mirror of
https://github.com/drasko/open-ameba.git
synced 2025-01-02 19:35:20 +00:00
3762 lines
119 KiB
C
3762 lines
119 KiB
C
|
/*
|
||
|
FreeRTOS V8.1.2 - Copyright (C) 2014 Real Time Engineers Ltd.
|
||
|
All rights reserved
|
||
|
|
||
|
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
||
|
|
||
|
***************************************************************************
|
||
|
* *
|
||
|
* FreeRTOS provides completely free yet professionally developed, *
|
||
|
* robust, strictly quality controlled, supported, and cross *
|
||
|
* platform software that has become a de facto standard. *
|
||
|
* *
|
||
|
* Help yourself get started quickly and support the FreeRTOS *
|
||
|
* project by purchasing a FreeRTOS tutorial book, reference *
|
||
|
* manual, or both from: http://www.FreeRTOS.org/Documentation *
|
||
|
* *
|
||
|
* Thank you! *
|
||
|
* *
|
||
|
***************************************************************************
|
||
|
|
||
|
This file is part of the FreeRTOS distribution.
|
||
|
|
||
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||
|
the terms of the GNU General Public License (version 2) as published by the
|
||
|
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
|
||
|
|
||
|
>>! NOTE: The modification to the GPL is included to allow you to !<<
|
||
|
>>! distribute a combined work that includes FreeRTOS without being !<<
|
||
|
>>! obliged to provide the source code for proprietary components !<<
|
||
|
>>! outside of the FreeRTOS kernel. !<<
|
||
|
|
||
|
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
FOR A PARTICULAR PURPOSE. Full license text is available from the following
|
||
|
link: http://www.freertos.org/a00114.html
|
||
|
|
||
|
1 tab == 4 spaces!
|
||
|
|
||
|
***************************************************************************
|
||
|
* *
|
||
|
* Having a problem? Start by reading the FAQ "My application does *
|
||
|
* not run, what could be wrong?" *
|
||
|
* *
|
||
|
* http://www.FreeRTOS.org/FAQHelp.html *
|
||
|
* *
|
||
|
***************************************************************************
|
||
|
|
||
|
http://www.FreeRTOS.org - Documentation, books, training, latest versions,
|
||
|
license and Real Time Engineers Ltd. contact details.
|
||
|
|
||
|
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
||
|
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
|
||
|
compatible FAT file system, and our tiny thread aware UDP/IP stack.
|
||
|
|
||
|
http://www.OpenRTOS.com - Real Time Engineers ltd license FreeRTOS to High
|
||
|
Integrity Systems to sell under the OpenRTOS brand. Low cost OpenRTOS
|
||
|
licenses offer ticketed support, indemnification and middleware.
|
||
|
|
||
|
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
||
|
engineered and independently SIL3 certified version for use in safety and
|
||
|
mission critical applications that require provable dependability.
|
||
|
|
||
|
1 tab == 4 spaces!
|
||
|
*/
|
||
|
|
||
|
/* Standard includes. */
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <platform/platform_stdlib.h>
|
||
|
|
||
|
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
||
|
all the API functions to use the MPU wrappers. That should only be done when
|
||
|
task.h is included from an application file. */
|
||
|
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
||
|
|
||
|
/* FreeRTOS includes. */
|
||
|
#include "FreeRTOS.h"
|
||
|
#include "task.h"
|
||
|
#include "timers.h"
|
||
|
#include "StackMacros.h"
|
||
|
|
||
|
/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
|
||
|
MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
|
||
|
header files above, but not in this file, in order to generate the correct
|
||
|
privileged Vs unprivileged linkage and placement. */
|
||
|
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */
|
||
|
|
||
|
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
|
||
|
/* At the bottom of this file are two optional functions that can be used
|
||
|
to generate human readable text from the raw data generated by the
|
||
|
uxTaskGetSystemState() function. Note the formatting functions are provided
|
||
|
for convenience only, and are NOT considered part of the kernel. */
|
||
|
#include <stdio.h>
|
||
|
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */
|
||
|
|
||
|
/* Sanity check the configuration. */
|
||
|
#if configUSE_TICKLESS_IDLE != 0
|
||
|
#if INCLUDE_vTaskSuspend != 1
|
||
|
#error INCLUDE_vTaskSuspend must be set to 1 if configUSE_TICKLESS_IDLE is not set to 0
|
||
|
#endif /* INCLUDE_vTaskSuspend */
|
||
|
#endif /* configUSE_TICKLESS_IDLE */
|
||
|
|
||
|
/*
|
||
|
* Defines the size, in words, of the stack allocated to the idle task.
|
||
|
*/
|
||
|
#define tskIDLE_STACK_SIZE configMINIMAL_STACK_SIZE
|
||
|
|
||
|
#define RTL_PLACE_IDLE_STACK_IN_SRAM
|
||
|
#ifdef RTL_PLACE_IDLE_STACK_IN_SRAM
|
||
|
|
||
|
/* 20151104 User may place heap in SDRAM and cause tickless hang because SDRAM is susupend and idle stack is in SDRAM.
|
||
|
* Fix it by place idle stack in SRAM.
