open-ameba/sdk/component/common/mbed/targets/hal/rtl8195a/serial_api.c

801 lines
26 KiB
C
Raw Normal View History

2016-11-09 00:56:41 +00:00
/* mbed Microcontroller Library
*******************************************************************************
* Copyright (c) 2014, Realtek Semiconductor Corp.
* All rights reserved.
*
* This module is a confidential and proprietary property of RealTek and
* possession or use of this module requires written permission of RealTek.
*******************************************************************************
*/
#include "objects.h"
//#include "mbed_assert.h"
#include "serial_api.h"
#include "serial_ex_api.h"
#if CONFIG_UART_EN
//#include "cmsis.h"
#include "pinmap.h"
#include <string.h>
static const PinMap PinMap_UART_TX[] = {
{PC_3, RTL_PIN_PERI(UART0, 0, S0), RTL_PIN_FUNC(UART0, S0)},
{PE_0, RTL_PIN_PERI(UART0, 0, S1), RTL_PIN_FUNC(UART0, S1)},
{PA_7, RTL_PIN_PERI(UART0, 0, S2), RTL_PIN_FUNC(UART0, S2)}, // None RTL8710AF
2017-02-01 11:37:57 +00:00
{PD_3, RTL_PIN_PERI(UART1, 1, S0), RTL_PIN_FUNC(UART1, S0)}, // None RTL8710AF, RTL8711AM
2016-11-09 00:56:41 +00:00
{PE_4, RTL_PIN_PERI(UART1, 1, S1), RTL_PIN_FUNC(UART1, S1)},
2017-02-01 11:37:57 +00:00
{PB_5, RTL_PIN_PERI(UART1, 1, S2), RTL_PIN_FUNC(UART1, S2)}, // None RTL8710AF, RTL8711AM
{PA_4, RTL_PIN_PERI(UART2, 2, S0), RTL_PIN_FUNC(UART2, S0)}, // None RTL8711AM
{PC_9, RTL_PIN_PERI(UART2, 2, S1), RTL_PIN_FUNC(UART2, S1)}, // None RTL8710AF, RTL8711AM
{PD_7, RTL_PIN_PERI(UART2, 2, S2), RTL_PIN_FUNC(UART2, S2)}, // None RTL8710AF, RTL8711AM
2016-11-09 00:56:41 +00:00
{NC, NC, 0}
};
static const PinMap PinMap_UART_RX[] = {
2017-02-01 11:37:57 +00:00
{PC_0, RTL_PIN_PERI(UART0, 0, S0), RTL_PIN_FUNC(UART0, S0)}, // No Interrupt Source?
{PE_3, RTL_PIN_PERI(UART0, 0, S1), RTL_PIN_FUNC(UART0, S1)},
{PA_6, RTL_PIN_PERI(UART0, 0, S2), RTL_PIN_FUNC(UART0, S2)}, // None RTL8710AF, // No Interrupt Source?
