

Ameba IoT Demo Kit Application Note

Provide an example to setup a sensor/control application quickly. Sample code for both

device code and Android app are provided. Sample code for both local control and remote

control are provided.

August 20, 2015 2

Table of Contents

1 Introduction .. 3
2 Associate Ameba WiGadget IoT Demo Kit to AP .. 3
3 Ameba WiGadget IoT Demo Kit Protocol .. 3

3.1 Architecture .. 3

3.1.1 Discovery ... 4

3.1.1.1 Discovery ... 4

3.1.1.2 Device’s information ... 4

3.1.2 Pair .. 4

3.1.2.1 Flow chart of pair .. 4

3.1.2.2 Generate key ... 5

3.1.3 Transmitting data .. 5

3.1.3.1 Local link .. 6

3.1.3.2 Cloud link .. 6

3.1.3.3 Data type ... 6

3.1.4 Compile guide ... 6

3.1.4.1 Pairing for Device CONTROL_TYPE is 0 ... 8

3.1.4.2 Pairing for Device CONTROL_TYPE is 1 ... 9

3.1.4.3 Reset ... 10

4 APP .. 11
4.1.1 Android ... 11

4.1.2 The UI & Flow .. 11

4.1.3 The Device Icons ... 13

4.1.4 Cloud Link & Local Link ... 14

4.1.5 The Library, Source & Issues ... 15

4.1.6 Pairing Process & Error Code .. 15

August 20, 2015 3

1 Introduction
This document introduces the implementation of Ameba WiGadget IoT Demo Kit feature. Smartphone

and Ameba can transmit data to each other with Ameba WiGadget IoT Demo Kit feature. The Setup

process is quite simple that users just need to connect the Ameba with Wi-Fi, then after pairing, the

Smartphone can get the data from Ameba.

2 Associate Ameba WiGadget IoT Demo Kit to AP
The first time when power on, Ameba WiGadget IoT Demo Kit will wait for 20 seconds to connect Wi-Fi.

After Wi-Fi connected, the SSID and password will be remembered by Ameba. So if the Wi-Fi disconnect in

some cases, it will auto-reconnect using the same SSID and password.

3 Ameba WiGadget IoT Demo Kit Protocol
This sector will describe the protocol for communication between Ameba and smartphone APP.

There are two CONTROL TYPES for each device: just local control (CONTROL_TYPE = 0), multi-control: both

local control and cloud control (CONTROL_TYPE = 1).

3.1 Architecture

There are three main functions provided by Ameba WiGadget IoT Demo Kit Feature.

The first is discovering. Discovering is based on the protocol of mDNS. Smartphone can find the device

through the same AP. Smartphone with Ameba IoT demo interface also can get the text record sending by

Ameba, and then the Smartphone can know the device’s information: CONTROL_TYPE, PAIR_STATE, IP,

PORT, MAC_ADDRESS.

The second is pairing. For the pairing, there will be two times handshakes (CONTROL_TYPE = 0) or three

times handshakes (CONTROL_TYPE = 1) between smartphone and device which has Ameba WiGadget IoT

Demo Kit interface.

The other is transmitting data. The device which CONTROL_TYPE = 0 will use TCP socket to transmit data

with smartphone, and the device which CONTROL_TYPE = 1 will use both TCP socket and cloud thread to

transmit data.

August 20, 2015 4

3.1.1 Discovery

3.1.1.1 Discovery

MDNS is a protocol that resolves host names to IP addresses or Service name to IP address with layer4

type with port in local network that do not include a local name server. It is a zero configuration service,

using essentially the same programming interfaces, packet formats and operating semantics as the

unicast Domain Name System (DNS). The mDNS protocol is published as RFC 6762, uses IP

multicast User Datagram Protocol (UDP) packets with 224.0.0.251 and port 5353.

After IOT KIT connecting Wi-Fi and get IP address, the mDNS register process started. The service name

for shtc1 is "ht_sensor.Ameba._tcp.local” with IP address and PORT. It also sends text records include

the information of IP, PORT, MAC_ADDR, PAIR_STATE, SERVICE_NAME and CONTROL_TYPE.

The smartphone which also has mDNS module can receive the mDNS packets and discover the service

that the IOT KIT registered and read the text record to judge device’s control type and pair state.