|
||
|
*/
|
||
|
#if ((defined CONFIG_PLATFORM_8195A) || (defined CONFIG_PLATFORM_8711B))
|
||
|
#include "section_config.h"
|
||
|
SRAM_BF_DATA_SECTION
|
||
|
#endif
|
||
|
static unsigned char ucIdleTaskHeap[ tskIDLE_STACK_SIZE * sizeof( StackType_t ) ];
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if( configUSE_PREEMPTION == 0 )
|
||
|
/* If the cooperative scheduler is being used then a yield should not be
|
||
|
performed just because a higher priority task has been woken. */
|
||
|
#define taskYIELD_IF_USING_PREEMPTION()
|
||
|
#else
|
||
|
#define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Task control block. A task control block (TCB) is allocated for each task,
|
||
|
* and stores task state information, including a pointer to the task's context
|
||
|
* (the task's run time environment, including register values)
|
||
|
*/
|
||
|
typedef struct tskTaskControlBlock
|
||
|
{
|
||
|
volatile StackType_t *pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack. THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */
|
||
|
|
||
|
#if ( portUSING_MPU_WRAPPERS == 1 )
|
||
|
xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer. THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
|
||
|
#endif
|
||
|
|
||
|
ListItem_t xGenericListItem; /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
|
||
|
ListItem_t xEventListItem; /*< Used to reference a task from an event list. */
|
||
|
UBaseType_t uxPriority; /*< The priority of the task. 0 is the lowest priority. */
|
||
|
StackType_t *pxStack; /*< Points to the start of the stack. */
|
||
|
char pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created. Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||
|
|
||
|
#if ( portSTACK_GROWTH > 0 )
|
||
|
StackType_t *pxEndOfStack; /*< Points to the end of the stack on architectures where the stack grows up from low memory. */
|
||
|
#endif
|
||
|
|
||
|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
||
|
UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
|
||
|
#endif
|
||
|
|
||
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
UBaseType_t uxTCBNumber; /*< Stores a number that increments each time a TCB is created. It allows debuggers to determine when a task has been deleted and then recreated. */
|
||
|
UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
|
||
|
#endif
|
||
|
|
||
|
#if ( configUSE_MUTEXES == 1 )
|
||
|
UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
|
||
|
UBaseType_t uxMutexesHeld;
|
||
|
#endif
|
||
|
|
||
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
||
|
TaskHookFunction_t pxTaskTag;
|
||
|
#endif
|
||
|
|
||
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
||
|
uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
|
||
|
uint32_t ulStartRunTimeCounterOfPeroid; /*< Stores the amount of time the task has spent in the Running state during a peroid start. */
|
||
|
uint32_t ulEndRunTimeCounterOfPeroid; /*< Stores the amount of time the task has spent in the Running state when a peroid end */
|
||
|
#endif
|
||
|
|
||
|
#if ( configUSE_NEWLIB_REENTRANT == 1 )
|
||
|
/* Allocate a Newlib reent structure that is specific to this task.
|
||
|
Note Newlib support has been included by popular demand, but is not
|
||
|
used by the FreeRTOS maintainers themselves. FreeRTOS is not
|
||
|
responsible for resulting newlib operation. User must be familiar with
|
||
|
newlib and must provide system-wide implementations of the necessary
|
||
|
stubs. Be warned that (at the time of writing) the current newlib design
|
||
|
implements a system-wide malloc() that must be provided with locks. */
|
||
|
struct _reent xNewLib_reent;
|
||
|
#endif
|
||
|
|
||
|
} tskTCB;
|
||
|
|
||
|
/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
|
||
|
below to enable the use of older kernel aware debuggers. */
|
||
|
typedef tskTCB TCB_t;
|
||
|
|
||
|
/*
|
||
|
* Some kernel aware debuggers require the data the debugger needs access to to
|
||
|
* be global, rather than file scope.
|
||
|
*/
|
||
|
#ifdef portREMOVE_STATIC_QUALIFIER
|
||
|
#define static
|
||
|
#endif
|
||
|
|
||
|
/*lint -e956 A manual analysis and inspection has been used to determine which
|
||
|
static variables must be declared volatile. */
|
||
|
|
||
|
PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;
|
||
|
|
||
|
/* Lists for ready and blocked tasks. --------------------*/
|
||
|
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */
|
||
|
PRIVILEGED_DATA static List_t xDelayedTaskList1; /*< Delayed tasks. */
|
||
|
PRIVILEGED_DATA static List_t xDelayedTaskList2; /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
|
||
|
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList; /*< Points to the delayed task list currently being used. */
|
||
|
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList; /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
|
||
|
PRIVILEGED_DATA static List_t xPendingReadyList; /*< Tasks that have been readied while the scheduler was suspended. They will be moved to the ready list when the scheduler is resumed. */
|
||
|
|
||
|
#if ( INCLUDE_vTaskDelete == 1 )
|
||
|
|
||
|
PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
|
||
|
PRIVILEGED_DATA static volatile UBaseType_t uxTasksDeleted = ( UBaseType_t ) 0U;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
|
||
|
PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */
|
||
|
|
||
|
#endif
|
||
|
|
||
|
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
||
|
|
||
|
PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL; /*< Holds the handle of the idle task. The idle task is created automatically when the scheduler is started. */
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/* Other file private variables. --------------------------------*/
|
||
|
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
|
||
|
PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) 0U;
|
||
|
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
|
||
|
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
|
||
|
PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks = ( UBaseType_t ) 0U;
|
||
|
PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;
|
||
|
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
|
||
|
PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
|
||
|
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = portMAX_DELAY;
|
||
|
|
||
|
/* Context switches are held pending while the scheduler is suspended. Also,
|
||
|
interrupts must not manipulate the xStateListItem of a TCB, or any of the
|
||
|
lists the xStateListItem can be referenced from, if the scheduler is suspended.
