open-ameba/RTL00_SDKV35a/example_sources/efuse_otp/main.c
2016-12-14 04:21:37 +03:00

361 lines
11 KiB
C

#include "FreeRTOS.h"
#include "task.h"
#include "diag.h"
#include "hal_efuse.h"
#include "efuse_api.h"
#include "osdep_service.h"
#include "device_lock.h"
_LONG_CALL_ROM_ extern u32 HALEFUSEOneByteReadROM(IN u32 CtrlSetting, IN u16 Addr, OUT u8 *Data, IN u8 L25OutVoltage);
_LONG_CALL_ROM_ extern u32 HALEFUSEOneByteWriteROM(IN u32 CtrlSetting, IN u16 Addr, IN u8 Data, IN u8 L25OutVoltage);
//====================================================== Start libs
//-----
int _HalEFUSEPowerSwitch8195AROM(uint8_t bWrite, uint8_t PwrState, uint8_t L25OutVoltage) {
if (PwrState == 1) {
HAL_WRITE32(SYSTEM_CTRL_BASE, REG_SYS_EEPROM_CTRL0, (HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EEPROM_CTRL0) & 0xFFFFFF) | 0x69000000); // EFUSE_UNLOCK
if (!(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_FUNC_EN) & BIT_SYS_FEN_EELDR)) // REG_SYS_FUNC_EN BIT_SYS_FEN_EELDR ?
HAL_WRITE32(SYSTEM_CTRL_BASE, REG_SYS_FUNC_EN, HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_FUNC_EN) | BIT_SYS_FEN_EELDR);
if (!(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_CLK_CTRL0) & BIT_SYSON_CK_EELDR_EN)) // REG_SYS_CLK_CTRL0 BIT_SYSON_CK_EELDR_EN ?
HAL_WRITE32(SYSTEM_CTRL_BASE, REG_SYS_CLK_CTRL0, HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_CLK_CTRL0) | BIT_SYSON_CK_EELDR_EN);
if (!(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_CLK_CTRL1) & BIT_PESOC_EELDR_CK_SEL)) // REG_SYS_CLK_CTRL1 BIT_PESOC_EELDR_CK_SEL ?
HAL_WRITE32(SYSTEM_CTRL_BASE, REG_SYS_CLK_CTRL1, HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_CLK_CTRL1) | BIT_PESOC_EELDR_CK_SEL);
if (bWrite == 1)
HAL_WRITE32(SYSTEM_CTRL_BASE, REG_SYS_REGU_CTRL0, (HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_REGU_CTRL0) & 0xFFFFF0FF) | BIT_SYS_REGU_LDO25E_EN | BIT_SYS_REGU_LDO25E_ADJ(L25OutVoltage));
}
else
{
HAL_WRITE32(SYSTEM_CTRL_BASE, REG_SYS_EEPROM_CTRL0, HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EEPROM_CTRL0) & 0xFFFFFF); // EFUSE_UNLOCK
if ( bWrite == 1 )
HAL_WRITE32(SYSTEM_CTRL_BASE, REG_SYS_REGU_CTRL0, (HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_REGU_CTRL0) & (~BIT_SYS_REGU_LDO25E_EN)));
}
return bWrite;
}
//-----
int _HALEFUSEOneByteReadROM(uint32_t CtrlSetting, uint16_t Addr, uint8_t *Data, uint8_t L25OutVoltage)
{
int i = 0, ret = 0;
if ( (Addr <= 0xFF) || ((CtrlSetting & 0xFFFF) == 0x26AE) ) {
_HalEFUSEPowerSwitch8195AROM(1, 1, L25OutVoltage);
HAL_WRITE32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_TEST, HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_TEST) & (~BIT_SYS_EF_FORCE_PGMEN));
HAL_WRITE32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL,