{PD_0, RTL_PIN_PERI(UART1, 1, S0), RTL_PIN_FUNC(UART1, S0)}, // None RTL8710AF, RTL8711AM
{PE_7, RTL_PIN_PERI(UART1, 1, S1), RTL_PIN_FUNC(UART1, S1)}, // None RTL8710AF, RTL8711AM
{PB_4, RTL_PIN_PERI(UART1, 1, S2), RTL_PIN_FUNC(UART1, S2)}, // None RTL8710AF, RTL8711AM
{PA_0, RTL_PIN_PERI(UART2, 2, S0), RTL_PIN_FUNC(UART2, S0)}, // None RTL8711AM
{PC_6, RTL_PIN_PERI(UART2, 2, S1), RTL_PIN_FUNC(UART2, S1)}, // None RTL8710AF, RTL8711AM
{PD_4, RTL_PIN_PERI(UART2, 2, S2), RTL_PIN_FUNC(UART2, S2)}, // None RTL8710AF, RTL8711AM
2016-11-09 00:56:41 +00:00
{NC, NC, 0}
};
2017-02-01 11:37:57 +00:00
#define UART_NUM (3)
2016-11-09 00:56:41 +00:00
#define SERIAL_TX_IRQ_EN 0x01
#define SERIAL_RX_IRQ_EN 0x02
#define SERIAL_TX_DMA_EN 0x01
#define SERIAL_RX_DMA_EN 0x02
2017-02-01 11:37:57 +00:00
static uint32_t serial_irq_ids[UART_NUM] = {0, 0, 0}; // , 0
2016-11-09 00:56:41 +00:00
static uart_irq_handler irq_handler[UART_NUM];
2017-02-01 11:37:57 +00:00
static uint32_t serial_irq_en[UART_NUM] = {0, 0, 0}; // , 0
2016-11-09 00:56:41 +00:00
#ifdef CONFIG_GDMA_EN
2017-02-01 11:37:57 +00:00
static uint32_t serial_dma_en[UART_NUM] = {0, 0, 0}; // , 0
2016-11-09 00:56:41 +00:00
static HAL_GDMA_OP UartGdmaOp;
#endif
#ifdef CONFIG_MBED_ENABLED
int stdio_uart_inited = 0;
serial_t stdio_uart;
#endif
static void SerialTxDoneCallBack(VOID *pAdapter);
static void SerialRxDoneCallBack(VOID *pAdapter);
void serial_init(serial_t *obj, PinName tx, PinName rx)
{
uint32_t uart_tx, uart_rx;
uint32_t uart_sel;
uint8_t uart_idx;
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter;
#ifdef CONFIG_GDMA_EN
PUART_DMA_CONFIG pHalRuartDmaCfg;
PHAL_GDMA_OP pHalGdmaOp=&UartGdmaOp;
#endif
// Determine the UART to use (UART0, UART1, or UART3)
uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
uart_sel = pinmap_merge(uart_tx, uart_rx);
uart_idx = RTL_GET_PERI_IDX(uart_sel);
if (unlikely(uart_idx == (uint8_t)NC)) {
DBG_UART_ERR("%s: Cannot find matched UART\n", __FUNCTION__);
return;
}
pHalRuartOp = &(obj->hal_uart_op);
pHalRuartAdapter = &(obj->hal_uart_adp);
if ((NULL == pHalRuartOp) || (NULL == pHalRuartAdapter)) {
DBG_UART_ERR("%s: Allocate Adapter Failed\n", __FUNCTION__);
return;
}
HalRuartOpInit((VOID*)pHalRuartOp);
#ifdef CONFIG_GDMA_EN
HalGdmaOpInit((VOID*)pHalGdmaOp);
pHalRuartDmaCfg = &obj->uart_gdma_cfg;
pHalRuartDmaCfg->pHalGdmaOp = pHalGdmaOp;
pHalRuartDmaCfg->pTxHalGdmaAdapter = &obj->uart_gdma_adp_tx;
pHalRuartDmaCfg->pRxHalGdmaAdapter = &obj->uart_gdma_adp_rx;
pHalRuartDmaCfg->pTxDmaBlkList = &obj->gdma_multiblk_list_tx;
pHalRuartDmaCfg->pRxDmaBlkList = &obj->gdma_multiblk_list_rx;
_memset((void*)(pHalRuartDmaCfg->pTxHalGdmaAdapter), 0, sizeof(HAL_GDMA_ADAPTER));
_memset((void*)(pHalRuartDmaCfg->pRxHalGdmaAdapter), 0, sizeof(HAL_GDMA_ADAPTER));
_memset((void*)(pHalRuartDmaCfg->pTxDmaBlkList), 0, sizeof(UART_DMA_MULTIBLK));