|
||
|
If an interrupt needs to unblock a task while the scheduler is suspended then it
|
||
|
moves the task's event list item into the xPendingReadyList, ready for the
|
||
|
kernel to move the task from the pending ready list into the real ready list
|
||
|
when the scheduler is unsuspended. The pending ready list itself can only be
|
||
|
accessed from a critical section. */
|
||
|
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;
|
||
|
|
||
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
||
|
|
||
|
PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL; /*< Holds the value of a timer/counter the last time a task was switched in. */
|
||
|
PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */
|
||
|
PRIVILEGED_DATA static uint32_t ulDeltaTotalRunTime = 0UL; /*< Holds the delta total amount of execution time*/
|
||
|
#endif
|
||
|
|
||
|
/*lint +e956 */
|
||
|
|
||
|
/* Debugging and trace facilities private variables and macros. ------------*/
|
||
|
|
||
|
/*
|
||
|
* The value used to fill the stack of a task when the task is created. This
|
||
|
* is used purely for checking the high water mark for tasks.
|
||
|
*/
|
||
|
#define tskSTACK_FILL_BYTE ( 0xa5U )
|
||
|
|
||
|
/*
|
||
|
* Macros used by vListTask to indicate which state a task is in.
|
||
|
*/
|
||
|
#define tskBLOCKED_CHAR ( 'B' )
|
||
|
#define tskREADY_CHAR ( 'R' )
|
||
|
#define tskDELETED_CHAR ( 'D' )
|
||
|
#define tskSUSPENDED_CHAR ( 'S' )
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
|
||
|
|
||
|
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
|
||
|
performed in a generic way that is not optimised to any particular
|
||
|
microcontroller architecture. */
|
||
|
|
||
|
/* uxTopReadyPriority holds the priority of the highest priority ready
|
||
|
state task. */
|
||
|
#define taskRECORD_READY_PRIORITY( uxPriority ) \
|
||
|
{ \
|
||
|
if( ( uxPriority ) > uxTopReadyPriority ) \
|
||
|
{ \
|
||
|
uxTopReadyPriority = ( uxPriority ); \
|
||
|
} \
|
||
|
} /* taskRECORD_READY_PRIORITY */
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
||
|
{ \
|
||
|
/* Find the highest priority queue that contains ready tasks. */ \
|
||
|
while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) ) \
|
||
|
{ \
|
||
|
configASSERT( uxTopReadyPriority ); \
|
||
|
--uxTopReadyPriority; \
|
||
|
} \
|
||
|
\
|
||
|
/* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \
|
||
|
the same priority get an equal share of the processor time. */ \
|
||
|
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopReadyPriority ] ) ); \
|
||
|
} /* taskSELECT_HIGHEST_PRIORITY_TASK */
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
|
||
|
they are only required when a port optimised method of task selection is
|
||
|
being used. */
|
||
|
#define taskRESET_READY_PRIORITY( uxPriority )
|
||
|
#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
||
|
|
||
|
#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
||
|
|
||
|
/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
|
||
|
performed in a way that is tailored to the particular microcontroller
|
||
|
architecture being used. */
|
||
|
|
||
|
/* A port optimised version is provided. Call the port defined macros. */
|
||
|
#define taskRECORD_READY_PRIORITY( uxPriority ) portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#define taskSELECT_HIGHEST_PRIORITY_TASK() \
|
||
|
{ \
|
||
|
UBaseType_t uxTopPriority; \
|
||
|
\
|
||
|
/* Find the highest priority queue that contains ready tasks. */ \
|
||
|
portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority ); \
|
||
|
configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \
|
||
|
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \
|
||
|
} /* taskSELECT_HIGHEST_PRIORITY_TASK() */
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/* A port optimised version is provided, call it only if the TCB being reset
|
||
|
is being referenced from a ready list. If it is referenced from a delayed
|
||
|
or suspended list then it won't be in a ready list. */
|
||
|
#define taskRESET_READY_PRIORITY( uxPriority ) \
|
||
|
{ \
|
||
|
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
|
||
|
{ \
|
||
|
portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) ); \
|
||
|
} \
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
|
||
|
count overflows. */
|
||
|
#define taskSWITCH_DELAYED_LISTS() \
|
||
|
{ \
|
||
|
List_t *pxTemp; \
|
||
|
\
|
||
|
/* The delayed tasks list should be empty when the lists are switched. */ \
|
||
|
configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) ); \
|
||
|
\
|
||
|
pxTemp = pxDelayedTaskList; \
|
||
|
pxDelayedTaskList = pxOverflowDelayedTaskList; \
|
||
|
pxOverflowDelayedTaskList = pxTemp; \
|
||
|
xNumOfOverflows++; \
|
||
|
prvResetNextTaskUnblockTime(); \
|
||
|
}
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/*
|
||
|
* Place the task represented by pxTCB into the appropriate ready list for
|
||
|
* the task. It is inserted at the end of the list.
