2 LPS state machine

4.3 Ameba IPS

This feature is implemented in wlan driver. Wlan driver enters IPS automatically without user

application involved.

 Ameba LPS is for situation that Ameba is associate to an AP. If Ameba is not associated to an

AP, driver automatically turns off RF and other module to save power. Wlan Driver also releases

wlan’s wakelock at this time. When wlan driver needs to use RF related function, it

automatically turns RF on and acquire wlan’s wakelock. This scenario is called IPS (Inactive

Power Save).

Document Number: AN0045

August 12, 2015 18

Picture 4.3 IPS state machine

Document Number: AN0045

August 12, 2015 19

5 Measure Power Consumption

5.1 Hardware preparation
In Ameba-1 reference board 3V0, there are other components that consume power. For

example, there are cortex-M0 for DAP usage, LEDs, and capacitances. To measure power

consumptions only for Ameba-1, you need remove capacitance at R43. And you can weld wires

as Figure 5.1.1:

Figure 5.1.1 Power consumption measurement

In the right side of R43 as shown in figure 5.1.1, there is a black wire which is power source of

Ameba-1. You can connect this point to current meter and 3V3 power supply to measure power

consumption. In this case, it is required to use J-link interface for code loading, and it is also

required to provide J-Link power separately. Figure 5.1.2 shows this idea:

Document Number: AN0045

August 12, 2015 20

Figure 5.1.2 Measure power consumption from power supply

If you want to use power source from micro usb, you can use the red wire to connect to a

current meter and then connect to the black wire. In this way, you have to consider power

usage from JTAG component lunched by DAP component. Figure 5.1.3 shows this idea:

Figure 5.1.3 Measure power consumption from micro usb

Document Number: AN0045

August 12, 2015 21

5.2 Build SDK example
Example “pm_tickless” illustrate how to use wakelock in tickless mode and we can measure

power consumption of wlan associate idle. It is similar to example wlan except that (1) it

configure UART as wake up source. (Ref Section 1.3.1 and Section 3), and (2) it release OS

wakelock in initialize.

Below are suggesting operations to measure power consumption of wlan association idle:

1. When device boot up, press several “Enter” in log uart to avoid system enter tickless mode.

Log uart module acquire wakelock at this moment.

2. Send AT command:

ATSL=a[00010000]

This acquire user defined wakelock and avoid system enter tickless mode. (Ref section 2.4)

Log uart module release its wakelock when user completes a command. So we need acquire

another user defined wakelock.

This command is necessary if we want to send several commands.

3. Send AT command:

ATW0=my_ap_name

ATW1=my_ap_password

ATWC

Wait until wlan associate success.

4. Send AT command:

ATSL=r[00010000]

It release user defined wakelock. Now system is under wlan association idle and tickless

mode.

You may find it hard to type any command under tickless mode. Please refer section 1.3.1 and

section 3 to let log uart has capability to wake system.