With the information getting from mDNS, smartphone can connect with the IOT KIT device and start to

pair with it.

3.1.1.2 Device’s information

 IP IP address of Ameba

 PORT PORT of Ameba

 MAC_ADDR MAC_ADDR of Ameba

 PAIR_STATE Value: 0 or 1 (Default value is 0, after pairing will be changed to 1. After reset of

remove the device on APP will initial the value to 0. If just reboot, the value will not be changed.)

 SERVICE_NAME Now with the extension of SHTC1, SERVICE_NAME is ht_sensor.

 CONTROL_TYPE Value: 0 or 1 (0: Just supporting the local control; 1: Supporting both local

control and cloud control.)

3.1.2 Pair

3.1.2.1 Flow chart of pair

http://en.wikipedia.org/wiki/Zero_configuration_networking
http://en.wikipedia.org/wiki/Domain_Name_System
http://tools.ietf.org/html/rfc6762
http://en.wikipedia.org/wiki/User_Datagram_Protocol

August 20, 2015 5

IOT
Device

IOT
Controller

Request(“PAIR”)

Response(Controller’s public key)

Response(“FIREBASE URL”)

Response(Encrypt Firebase URL)

Response(“PAIR OK”)

Response(Device’s public key)

Generate device’s
public key

Generate controller’s
public key

Generate the
SHARE KEY

Generate the
SHARE KEY

Encrypt using AES, the
key is the first 16 byes of

SHARE KEY

If CONTROL_TYPE = 1

3.1.2.2 Generate key

The method to generate key is implementing with curve 25519. The device and smartphone both

generate 32 bytes random as their private key. And generate their public key using curve 25519. Then

after exchanging their public key during pairing, the device and smartphone can generate the same

shared key using their own private key and other’s public key.

After that, all messages will encrypt by AES which key is the first 16 bytes of shared key.

3.1.3 Transmitting data
It is supported two types of devices for IOT KIT. One is just support local link, its CONTROL_TYPE is 0.

The other is support both local link and cloud link, its CONTROL_TYPE is 1.

August 20, 2015 6

3.1.3.1 Local link

Local link is based on the TCP protocol. Each connection will complete one time receive and transmit.

Once the device receiving an encrypted “request” data, the device will response the encrypt data. The

method to encrypt data is AES. The KEY is the first 16 bytes of shared key which generated while

pairing.

3.1.3.2 Cloud link

Cloud link now is based on the service of Firebase (the database of Google Nest). It’s using the https

protocol. To use it, the controller must transmit a Firebase URL to device while pairing. Then the device

will update data to Firebase.

3.1.3.3 Data type

This example supplies two types of data. One is for the customers who has the extension board with

shtc1(a temperature and humility sensor), the other is using the pseudo data. The flag to open using

pseudo data is in wigadget.h.

3.1.4 Compile guide
To enable IOT KIT in Ameba, please make sure the macro as follow are configured correctly.

To enable this application: configure CONFIG_ EXAMPLE_WIGADGET to 1 and undefined all functions

that don’t need in platform_opt.h.

/* platform_opts.h */
#define CONFIG_EXAMPLE_WIGADGET 1
#define CONFIG_OTA_UPDATE 0
#define CONFIG_ENABLE_WPS 0
#define CONFIG_INCLUDE_SIMPLE_CONFIG 0

For network setting: configure LWIP_IGMP and LWIP_DNS to 1 in lwipopt.h and opt.h.

/* lwipopts.h */
#define LWIP_IGMP 1

/* opt.h */

August 20, 2015 7

#define LWIP_IGMP 1
#define LWIP_DNS 1

Choose a control type: define the CONTROL_TYPE in wigadget.c.

/* wigadget.c */
#define CONTROL_TYPE 1//or 0

Choose a data type: define the PSEUDO_DATA in wigadget.h.

/* wigadget.h */
#define PSEUDO_DATA 1//or 0

To ensure the application has enough heap size: set more than 115 kbytes heap size in

FreeRTOSConfig.h

/* FreeRTOSConfig.h */
#define configTOTAL_HEAP_SIZE ((size_t) (115 * 1024))

August 20, 2015 8

3.1.4.1 Pairing for Device CONTROL_TYPE is 0

August 20, 2015 9

After Pairing, the device’s PAIR_STATE will change from 0 to 1 and store to flash. The key is also stored in flash.