|
||
|
*/
|
||
|
#define prvAddTaskToReadyList( pxTCB ) \
|
||
|
traceMOVED_TASK_TO_READY_STATE( pxTCB ) \
|
||
|
taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority ); \
|
||
|
vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xGenericListItem ) )
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
/*
|
||
|
* Several functions take an TaskHandle_t parameter that can optionally be NULL,
|
||
|
* where NULL is used to indicate that the handle of the currently executing
|
||
|
* task should be used in place of the parameter. This macro simply checks to
|
||
|
* see if the parameter is NULL and returns a pointer to the appropriate TCB.
|
||
|
*/
|
||
|
#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) pxCurrentTCB : ( TCB_t * ) ( pxHandle ) )
|
||
|
|
||
|
/* The item value of the event list item is normally used to hold the priority
|
||
|
of the task to which it belongs (coded to allow it to be held in reverse
|
||
|
priority order). However, it is occasionally borrowed for other purposes. It
|
||
|
is important its value is not updated due to a task priority change while it is
|
||
|
being used for another purpose. The following bit definition is used to inform
|
||
|
the scheduler that the value should not be changed - in which case it is the
|
||
|
responsibility of whichever module is using the value to ensure it gets set back
|
||
|
to its original value when it is released. */
|
||
|
#if configUSE_16_BIT_TICKS == 1
|
||
|
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x8000U
|
||
|
#else
|
||
|
#define taskEVENT_LIST_ITEM_VALUE_IN_USE 0x80000000UL
|
||
|
#endif
|
||
|
|
||
|
/* Callback function prototypes. --------------------------*/
|
||
|
#if configCHECK_FOR_STACK_OVERFLOW > 0
|
||
|
extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName );
|
||
|
#endif
|
||
|
|
||
|
#if configUSE_TICK_HOOK > 0
|
||
|
extern void vApplicationTickHook( void );
|
||
|
#endif
|
||
|
|
||
|
/* File private functions. --------------------------------*/
|
||
|
|
||
|
/*
|
||
|
* Utility to ready a TCB for a given task. Mainly just copies the parameters
|
||
|
* into the TCB structure.
|
||
|
*/
|
||
|
static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||
|
|
||
|
/**
|
||
|
* Utility task that simply returns pdTRUE if the task referenced by xTask is
|
||
|
* currently in the Suspended state, or pdFALSE if the task referenced by xTask
|
||
|
* is in any other state.
|
||
|
*/
|
||
|
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
|
||
|
|
||
|
/*
|
||
|
* Utility to ready all the lists used by the scheduler. This is called
|
||
|
* automatically upon the creation of the first task.
|
||
|
*/
|
||
|
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;
|
||
|
|
||
|
/*
|
||
|
* The idle task, which as all tasks is implemented as a never ending loop.
|
||
|
* The idle task is automatically created and added to the ready lists upon
|
||
|
* creation of the first user task.
|
||
|
*
|
||
|
* The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
|
||
|
* language extensions. The equivalent prototype for this function is:
|
||
|
*
|
||
|
* void prvIdleTask( void *pvParameters );
|
||
|
*
|
||
|
*/
|
||
|
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters );
|
||
|
|
||
|
/*
|
||
|
* Utility to free all memory allocated by the scheduler to hold a TCB,
|
||
|
* including the stack pointed to by the TCB.
|
||
|
*
|
||
|
* This does not free memory allocated by the task itself (i.e. memory
|
||
|
* allocated by calls to pvPortMalloc from within the tasks application code).
|
||
|
*/
|
||
|
#if ( INCLUDE_vTaskDelete == 1 )
|
||
|
|
||
|
static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Used only by the idle task. This checks to see if anything has been placed
|
||
|
* in the list of tasks waiting to be deleted. If so the task is cleaned up
|
||
|
* and its TCB deleted.
|
||
|
*/
|
||
|
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;
|
||
|
|
||
|
/*
|
||
|
* The currently executing task is entering the Blocked state. Add the task to
|
||
|
* either the current or the overflow delayed task list.
|
||
|
*/
|
||
|
static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake ) PRIVILEGED_FUNCTION;
|
||
|
|
||
|
/*
|
||
|
* Allocates memory from the heap for a TCB and associated stack. Checks the
|
||
|
* allocation was successful.
|
||
|
*/
|
||
|
static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer ) PRIVILEGED_FUNCTION;
|
||
|
|
||
|
/*
|
||
|
* Fills an TaskStatus_t structure with information on each task that is
|
||
|
* referenced from the pxList list (which may be a ready list, a delayed list,
|
||
|
* a suspended list, etc.).
|
||
|
*
|
||
|
* THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
|
||
|
* NORMAL APPLICATION CODE.
|
||
|
*/
|
||
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
|
||
|
static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* When a task is created, the stack of the task is filled with a known value.