_memset((void*)(pHalRuartDmaCfg->pRxDmaBlkList), 0, sizeof(UART_DMA_MULTIBLK));
#endif
pHalRuartOp->HalRuartAdapterLoadDef(pHalRuartAdapter, uart_idx);
pHalRuartAdapter->PinmuxSelect = RTL_GET_PERI_SEL(uart_sel);
pHalRuartAdapter->BaudRate = 9600;
pHalRuartAdapter->IrqHandle.Priority = 6;
// Configure the UART pins
// TODO:
// pinmap_pinout(tx, PinMap_UART_TX);
// pinmap_pinout(rx, PinMap_UART_RX);
// pin_mode(tx, PullUp);
// pin_mode(rx, PullUp);
if (HalRuartInit(pHalRuartAdapter) != HAL_OK) {
DBG_UART_ERR("serial_init Err!\n");
return;
}
pHalRuartOp->HalRuartRegIrq(pHalRuartAdapter);
pHalRuartOp->HalRuartIntEnable(pHalRuartAdapter);
#ifdef CONFIG_MBED_ENABLED
// For stdio management
if (uart_idx == STDIO_UART) {
stdio_uart_inited = 1;
memcpy(&stdio_uart, obj, sizeof(serial_t));
}
#endif
}
void serial_free(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
#ifdef CONFIG_GDMA_EN
u8 uart_idx;
PUART_DMA_CONFIG pHalRuartDmaCfg;
#endif
pHalRuartAdapter = &(obj->hal_uart_adp);
HalRuartDeInit(pHalRuartAdapter);
#ifdef CONFIG_GDMA_EN
uart_idx = pHalRuartAdapter->UartIndex;
pHalRuartDmaCfg = &obj->uart_gdma_cfg;
if (serial_dma_en[uart_idx] & SERIAL_RX_DMA_EN) {
HalRuartRxGdmaDeInit(pHalRuartDmaCfg);
serial_dma_en[uart_idx] &= ~SERIAL_RX_DMA_EN;
}
if (serial_dma_en[uart_idx] & SERIAL_TX_DMA_EN) {
HalRuartTxGdmaDeInit(pHalRuartDmaCfg);
serial_dma_en[uart_idx] &= ~SERIAL_TX_DMA_EN;
}
#endif
}
void serial_baud(serial_t *obj, int baudrate) {
PHAL_RUART_ADAPTER pHalRuartAdapter;
//PHAL_RUART_OP pHalRuartOp;
pHalRuartAdapter = &(obj->hal_uart_adp);
//pHalRuartOp = &(obj->hal_uart_op);
pHalRuartAdapter->BaudRate = baudrate;
// HalRuartInit(pHalRuartAdapter);
HalRuartSetBaudRate((VOID*)pHalRuartAdapter);
}
void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
//PHAL_RUART_OP pHalRuartOp;
pHalRuartAdapter = &(obj->hal_uart_adp);
//pHalRuartOp = &(obj->hal_uart_op);
if (data_bits == 8) {
pHalRuartAdapter->WordLen = RUART_WLS_8BITS;
} else {
pHalRuartAdapter->WordLen = RUART_WLS_7BITS;
}
switch (parity) {
case ParityOdd:
case ParityForced0:
pHalRuartAdapter->Parity = RUART_PARITY_ENABLE;
pHalRuartAdapter->ParityType = RUART_ODD_PARITY;
break;
case ParityEven:
case ParityForced1:
pHalRuartAdapter->Parity = RUART_PARITY_ENABLE;
pHalRuartAdapter->ParityType = RUART_EVEN_PARITY;
break;
default: // ParityNone
pHalRuartAdapter->Parity = RUART_PARITY_DISABLE;
break;
}
if (stop_bits == 2) {
pHalRuartAdapter->StopBit = RUART_STOP_BIT_2;
} else {
pHalRuartAdapter->StopBit = RUART_STOP_BIT_1;
}
HalRuartInit(pHalRuartAdapter);
}
/******************************************************************************
* INTERRUPTS HANDLING
******************************************************************************/
static void SerialTxDoneCallBack(VOID *pAdapter)
{
PHAL_RUART_ADAPTER pHalRuartAdapter = pAdapter;
u8 uart_idx = pHalRuartAdapter->UartIndex;
// Mask UART TX FIFO empty