If you reboot the device, it will also in paired state.

3.1.4.2 Pairing for Device CONTROL_TYPE is 1

After Pairing, the device’s PAIR_STATE will change from 0 to 1 and store to flash. The key and the Firebase URL

are also stored in flash. If you reboot the device, it will also in paired state.

Notice: The Firebase App ID inputted on the APP is “your-app-id“in the URL https://<your-app-

id>.firebaseio.com/

UART RX

UART TX
GPIO PIN

GND

August 20, 2015 10

3.1.4.3 Reset

I. Resetting the device through removing the device on APP.

II. Resetting the device through connecting the GPIO to GND(erase the PAIR_STATE, KEY and FIREBASE

URL in flash).

August 20, 2015 11

4 APP
The smartphone application, WiGadget, implements three main functions provided by Ameba. The first is

discovering the Ameba devices at a local network environment. The second is handshaking with Ameba. The

third function is getting data from Ameba on local or from Firebase on cloud.

4.1.1 Android
The Android app provided in this release is targeted to Android phones with min. API level 16, which requires

Android 4.1 (Jelly Bean) or above to function correctly. WiGadget demonstrates a typical procedure of using a

mobile phone to control smart devices with common experiences include device discovery, device pairing and

data gathering.

4.1.2 The UI & Flow
The UI screenshots and descriptions are list as below, please reference to the application flowchart attached

at the end of the document to find out the internal interactions between these UIs.

UI 1 – MainAcvivity UI 2 – SettingsActivity UI 3 – MyDeviceFragment

App launched and mDNS discover

started, “NEW” text label appears if new
Ameba device is discovered.

Presents customized settings for the app
components, settings are stored in the

internal storage as shared profile.

Displays exist and newly paired devices
in a customized grid-view adapter.

August 20, 2015 12

UI 3.1 – Rename/Remove Device UI 3.1.1 – Rename Device Dialog UI 3.1.2 – Force to Remove Device

Long press (press & hold) on device icon

to call out popup dialog to rename or
remove saved device.

Rename device dialog, the length of the
new name is not limited, but only two
lines of characters will be displayed.

If the unpairing process is not finished
successfully, a popup dialog will prompt

user to remove device mandatorily.

UI 3.2 – HTSensorActivity UI 4 – FindDeviceFragemt UI 4.1 – Pairing Dialog

Get Temperature & Humidity Sensor

(SHTC1) readings form cloud/local link
and present them on the graph

Displays newly discovered devices in a
customized grid-view adapter.

Click on (an unpaired) device to start
pairing process, click on (an paired)

device to start sharing process – *Device
sharing will be supported in future

release

August 20, 2015 13

UI 4.2 – Firebase App ID Prompt

UI 4.2.1 –
RegisterFirebaseAccountActivity

UI 5 – AboutFragment

For cloud controlled devices, an availed

firebase app id is required during pairing
process, a cloud data base will be setup

under the given app id
The Firebase App ID is “your-app-id“in

the URL https://<your-app-
id>.firebaseio.com/

If users don’t have a firebase account,
the web-view will bring them to the
firebase registration page, they can

create a free firebase account and/or
login to create an app id

Nothing here, just displays build
information on text-view

4.1.3 The Device Icons
There are four types of icons used the in app to indicate the app-device link availability: local-controlled-online,

local-controlled-offline, cloud-controlled-online, cloud-controlled-offline. Take H&T Sensor as an example:

local-controlled-online local-controlled-offline cloud-controlled-online cloud-controlled-offline

Note: A cloud-controlled device will be considered “online” as long as the firebase app id is availed -- even

ameba side may be offline.

August 20, 2015 14

4.1.4 Cloud Link & Local Link
From a user perspective, the link type for WiGadget connect to Ameba is implicit. Users do not need to decide

which connection method should be applied when WiGadget get data from Ameba. A simple description

applies to all conditions: WiGadget always tries to use local link connection if Ameba is locally reachable.