|
||
|
* This function determines the 'high water mark' of the task stack by
|
||
|
* determining how much of the stack remains at the original preset value.
|
||
|
*/
|
||
|
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
|
||
|
|
||
|
static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Return the amount of time, in ticks, that will pass before the kernel will
|
||
|
* next move a task from the Blocked state to the Running state.
|
||
|
*
|
||
|
* This conditional compilation should use inequality to 0, not equality to 1.
|
||
|
* This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
|
||
|
* defined low power mode implementations require configUSE_TICKLESS_IDLE to be
|
||
|
* set to a value other than 1.
|
||
|
*/
|
||
|
#if ( configUSE_TICKLESS_IDLE != 0 )
|
||
|
|
||
|
static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Set xNextTaskUnblockTime to the time at which the next Blocked state task
|
||
|
* will exit the Blocked state.
|
||
|
*/
|
||
|
static void prvResetNextTaskUnblockTime( void );
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
BaseType_t xTaskGenericCreate( TaskFunction_t pxTaskCode, const char * const pcName, const uint16_t usStackDepth, void * const pvParameters, UBaseType_t uxPriority, TaskHandle_t * const pxCreatedTask, StackType_t * const puxStackBuffer, const MemoryRegion_t * const xRegions ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||
|
{
|
||
|
BaseType_t xReturn;
|
||
|
TCB_t * pxNewTCB;
|
||
|
|
||
|
configASSERT( pxTaskCode );
|
||
|
configASSERT( ( ( uxPriority & ( ~portPRIVILEGE_BIT ) ) < configMAX_PRIORITIES ) );
|
||
|
|
||
|
/* Allocate the memory required by the TCB and stack for the new task,
|
||
|
checking that the allocation was successful. */
|
||
|
pxNewTCB = prvAllocateTCBAndStack( usStackDepth, puxStackBuffer );
|
||
|
|
||
|
if( pxNewTCB != NULL )
|
||
|
{
|
||
|
StackType_t *pxTopOfStack;
|
||
|
|
||
|
#if( portUSING_MPU_WRAPPERS == 1 )
|
||
|
/* Should the task be created in privileged mode? */
|
||
|
BaseType_t xRunPrivileged;
|
||
|
if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
|
||
|
{
|
||
|
xRunPrivileged = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xRunPrivileged = pdFALSE;
|
||
|
}
|
||
|
uxPriority &= ~portPRIVILEGE_BIT;
|
||
|
#endif /* portUSING_MPU_WRAPPERS == 1 */
|
||
|
|
||
|
/* Calculate the top of stack address. This depends on whether the
|
||
|
stack grows from high memory to low (as per the 80x86) or vice versa.
|
||
|
portSTACK_GROWTH is used to make the result positive or negative as
|
||
|
required by the port. */
|
||
|
#if( portSTACK_GROWTH < 0 )
|
||
|
{
|
||
|
pxTopOfStack = pxNewTCB->pxStack + ( usStackDepth - ( uint16_t ) 1 );
|
||
|
pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ( portPOINTER_SIZE_TYPE ) ~portBYTE_ALIGNMENT_MASK ) ); /*lint !e923 MISRA exception. Avoiding casts between pointers and integers is not practical. Size differences accounted for using portPOINTER_SIZE_TYPE type. */
|
||
|
|
||
|
/* Check the alignment of the calculated top of stack is correct. */
|
||
|
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
||
|
}
|
||
|
#else /* portSTACK_GROWTH */
|
||
|
{
|
||
|
pxTopOfStack = pxNewTCB->pxStack;
|
||
|
|
||
|
/* Check the alignment of the stack buffer is correct. */
|
||
|
configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
|
||
|
|
||
|
/* If we want to use stack checking on architectures that use
|
||
|
a positive stack growth direction then we also need to store the
|
||
|
other extreme of the stack space. */
|
||
|
pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( usStackDepth - 1 );
|
||
|
}
|
||
|
#endif /* portSTACK_GROWTH */
|
||
|
|
||
|
/* Setup the newly allocated TCB with the initial state of the task. */
|
||
|
prvInitialiseTCBVariables( pxNewTCB, pcName, uxPriority, xRegions, usStackDepth );
|
||
|
|
||
|
/* Initialize the TCB stack to look as if the task was already running,
|
||
|
but had been interrupted by the scheduler. The return address is set
|
||
|
to the start of the task function. Once the stack has been initialised
|
||
|
the top of stack variable is updated. */
|
||
|
#if( portUSING_MPU_WRAPPERS == 1 )
|
||
|
{
|
||
|
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
|
||
|
}
|
||
|
#else /* portUSING_MPU_WRAPPERS */
|
||
|
{
|
||
|
pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
|
||
|
}
|
||
|
#endif /* portUSING_MPU_WRAPPERS */
|
||
|
|
||
|
if( ( void * ) pxCreatedTask != NULL )
|
||
|
{
|
||
|
/* Pass the TCB out - in an anonymous way. The calling function/
|
||
|
task can use this as a handle to delete the task later if
|
||
|
required.*/
|
||
|
*pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Ensure interrupts don't access the task lists while they are being
|
||
|
updated. */
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
uxCurrentNumberOfTasks++;
|
||
|
if( pxCurrentTCB == NULL )
|
||
|
{
|
||
|
/* There are no other tasks, or all the other tasks are in
|
||
|
the suspended state - make this the current task. */
|
||
|
pxCurrentTCB = pxNewTCB;
|
||
|
|
||
|
if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
|
||
|
{
|
||
|
/* This is the first task to be created so do the preliminary
|
||
|