(CtrlSetting & (~(BIT_SYS_EF_RWFLAG | (BIT_MASK_SYS_EF_ADDR << BIT_SHIFT_SYS_EF_ADDR) | (BIT_MASK_SYS_EF_DATA << BIT_SHIFT_SYS_EF_DATA))))
| BIT_SYS_EF_ADDR(Addr));
if(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL) & BIT_SYS_EF_RWFLAG) {
*Data = HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL);
ret = 1;
}
else while(1) {
HalDelayUs(1000);
if(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL) & BIT_SYS_EF_RWFLAG) {
*Data = HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL);
ret = 1;
break;
}
if (i++ >= 100) {
*Data = -1;
ret = 1;
break;
};
};
_HalEFUSEPowerSwitch8195AROM(1, 0, L25OutVoltage);
}
else *Data = -1;
return ret;
}
//-----
int _HALOTPOneByteReadRAM(uint32_t CtrlSetting, int Addr, uint8_t *Data, uint8_t L25OutVoltage)
{
int result;
if ( (unsigned int)(Addr - 128) > 0x1F )
result = 1;
else
result = _HALEFUSEOneByteReadROM(CtrlSetting, Addr, Data, L25OutVoltage);
return result;
}
//-----
int _HALEFUSEOneByteReadRAM(uint32_t CtrlSetting, int Addr, uint8_t *Data, uint8_t L25OutVoltage)
{
int result;
if ( (unsigned int)(Addr - 160) > 0x33 )
{
result = _HALEFUSEOneByteReadROM(CtrlSetting, Addr, Data, L25OutVoltage);
}
else
{
*Data = -1;
result = 1;
}
return result;
}
//-----
void _ReadEOTPContant(uint8_t *pContant)
{
int i;
for(i = 0; i < 32; i++ )
_HALOTPOneByteRead(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL), i+128, &pContant[i], L25EOUTVOLTAGE);
}
//-----
void _ReadEfuseContant(int UserCode, uint8_t *pContant)
{
#define EFUSE_SECTION 11
uint8_t *pbuf;
int eFuse_Addr;
int offset;
int bcnt;
int i, j;
uint8_t DataTemp0;
uint8_t DataTemp1;
pbuf = pContant;
eFuse_Addr = 0;
do {
_HALEFUSEOneByteReadRAM(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL), eFuse_Addr, &DataTemp0, L25EOUTVOLTAGE);
if ( DataTemp0 == 0x0FF ) break;
if ( (DataTemp0 & 0x0F) == 0x0F ) {
_HALEFUSEOneByteReadRAM(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL), ++eFuse_Addr, &DataTemp1, L25EOUTVOLTAGE);
offset = ((DataTemp1 & 0x0F0) | (DataTemp0 >> 4)) >> 1;
bcnt = (~DataTemp1) & 0x0F;
if (((UserCode + EFUSE_SECTION) << 2) > offset || offset >= ((UserCode + EFUSE_SECTION + 1) << 2)) {
while (bcnt)
{
if (bcnt & 1) eFuse_Addr += 2;
bcnt >>= 1;
}
}
else
{
int base = (offset - ((EFUSE_SECTION + UserCode) << 2)) << 3;
j = 0;
while ( bcnt )
{
if ( bcnt & 1 )
{
_HALEFUSEOneByteReadRAM(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL), ++eFuse_Addr, &pbuf[base + j], L25EOUTVOLTAGE);
_HALEFUSEOneByteReadRAM(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL), ++eFuse_Addr, &pbuf[base + j + 1], L25EOUTVOLTAGE);
}
bcnt >>= 1;
j += 2;
}
}
}
else
{
for (i = (~DataTemp0) & 0x0F; i; i >>= 1 )
{
if (i & 1) eFuse_Addr += 2;
}
}
eFuse_Addr++;
}