Link
Local Link Available Local Link Not Available

Locally Controlled Device
 (controlType=0)

Local Link No Connection

Cloud Controlled Device
(controlType=1)

Local Link Cloud Link

For cloud controlled devices, as soon as successfully paired with WiGadget, Ameba will start to push data to

Firebase cloud. User can see the instantaneous updating of data readings from Firebase console by login to

https://<your-app-id>.firebaseio.com/.

An illustration below shows the console of a Firebase app named "ameba" during WiGadget cloud-link testing:

Control

August 20, 2015 15

4.1.5 The Library, Source & Issues
The library “commons-codec-1.6-repack.jar” and source code package “javax.jmdns.*” used in the app

development are not as the same as given on the official repository.

The official build of Apache Commons Codec 1.6 library is known has methods naming conflicts with Android’s

API, which can cause a function name resolving failure when compile project using Android Studio.

The official build of JmDNS library (current version is v3.4.1) is buggy and it can’t resolve new TXT Record

correctly after Ameba changes its pairing state. After Ameba switches its pair state, it does detect the change

of TXT Record but fails to resolve the new pair state out from the TXT Record cache.

Developers should be aware above issues if they want to use those libraries built form the official repositories.

4.1.6 Pairing Process & Error Code
The pairing process with Ameba involves several TCP-handshakes, pairing time and result may be various

under different networking environment. A Toast Message may show Error Code on UI if the paring process

ended up unsuccessfully, the meaning of error codes are listed at below:

Error
Code

Meaning Error Code Meaning

-1 Pairing failed to start -6 Java unknown host exception

-2 Server no response -7 Java interrupted exception

-3 “PAIR” command rejected by server -8 Java IO exception

-4 Public key rejected by server -9 Firebase app id cannot be verified

-5 Firebase app URL rejected by server -10 Any other unknown error

Note: All error codes are specified in the “Constants” class, please refer to the source code to get more detailed

information.

Error reason:

-9: The Firebase app id is invalid or the network you connect cannot access firebase. Also checking the Firebase

app id(if the URL of Firebase is: https://xxx.firebaseio.com, just inputting the “xxx”) .

https://xxx.firebaseio.com/

August 20, 2015 16

App launch
AND

Start mDNS service
discovery

MainActivity

Handler / Update UI callback

MyDeviceFrag
ment

FindDeviceFrag
emt

AboutFragmen
t

Display build information

End

Handler / Update UI callback Handler / Update UI callback

Parse Devices
Check All Local

Devices’ Availability
Long Click

Rename
Device

OR
 Remove
Device

Short Click

Check
Availability

Ping timeout OR
Firebase app id not available

Show Toast
End

Receive Ping Response OR
Firebase app id is available

HTSensorActivi
ty

Handler / Update UI callback

Parse mDNS TXT
Records

Click

Check pair state
Already paired:
Device Sharing

Show Toast
End

Not Paired: Pairing

Pairing Dialog

Device sharing will be
supported in future release

Check Response
No response OR

“ERROR” response
End

Send “PAIR”
command

OK

Check
Control Type

Check
Response

No response OR
“ERROR” response

End

Send curve25519
public key

Generate Shared
Key

OK

Local Controlled Device

Cloud Controlled Device

Firebase App
ID

Prompt
Register

RegisterFirebas
eAccountActivi

ty

Check App ID Not Available End

Send curve25519
public key

Check
Response

No response OR
“ERROR” response

End

Generate Shared
Key

Send Encrypt App ID

Check
Response

No response OR
“ERROR” response

End

Encrypt firebase app id

Save Device

Switch
Fragments

Check Intent

Local Control is Available

Send / Receive
Encrypt command /
Data Via Local Link

Local Control is Not Available

Receive Encrypt
data Via Cloud Link

Switch

User choose

Rename
Device Dialog

Remove Device

Parse Device

Ameba is Locally Reachable

Send “remove”
command

Check response

Remove OK

Remove Device
From Saved List

And UI

No response OR
“ERROR” response

Force to
Remove

Device Dialog

choose

User choose

CancelEnd

Remove Device
Keep Device

Settings Menu
SettingsActivit

y

Apply settings from
Shared Preference

12

3 4 5

3.1

3.2

3.1.1

Rename Device

3.1.2

4.1

4.2 4.2.1

Appendix: WiGadget Flowchart