pHalRuartAdapter->Interrupts &= ~RUART_IER_ETBEI;
HalRuartSetIMRRtl8195a (pHalRuartAdapter);
if (irq_handler[uart_idx] != NULL) {
irq_handler[uart_idx](serial_irq_ids[uart_idx], TxIrq);
}
}
static void SerialRxDoneCallBack(VOID *pAdapter)
{
PHAL_RUART_ADAPTER pHalRuartAdapter = pAdapter;
u8 uart_idx = pHalRuartAdapter->UartIndex;
if (irq_handler[uart_idx] != NULL) {
irq_handler[uart_idx](serial_irq_ids[uart_idx], RxIrq);
}
}
void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
// PHAL_RUART_OP pHalRuartOp;
u8 uart_idx;
pHalRuartAdapter = &(obj->hal_uart_adp);
// pHalRuartOp = &(obj->hal_uart_op);
uart_idx = pHalRuartAdapter->UartIndex;
irq_handler[uart_idx] = handler;
serial_irq_ids[uart_idx] = id;
pHalRuartAdapter->TxTDCallback = SerialTxDoneCallBack;
pHalRuartAdapter->TxTDCbPara = (void*)pHalRuartAdapter;
pHalRuartAdapter->RxDRCallback = SerialRxDoneCallBack;
pHalRuartAdapter->RxDRCbPara = (void*)pHalRuartAdapter;
// pHalRuartOp->HalRuartRegIrq(pHalRuartAdapter);
// pHalRuartOp->HalRuartIntEnable(pHalRuartAdapter);
}
void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
PHAL_RUART_OP pHalRuartOp;
u8 uart_idx;
pHalRuartAdapter = &(obj->hal_uart_adp);
pHalRuartOp = &(obj->hal_uart_op);
uart_idx = pHalRuartAdapter->UartIndex;
if (enable) {
if (irq == RxIrq) {
pHalRuartAdapter->Interrupts |= RUART_IER_ERBI | RUART_IER_ELSI;
serial_irq_en[uart_idx] |= SERIAL_RX_IRQ_EN;
HalRuartSetIMRRtl8195a (pHalRuartAdapter);
}
else {
serial_irq_en[uart_idx] |= SERIAL_TX_IRQ_EN;
}
pHalRuartOp->HalRuartRegIrq(pHalRuartAdapter);
pHalRuartOp->HalRuartIntEnable(pHalRuartAdapter);
}
else { // disable
if (irq == RxIrq) {
pHalRuartAdapter->Interrupts &= ~(RUART_IER_ERBI | RUART_IER_ELSI);
serial_irq_en[uart_idx] &= ~SERIAL_RX_IRQ_EN;
}
else {
pHalRuartAdapter->Interrupts &= ~RUART_IER_ETBEI;
serial_irq_en[uart_idx] &= ~SERIAL_TX_IRQ_EN;
}
HalRuartSetIMRRtl8195a (pHalRuartAdapter);
if (pHalRuartAdapter->Interrupts == 0) {
InterruptUnRegister(&pHalRuartAdapter->IrqHandle);
InterruptDis(&pHalRuartAdapter->IrqHandle);
}
}
}
/******************************************************************************
* READ/WRITE
******************************************************************************/
int serial_getc(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
u8 uart_idx = pHalRuartAdapter->UartIndex;
while (!serial_readable(obj));
return (int)((HAL_RUART_READ32(uart_idx, RUART_REV_BUF_REG_OFF)) & 0xFF);
}
void serial_putc(serial_t *obj, int c)
{
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
u8 uart_idx = pHalRuartAdapter->UartIndex;
while (!serial_writable(obj));
HAL_RUART_WRITE32(uart_idx, RUART_TRAN_HOLD_REG_OFF, (c & 0xFF));
if (serial_irq_en[uart_idx] & SERIAL_TX_IRQ_EN) {
// UnMask TX FIFO empty IRQ
pHalRuartAdapter->Interrupts |= RUART_IER_ETBEI;
HalRuartSetIMRRtl8195a (pHalRuartAdapter);
}
}
int serial_readable(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