initialisation required. We will not recover if this call
|
||
|
fails, but we will report the failure. */
|
||
|
prvInitialiseTaskLists();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* If the scheduler is not already running, make this task the
|
||
|
current task if it is the highest priority task to be created
|
||
|
so far. */
|
||
|
if( xSchedulerRunning == pdFALSE )
|
||
|
{
|
||
|
if( pxCurrentTCB->uxPriority <= uxPriority )
|
||
|
{
|
||
|
pxCurrentTCB = pxNewTCB;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
uxTaskNumber++;
|
||
|
|
||
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
{
|
||
|
/* Add a counter into the TCB for tracing only. */
|
||
|
pxNewTCB->uxTCBNumber = uxTaskNumber;
|
||
|
}
|
||
|
#endif /* configUSE_TRACE_FACILITY */
|
||
|
traceTASK_CREATE( pxNewTCB );
|
||
|
|
||
|
prvAddTaskToReadyList( pxNewTCB );
|
||
|
|
||
|
xReturn = pdPASS;
|
||
|
portSETUP_TCB( pxNewTCB );
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
||
|
traceTASK_CREATE_FAILED();
|
||
|
}
|
||
|
|
||
|
if( xReturn == pdPASS )
|
||
|
{
|
||
|
if( xSchedulerRunning != pdFALSE )
|
||
|
{
|
||
|
/* If the created task is of a higher priority than the current task
|
||
|
then it should run now. */
|
||
|
if( pxCurrentTCB->uxPriority < uxPriority )
|
||
|
{
|
||
|
taskYIELD_IF_USING_PREEMPTION();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_vTaskDelete == 1 )
|
||
|
|
||
|
void vTaskDelete( TaskHandle_t xTaskToDelete )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
/* If null is passed in here then it is the calling task that is
|
||
|
being deleted. */
|
||
|
pxTCB = prvGetTCBFromHandle( xTaskToDelete );
|
||
|
|
||
|
/* Remove task from the ready list and place in the termination list.
|
||
|
This will stop the task from be scheduled. The idle task will check
|
||
|
the termination list and free up any memory allocated by the
|
||
|
scheduler for the TCB and stack. */
|
||
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Is the task waiting on an event also? */
|
||
|
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
||
|
{
|
||
|
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xGenericListItem ) );
|
||
|
|
||
|
/* Increment the ucTasksDeleted variable so the idle task knows
|
||
|
there is a task that has been deleted and that it should therefore
|
||
|
check the xTasksWaitingTermination list. */
|
||
|
++uxTasksDeleted;
|
||
|
|
||
|
/* Increment the uxTaskNumberVariable also so kernel aware debuggers
|
||
|
can detect that the task lists need re-generating. */
|
||
|
uxTaskNumber++;
|
||
|
|
||
|
traceTASK_DELETE( pxTCB );
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
|
||
|
/* Force a reschedule if it is the currently running task that has just
|
||
|
been deleted. */
|
||
|
if( xSchedulerRunning != pdFALSE )
|
||
|
{
|
||
|
if( pxTCB == pxCurrentTCB )
|
||
|
{
|
||
|
configASSERT( uxSchedulerSuspended == 0 );
|
||
|
|
||
|
/* The pre-delete hook is primarily for the Windows simulator,
|
||
|
in which Windows specific clean up operations are performed,
|
||
|
after which it is not possible to yield away from this task -
|
||
|
hence xYieldPending is used to latch that a context switch is
|
||
|
required. */
|
||
|
portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );
|
||
|
portYIELD_WITHIN_API();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Reset the next expected unblock time in case it referred to
|
||
|
the task that has just been deleted. */
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
prvResetNextTaskUnblockTime();
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_vTaskDelete */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_vTaskDelayUntil == 1 )
|
||
|
|
||
|
void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement )
|
||
|
{
|
||
|
TickType_t xTimeToWake;
|
||
|
BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;
|
||
|
|
||
|
configASSERT( pxPreviousWakeTime );
|
||
|
configASSERT( ( xTimeIncrement > 0U ) );
|
||
|
configASSERT( uxSchedulerSuspended == 0 );
|
||
|
|
||
|
vTaskSuspendAll();
|
||
|
{
|
||
|
/* Minor optimisation. The tick count cannot change in this
|
||
|
block. */
|
||
|
const TickType_t xConstTickCount = xTickCount;
|
||
|
|
||
|
/* Generate the tick time at which the task wants to wake. */
|
||
|
xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;
|
||
|
|
||
|
if( xConstTickCount < *pxPreviousWakeTime )
|
||
|
{
|
||
|
/* The tick count has overflowed since this function was
|
||
|
lasted called. In this case the only time we should ever
|
||
|
actually delay is if the wake time has also overflowed,
|
||
|
and the wake time is greater than the tick time. When this
|
||
|
is the case it is as if neither time had overflowed. */
|
||
|
if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
|
||
|
{
|
||
|
xShouldDelay = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The tick time has not overflowed. In this case we will
|
||
|
delay if either the wake time has overflowed, and/or the
|
||
|
tick time is less than the wake time. */
|
||
|
if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
|
||
|
{
|
||
|
xShouldDelay = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Update the wake time ready for the next call. */
|
||
|
*pxPreviousWakeTime = xTimeToWake;