while (eFuse_Addr <= 0x7E);
}
//-----
void _ReadEfuseContant1(uint8_t *pContant)
{
_ReadEfuseContant(0, pContant);
}
//-----
void _ReadEfuseContant2(uint8_t *pContant)
{
_ReadEfuseContant(1, pContant);
}
//-----
void _ReadEfuseContant3(uint8_t *pContant)
{
_ReadEfuseContant(2, pContant);
}
int _efuse_otp_read(u8 address, u8 len, u8 *buf)
{
u8 content[32]; // the OTP max length is 32
if((address + len) > 32) return -1;
_ReadEOTPContant(content);
_memcpy(buf, content + address, len);
return 0;
}
//====================================================== end libs
//======================================================
// OTP : one time programming
//======================================================
uint8_t buf[128];
#define OTP_MAX_LEN 32 // The OTP max length is 32 bytes
static void efuse_otp_task(void *param)
{
int ret;
u8 i;
DBG_8195A("\nefuse OTP block: Test Start\n");
// read OTP content
device_mutex_lock(RT_DEV_LOCK_EFUSE);
ret = efuse_otp_read(0, OTP_MAX_LEN, buf);
device_mutex_unlock(RT_DEV_LOCK_EFUSE);
if(ret < 0){
DBG_8195A("efuse OTP block: read address and length error\n");
goto exit;
}
for(i=0; i<OTP_MAX_LEN; i+=8){
DBG_8195A("[%d]\t%02X %02X %02X %02X %02X %02X %02X %02X\n",
i, buf[i], buf[i+1], buf[i+2], buf[i+3], buf[i+4], buf[i+5], buf[i+6], buf[i+7]);
}
int x = 0;
while(x < 1024) {
DBG_8195A("efuse OTP block at %d:\n", x);
device_mutex_lock(RT_DEV_LOCK_EFUSE);
for(i = 0; i < sizeof(buf); i++ )
// _HALEFUSEOneByteReadROM(HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL), i+x, &buf[i], L25EOUTVOLTAGE);
_HALEFUSEOneByteReadROM(0x26AF, i+x, &buf[i], L25EOUTVOLTAGE);
device_mutex_unlock(RT_DEV_LOCK_EFUSE);
for(i = 0; i < sizeof(buf); i+=8){
DBG_8195A("[%04x]\t%02X %02X %02X %02X %02X %02X %02X %02X\n",
i+x, buf[i], buf[i+1], buf[i+2], buf[i+3], buf[i+4], buf[i+5], buf[i+6], buf[i+7]);
}
x+=sizeof(buf);
}
/*
// write OTP content
_memset(buf, 0xFF, OTP_MAX_LEN);
if(0){ // fill your data
for(i=0; i<OTP_MAX_LEN; i++)
buf[i] = i;
}
if(0){ // write
device_mutex_lock(RT_DEV_LOCK_EFUSE);
ret = efuse_otp_write(0, OTP_MAX_LEN, buf);
device_mutex_unlock(RT_DEV_LOCK_EFUSE);
if(ret < 0){
DBG_8195A("efuse OTP block: write address and length error\n");
goto exit;
}
DBG_8195A("\nWrite Done.\n");
}
DBG_8195A("\n");
// read OTP content
device_mutex_lock(RT_DEV_LOCK_EFUSE);
ret = efuse_otp_read(0, OTP_MAX_LEN, buf);
device_mutex_unlock(RT_DEV_LOCK_EFUSE);
if(ret < 0){
DBG_8195A("efuse OTP block: read address and length error\n");
goto exit;
}
for(i=0; i<OTP_MAX_LEN; i+=8){
DBG_8195A("[%d]\t%02X %02X %02X %02X %02X %02X %02X %02X\n",
i, buf[i], buf[i+1], buf[i+2], buf[i+3], buf[i+4], buf[i+5], buf[i+6], buf[i+7]);
}
*/
DBG_8195A("efuse OTP block: Test Done\n");