u8 uart_idx = pHalRuartAdapter->UartIndex;
if ((HAL_RUART_READ32(uart_idx, RUART_LINE_STATUS_REG_OFF)) & RUART_LINE_STATUS_REG_DR) {
return 1;
}
else {
return 0;
}
}
int serial_writable(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
u8 uart_idx = pHalRuartAdapter->UartIndex;
if (HAL_RUART_READ32(uart_idx, RUART_LINE_STATUS_REG_OFF) &
(RUART_LINE_STATUS_REG_THRE)) {
return 1;
}
else {
return 0;
}
}
void serial_clear(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
pHalRuartAdapter = &(obj->hal_uart_adp);
HalRuartResetTRxFifo((VOID *)pHalRuartAdapter);
}
void serial_clear_tx(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
pHalRuartAdapter = &(obj->hal_uart_adp);
HalRuartResetTxFifo((VOID *)pHalRuartAdapter);
}
void serial_clear_rx(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
pHalRuartAdapter = &(obj->hal_uart_adp);
HalRuartResetRxFifo((VOID *)pHalRuartAdapter);
}
void serial_pinout_tx(PinName tx)
{
pinmap_pinout(tx, PinMap_UART_TX);
}
void serial_break_set(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
u8 uart_idx = pHalRuartAdapter->UartIndex;
u32 RegValue;
RegValue = HAL_RUART_READ32(uart_idx, RUART_LINE_CTL_REG_OFF);
RegValue |= BIT_UART_LCR_BREAK_CTRL;
HAL_RUART_WRITE32(uart_idx, RUART_LINE_CTL_REG_OFF, RegValue);
}
void serial_break_clear(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
u8 uart_idx = pHalRuartAdapter->UartIndex;
u32 RegValue;
RegValue = HAL_RUART_READ32(uart_idx, RUART_LINE_CTL_REG_OFF);
RegValue &= ~(BIT_UART_LCR_BREAK_CTRL);
HAL_RUART_WRITE32(uart_idx, RUART_LINE_CTL_REG_OFF, RegValue);
}
void serial_send_comp_handler(serial_t *obj, void *handler, uint32_t id)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
pHalRuartAdapter = &(obj->hal_uart_adp);
pHalRuartAdapter->TxCompCallback = (void(*)(void*))handler;
pHalRuartAdapter->TxCompCbPara = (void*)id;
}
void serial_recv_comp_handler(serial_t *obj, void *handler, uint32_t id)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
pHalRuartAdapter = &(obj->hal_uart_adp);
pHalRuartAdapter->RxCompCallback = (void(*)(void*))handler;
pHalRuartAdapter->RxCompCbPara = (void*)id;
}
void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
// Our UART cannot specify the RTS/CTS pin seprately, so the ignore the rxflow, txflow pin
// We just use the hardware auto flow control, so cannot do flow-control single direction only
pHalRuartAdapter = &(obj->hal_uart_adp);
// RTS low active
// RTS_pin = autoflow_en ? (~rts | (RX_FIFO_Level_Trigger)) : ~rts
switch(type) {
case FlowControlRTSCTS:
pHalRuartAdapter->FlowControl = AUTOFLOW_ENABLE;
pHalRuartAdapter->RTSCtrl = 1;
break;
case FlowControlRTS: // to indicate peer that it's ready for RX
// It seems cannot only enable RTS
pHalRuartAdapter->FlowControl = AUTOFLOW_ENABLE;
pHalRuartAdapter->RTSCtrl = 1;
break;
case FlowControlCTS: // to check is the peer ready for RX: if can start TX ?