|
||
|
|
||
|
if( xShouldDelay != pdFALSE )
|
||
|
{
|
||
|
traceTASK_DELAY_UNTIL();
|
||
|
|
||
|
/* Remove the task from the ready list before adding it to the
|
||
|
blocked list as the same list item is used for both lists. */
|
||
|
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
/* The current task must be in a ready list, so there is
|
||
|
no need to check, and the port reset macro can be called
|
||
|
directly. */
|
||
|
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
xAlreadyYielded = xTaskResumeAll();
|
||
|
|
||
|
/* Force a reschedule if xTaskResumeAll has not already done so, we may
|
||
|
have put ourselves to sleep. */
|
||
|
if( xAlreadyYielded == pdFALSE )
|
||
|
{
|
||
|
portYIELD_WITHIN_API();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_vTaskDelayUntil */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_vTaskDelay == 1 )
|
||
|
|
||
|
void vTaskDelay( const TickType_t xTicksToDelay )
|
||
|
{
|
||
|
TickType_t xTimeToWake;
|
||
|
BaseType_t xAlreadyYielded = pdFALSE;
|
||
|
|
||
|
|
||
|
/* A delay time of zero just forces a reschedule. */
|
||
|
if( xTicksToDelay > ( TickType_t ) 0U )
|
||
|
{
|
||
|
configASSERT( uxSchedulerSuspended == 0 );
|
||
|
vTaskSuspendAll();
|
||
|
{
|
||
|
traceTASK_DELAY();
|
||
|
|
||
|
/* A task that is removed from the event list while the
|
||
|
scheduler is suspended will not get placed in the ready
|
||
|
list or removed from the blocked list until the scheduler
|
||
|
is resumed.
|
||
|
|
||
|
This task cannot be in an event list as it is the currently
|
||
|
executing task. */
|
||
|
|
||
|
/* Calculate the time to wake - this may overflow but this is
|
||
|
not a problem. */
|
||
|
xTimeToWake = xTickCount + xTicksToDelay;
|
||
|
|
||
|
/* We must remove ourselves from the ready list before adding
|
||
|
ourselves to the blocked list as the same list item is used for
|
||
|
both lists. */
|
||
|
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
/* The current task must be in a ready list, so there is
|
||
|
no need to check, and the port reset macro can be called
|
||
|
directly. */
|
||
|
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
||
|
}
|
||
|
xAlreadyYielded = xTaskResumeAll();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Force a reschedule if xTaskResumeAll has not already done so, we may
|
||
|
have put ourselves to sleep. */
|
||
|
if( xAlreadyYielded == pdFALSE )
|
||
|
{
|
||
|
portYIELD_WITHIN_API();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_vTaskDelay */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_eTaskGetState == 1 )
|
||
|
|
||
|
eTaskState eTaskGetState( TaskHandle_t xTask )
|
||
|
{
|
||
|
eTaskState eReturn;
|
||
|
List_t *pxStateList;
|
||
|
const TCB_t * const pxTCB = ( TCB_t * ) xTask;
|
||
|
|
||
|
configASSERT( pxTCB );
|
||
|
|
||
|
if( pxTCB == pxCurrentTCB )
|
||
|
{
|
||
|
/* The task calling this function is querying its own state. */
|
||
|
eReturn = eRunning;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xGenericListItem ) );
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
|
||
|
if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) )
|
||
|
{
|
||
|
/* The task being queried is referenced from one of the Blocked
|
||
|
lists. */
|
||
|
eReturn = eBlocked;
|
||
|
}
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
else if( pxStateList == &xSuspendedTaskList )
|
||
|
{
|
||
|
/* The task being queried is referenced from the suspended
|
||
|
list. Is it genuinely suspended or is it block
|
||
|
indefinitely? */
|
||
|
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
|
||
|
{
|
||
|
eReturn = eSuspended;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
eReturn = eBlocked;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if ( INCLUDE_vTaskDelete == 1 )
|
||
|
else if( pxStateList == &xTasksWaitingTermination )
|
||
|
{
|
||
|
/* The task being queried is referenced from the deleted
|
||
|
tasks list. */
|
||
|
eReturn = eDeleted;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
else
|
||
|
{
|
||
|
/* If the task is not in any other state, it must be in the
|
||
|
Ready (including pending ready) state. */
|
||
|
eReturn = eReady;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return eReturn;
|
||
|
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
||
|
|
||
|
#endif /* INCLUDE_eTaskGetState */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_uxTaskPriorityGet == 1 )
|
||
|
|
||
|
UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
UBaseType_t uxReturn;
|
||
|
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
/* If null is passed in here then we are changing the
|
||
|
priority of the calling function. */
|
||
|
pxTCB = prvGetTCBFromHandle( xTask );
|
||
|
uxReturn = pxTCB->uxPriority;
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
|
||
|
return uxReturn;
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_uxTaskPriorityGet */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_vTaskPrioritySet == 1 )
|
||
|
|
||
|
void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
|
||
|
BaseType_t xYieldRequired = pdFALSE;
|
||
|
|
||
|
configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );
|
||
|
|
||
|
/* Ensure the new priority is valid. */