vTaskDelete(NULL);
exit:
DBG_8195A("efuse OTP block: Test Fail!\n");
vTaskDelete(NULL);
}
//======================================================
// MTP : M? time programming
//======================================================
#define MTP_MAX_LEN 32 // The MTP max length is 32 bytes
static void efuse_mtp_task(void *param)
{
int ret;
u8 i;
DBG_8195A("\nefuse MTP block: Test Start\n");
// read MTP content
_memset(buf, 0xFF, MTP_MAX_LEN);
device_mutex_lock(RT_DEV_LOCK_EFUSE);
efuse_mtp_read(buf);
device_mutex_unlock(RT_DEV_LOCK_EFUSE);
for(i=0; i<MTP_MAX_LEN; i+=8){
DBG_8195A("[%d]\t%02X %02X %02X %02X %02X %02X %02X %02X\n",
i, buf[i], buf[i+1], buf[i+2], buf[i+3], buf[i+4], buf[i+5], buf[i+6], buf[i+7]);
}
DBG_8195A("\nefuse MTP block: Test Start\n");
// read MTP content
_memset(buf, 0xFF, MTP_MAX_LEN);
device_mutex_lock(RT_DEV_LOCK_EFUSE);
_ReadEfuseContant1(buf);
device_mutex_unlock(RT_DEV_LOCK_EFUSE);
for(i=0; i<MTP_MAX_LEN; i+=8){
DBG_8195A("[%d]\t%02X %02X %02X %02X %02X %02X %02X %02X\n",
i, buf[i], buf[i+1], buf[i+2], buf[i+3], buf[i+4], buf[i+5], buf[i+6], buf[i+7]);
}
/*
// write MTP content
_memset(buf, 0xFF, MTP_MAX_LEN);
if(0){ // fill your data
for(i=0; i<MTP_MAX_LEN; i++)
buf[i] = i;
}
if(0){ // write
device_mutex_lock(RT_DEV_LOCK_EFUSE);
ret = efuse_mtp_write(buf, MTP_MAX_LEN);
device_mutex_unlock(RT_DEV_LOCK_EFUSE);
if(ret < 0){
DBG_8195A("efuse MTP block: write length error\n");
goto exit;
}
DBG_8195A("\nWrite Done\n");
DBG_8195A("Remain %d\n", efuse_get_remaining_length());
}
DBG_8195A("\n");
// read MTP content
_memset(buf, 0xFF, MTP_MAX_LEN);
device_mutex_lock(RT_DEV_LOCK_EFUSE);
efuse_mtp_read(buf);
device_mutex_unlock(RT_DEV_LOCK_EFUSE);
for(i=0; i<MTP_MAX_LEN; i+=8){
DBG_8195A("[%d]\t%02X %02X %02X %02X %02X %02X %02X %02X\n",
i, buf[i], buf[i+1], buf[i+2], buf[i+3], buf[i+4], buf[i+5], buf[i+6], buf[i+7]);
}
*/
DBG_8195A("efuse MTP block: Test Done\n");
vTaskDelete(NULL);
exit:
DBG_8195A("efuse MTP block: Test Fail!\n");
vTaskDelete(NULL);
}
void main(void)
{
ConfigDebugErr = -1; // ~_DBG_GDMA_;
ConfigDebugInfo = -1; // ~_DBG_GDMA_;
ConfigDebugWarn = -1; // ~_DBG_GDMA_;
DBG_8195A("EFUSE_CTRL=%08x\n", HAL_READ32(SYSTEM_CTRL_BASE, REG_SYS_EFUSE_CTRL));
if(xTaskCreate(efuse_mtp_task, ((const char*)"efuse_mtp_task"), 512, NULL, tskIDLE_PRIORITY + 1, NULL) != pdPASS)
printf("\n\r%s xTaskCreate(efuse_mtp_task) failed", __FUNCTION__);
if(xTaskCreate(efuse_otp_task, ((const char*)"efuse_otp_task"), 512, NULL, tskIDLE_PRIORITY + 2, NULL) != pdPASS)
printf("\n\r%s xTaskCreate(efuse_otp_task) failed", __FUNCTION__);
/*Enable Schedule, Start Kernel*/
if(rtw_get_scheduler_state() == OS_SCHEDULER_NOT_STARTED)
vTaskStartScheduler();
else
vTaskDelete(NULL);
}