// need to check CTS before TX
pHalRuartAdapter->FlowControl = AUTOFLOW_ENABLE;
pHalRuartAdapter->RTSCtrl = 1;
break;
case FlowControlNone:
default:
pHalRuartAdapter->FlowControl = AUTOFLOW_DISABLE;
pHalRuartAdapter->RTSCtrl = 1; // RTS pin allways Low, peer can send data
break;
}
HalRuartFlowCtrl((VOID *)pHalRuartAdapter);
}
// Blocked(busy wait) receive, return received bytes count
int32_t serial_recv_blocked (serial_t *obj, char *prxbuf, uint32_t len, uint32_t timeout_ms)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
int ret;
pHalRuartOp = &(obj->hal_uart_op);
obj->rx_len = len;
HalRuartEnterCritical(pHalRuartAdapter);
ret = pHalRuartOp->HalRuartRecv(pHalRuartAdapter, (u8*)prxbuf, len, timeout_ms);
HalRuartExitCritical(pHalRuartAdapter);
return (ret);
}
// Blocked(busy wait) send, return transmitted bytes count
int32_t serial_send_blocked (serial_t *obj, char *ptxbuf, uint32_t len, uint32_t timeout_ms)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
int ret;
pHalRuartOp = &(obj->hal_uart_op);
obj->tx_len = len;
ret = pHalRuartOp->HalRuartSend(pHalRuartAdapter, (u8*)ptxbuf, len, timeout_ms);
return (ret);
}
int32_t serial_recv_stream (serial_t *obj, char *prxbuf, uint32_t len)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
int ret;
pHalRuartOp = &(obj->hal_uart_op);
obj->rx_len = len;
ret = pHalRuartOp->HalRuartIntRecv(pHalRuartAdapter, (u8*)prxbuf, len);
return (ret);
}
int32_t serial_send_stream (serial_t *obj, char *ptxbuf, uint32_t len)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
int ret;
pHalRuartOp = &(obj->hal_uart_op);
obj->tx_len = len;
HalRuartEnterCritical(pHalRuartAdapter);
ret = pHalRuartOp->HalRuartIntSend(pHalRuartAdapter, (u8*)ptxbuf, len);
HalRuartExitCritical(pHalRuartAdapter);
return (ret);
}
#ifdef CONFIG_GDMA_EN
int32_t serial_recv_stream_dma (serial_t *obj, char *prxbuf, uint32_t len)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
u8 uart_idx = pHalRuartAdapter->UartIndex;
int32_t ret;
pHalRuartOp = &(obj->hal_uart_op);
if ((serial_dma_en[uart_idx] & SERIAL_RX_DMA_EN)==0) {
PUART_DMA_CONFIG pHalRuartDmaCfg;
pHalRuartDmaCfg = &obj->uart_gdma_cfg;
if (HAL_OK == HalRuartRxGdmaInit(pHalRuartAdapter, pHalRuartDmaCfg, 0)) {
serial_dma_en[uart_idx] |= SERIAL_RX_DMA_EN;
}
else {
return HAL_BUSY;
}
}
obj->rx_len = len;
HalRuartEnterCritical(pHalRuartAdapter);
ret = HalRuartDmaRecv(pHalRuartAdapter, (u8*)prxbuf, len);
HalRuartExitCritical(pHalRuartAdapter);
return (ret);
}
int32_t serial_send_stream_dma (serial_t *obj, char *ptxbuf, uint32_t len)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
u8 uart_idx = pHalRuartAdapter->UartIndex;
int32_t ret;
pHalRuartOp = &(obj->hal_uart_op);
if ((serial_dma_en[uart_idx] & SERIAL_TX_DMA_EN)==0) {
PUART_DMA_CONFIG pHalRuartDmaCfg;
pHalRuartDmaCfg = &obj->uart_gdma_cfg;
if (HAL_OK == HalRuartTxGdmaInit(pHalRuartAdapter, pHalRuartDmaCfg, 0)) {
serial_dma_en[uart_idx] |= SERIAL_TX_DMA_EN;
}
else {
return HAL_BUSY;
}
}
obj->tx_len = len;
HalRuartEnterCritical(pHalRuartAdapter);
ret = HalRuartDmaSend(pHalRuartAdapter, (u8*)ptxbuf, len);
HalRuartExitCritical(pHalRuartAdapter);
return (ret);
}
int32_t serial_recv_stream_dma_timeout (serial_t *obj, char *prxbuf, uint32_t len, uint32_t timeout_ms, void *force_cs)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
u8 uart_idx = pHalRuartAdapter->UartIndex;
uint32_t TimeoutCount=0, StartCount;
int ret;
void (*task_yield)(void);
pHalRuartOp = &(obj->hal_uart_op);
if ((serial_dma_en[uart_idx] & SERIAL_RX_DMA_EN)==0) {
PUART_DMA_CONFIG pHalRuartDmaCfg;
pHalRuartDmaCfg = &obj->uart_gdma_cfg;
if (HAL_OK == HalRuartRxGdmaInit(pHalRuartAdapter, pHalRuartDmaCfg, 0)) {
serial_dma_en[uart_idx] |= SERIAL_RX_DMA_EN;
}
else {
return HAL_BUSY;
}
}
HalRuartEnterCritical(pHalRuartAdapter);
ret = HalRuartDmaRecv(pHalRuartAdapter, (u8*)prxbuf, len);
HalRuartExitCritical(pHalRuartAdapter);
if ((ret == HAL_OK) && (timeout_ms > 0)) {
TimeoutCount = (timeout_ms*1000/TIMER_TICK_US);
StartCount = HalTimerOp.HalTimerReadCount(1);
task_yield = (void (*)(void))force_cs;
pHalRuartAdapter->Status = HAL_UART_STATUS_OK;
while (pHalRuartAdapter->State & HAL_UART_STATE_BUSY_RX) {
if (HAL_TIMEOUT == RuartIsTimeout(StartCount, TimeoutCount)) {
ret = pHalRuartOp->HalRuartStopRecv((VOID*)pHalRuartAdapter);
ret = pHalRuartOp->HalRuartResetRxFifo((VOID*)pHalRuartAdapter);
pHalRuartAdapter->Status = HAL_UART_STATUS_TIMEOUT;
break;
}
if (NULL != task_yield) {
task_yield();
}
}
if (pHalRuartAdapter->Status == HAL_UART_STATUS_TIMEOUT) {
return (len - pHalRuartAdapter->RxCount);
} else {
return len;
}
} else {
return (-ret);
}
}
#endif // end of "#ifdef CONFIG_GDMA_EN"
int32_t serial_send_stream_abort (serial_t *obj)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
int ret;
pHalRuartOp = &(obj->hal_uart_op);
HalRuartEnterCritical(pHalRuartAdapter);
ret = pHalRuartOp->HalRuartStopSend((VOID*)pHalRuartAdapter);
HalRuartExitCritical(pHalRuartAdapter);
if (HAL_OK != ret) {
return -ret;
}
HalRuartResetTxFifo((VOID*)pHalRuartAdapter);
ret = obj->tx_len - pHalRuartAdapter->TxCount;
return (ret);
}
int32_t serial_recv_stream_abort (serial_t *obj)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
int ret;
pHalRuartOp = &(obj->hal_uart_op);
HalRuartEnterCritical(pHalRuartAdapter);
ret = pHalRuartOp->HalRuartStopRecv((VOID*)pHalRuartAdapter);
HalRuartExitCritical(pHalRuartAdapter);
if (HAL_OK != ret) {
return -ret;
}
// pHalRuartOp->HalRuartResetRxFifo((VOID*)pHalRuartAdapter);
ret = obj->rx_len - pHalRuartAdapter->RxCount;
return (ret);
}
void serial_disable (serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
HalRuartDisable((VOID*)pHalRuartAdapter);
}
void serial_enable (serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
HalRuartEnable((VOID*)pHalRuartAdapter);
}
// return the byte count received before timeout, or error(<0)
int32_t serial_recv_stream_timeout (serial_t *obj, char *prxbuf, uint32_t len, uint32_t timeout_ms, void *force_cs)
{
PHAL_RUART_OP pHalRuartOp;
PHAL_RUART_ADAPTER pHalRuartAdapter=(PHAL_RUART_ADAPTER)&(obj->hal_uart_adp);
uint32_t TimeoutCount=0, StartCount;
int ret;
void (*task_yield)(void);
task_yield = NULL;
pHalRuartOp = &(obj->hal_uart_op);
HalRuartEnterCritical(pHalRuartAdapter);
ret = pHalRuartOp->HalRuartIntRecv(pHalRuartAdapter, (u8*)prxbuf, len);
HalRuartExitCritical(pHalRuartAdapter);
if ((ret == HAL_OK) && (timeout_ms > 0)) {
TimeoutCount = (timeout_ms*1000/TIMER_TICK_US);
StartCount = HalTimerOp.HalTimerReadCount(1);
task_yield = (void (*)(void))force_cs;
while (pHalRuartAdapter->State & HAL_UART_STATE_BUSY_RX) {
if (HAL_TIMEOUT == RuartIsTimeout(StartCount, TimeoutCount)) {
ret = pHalRuartOp->HalRuartStopRecv((VOID*)pHalRuartAdapter);
ret = pHalRuartOp->HalRuartResetRxFifo((VOID*)pHalRuartAdapter);
pHalRuartAdapter->Status = HAL_UART_STATUS_TIMEOUT;
break;
}
if (NULL != task_yield) {
task_yield();
}
}
return (len - pHalRuartAdapter->RxCount);
} else {
return (-ret);
}
}
// to hook lock/unlock function for multiple-thread application
void serial_hook_lock(serial_t *obj, void *lock, void *unlock, uint32_t id)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
pHalRuartAdapter = &(obj->hal_uart_adp);
pHalRuartAdapter->EnterCritical = (void (*)(void))lock;
pHalRuartAdapter->ExitCritical = (void (*)(void))unlock;
}
// to read Line-Status register
// Bit 0: RX Data Ready
// Bit 1: Overrun Error
// Bit 2: Parity Error
// Bit 3: Framing Error
// Bit 4: Break Interrupt (received data input is held in 0 state for a longer than a full word tx time)
// Bit 5: TX FIFO empty (THR empty)
// Bit 6: TX FIFO empty (THR & TSR both empty)
// Bit 7: RX Error (parity error, framing error or break indication)
uint8_t serial_raed_lsr(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
uint8_t RegValue;
pHalRuartAdapter = &(obj->hal_uart_adp);
RegValue = HAL_RUART_READ8(pHalRuartAdapter->UartIndex, RUART_LINE_STATUS_REG_OFF);
return RegValue;
}
// to read Modem-Status register
// Bit 0: DCTS, The CTS line has changed its state
// Bit 1: DDSR, The DSR line has changed its state
// Bit 2: TERI, RI line has changed its state from low to high state
// Bit 3: DDCD, DCD line has changed its state
// Bit 4: Complement of the CTS input
// Bit 5: Complement of the DSR input
// Bit 6: Complement of the RI input
// Bit 7: Complement of the DCD input
uint8_t serial_raed_msr(serial_t *obj)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
uint8_t RegValue;
pHalRuartAdapter = &(obj->hal_uart_adp);
RegValue = HAL_RUART_READ8(pHalRuartAdapter->UartIndex, RUART_MODEM_STATUS_REG_OFF);
return RegValue;
}
// to set the RX FIFO level to trigger RX interrupt/RTS de-assert
// FifoLv:
// 0: 1-Byte
// 1: 4-Byte
// 2: 8-Byte
// 3: 14-Byte
void serial_rx_fifo_level(serial_t *obj, SerialFifoLevel FifoLv)
{
PHAL_RUART_ADAPTER pHalRuartAdapter;
uint8_t RegValue;
pHalRuartAdapter = &(obj->hal_uart_adp);
RegValue = (RUART_FIFO_CTL_REG_DMA_ENABLE | RUART_FIFO_CTL_REG_FIFO_ENABLE) | (((uint8_t)FifoLv&0x03) << 6);
HAL_RUART_WRITE8(pHalRuartAdapter->UartIndex, RUART_FIFO_CTL_REG_OFF, RegValue);
}
#endif