|
||
|
if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
||
|
{
|
||
|
uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
/* If null is passed in here then it is the priority of the calling
|
||
|
task that is being changed. */
|
||
|
pxTCB = prvGetTCBFromHandle( xTask );
|
||
|
|
||
|
traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );
|
||
|
|
||
|
#if ( configUSE_MUTEXES == 1 )
|
||
|
{
|
||
|
uxCurrentBasePriority = pxTCB->uxBasePriority;
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
uxCurrentBasePriority = pxTCB->uxPriority;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if( uxCurrentBasePriority != uxNewPriority )
|
||
|
{
|
||
|
/* The priority change may have readied a task of higher
|
||
|
priority than the calling task. */
|
||
|
if( uxNewPriority > uxCurrentBasePriority )
|
||
|
{
|
||
|
if( pxTCB != pxCurrentTCB )
|
||
|
{
|
||
|
/* The priority of a task other than the currently
|
||
|
running task is being raised. Is the priority being
|
||
|
raised above that of the running task? */
|
||
|
if( uxNewPriority >= pxCurrentTCB->uxPriority )
|
||
|
{
|
||
|
xYieldRequired = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The priority of the running task is being raised,
|
||
|
but the running task must already be the highest
|
||
|
priority task able to run so no yield is required. */
|
||
|
}
|
||
|
}
|
||
|
else if( pxTCB == pxCurrentTCB )
|
||
|
{
|
||
|
/* Setting the priority of the running task down means
|
||
|
there may now be another task of higher priority that
|
||
|
is ready to execute. */
|
||
|
xYieldRequired = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Setting the priority of any other task down does not
|
||
|
require a yield as the running task must be above the
|
||
|
new priority of the task being modified. */
|
||
|
}
|
||
|
|
||
|
/* Remember the ready list the task might be referenced from
|
||
|
before its uxPriority member is changed so the
|
||
|
taskRESET_READY_PRIORITY() macro can function correctly. */
|
||
|
uxPriorityUsedOnEntry = pxTCB->uxPriority;
|
||
|
|
||
|
#if ( configUSE_MUTEXES == 1 )
|
||
|
{
|
||
|
/* Only change the priority being used if the task is not
|
||
|
currently using an inherited priority. */
|
||
|
if( pxTCB->uxBasePriority == pxTCB->uxPriority )
|
||
|
{
|
||
|
pxTCB->uxPriority = uxNewPriority;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* The base priority gets set whatever. */
|
||
|
pxTCB->uxBasePriority = uxNewPriority;
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
pxTCB->uxPriority = uxNewPriority;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Only reset the event list item value if the value is not
|
||
|
being used for anything else. */
|
||
|
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
||
|
{
|
||
|
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* If the task is in the blocked or suspended list we need do
|
||
|
nothing more than change it's priority variable. However, if
|
||
|
the task is in a ready list it needs to be removed and placed
|
||
|
in the list appropriate to its new priority. */
|
||
|
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
|
||
|
{
|
||
|
/* The task is currently in its ready list - remove before adding
|
||
|
it to it's new ready list. As we are in a critical section we
|
||
|
can do this even if the scheduler is suspended. */
|
||
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
/* It is known that the task is in its ready list so
|
||
|
there is no need to check again and the port level
|
||
|
reset macro can be called directly. */
|
||
|
portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
prvAddTaskToReadyList( pxTCB );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
if( xYieldRequired == pdTRUE )
|
||
|
{
|
||
|
taskYIELD_IF_USING_PREEMPTION();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Remove compiler warning about unused variables when the port
|
||
|
optimised task selection is not being used. */
|
||
|
( void ) uxPriorityUsedOnEntry;
|
||
|
}
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_vTaskPrioritySet */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
|
||
|
void vTaskSuspend( TaskHandle_t xTaskToSuspend )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
/* If null is passed in here then it is the running task that is
|
||
|
being suspended. */
|
||
|
pxTCB = prvGetTCBFromHandle( xTaskToSuspend );
|
||
|
|
||
|
traceTASK_SUSPEND( pxTCB );
|
||
|
|
||
|
/* Remove task from the ready/delayed list and place in the
|
||
|
suspended list. */
|
||
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Is the task waiting on an event also? */
|
||
|
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
||
|
{
|
||
|
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) );
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
|
||
|
if( pxTCB == pxCurrentTCB )
|
||
|
{
|
||
|
if( xSchedulerRunning != pdFALSE )
|
||
|
{
|
||
|
/* The current task has just been suspended. */
|
||
|
configASSERT( uxSchedulerSuspended == 0 );
|
||
|
portYIELD_WITHIN_API();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The scheduler is not running, but the task that was pointed
|
||
|
to by pxCurrentTCB has just been suspended and pxCurrentTCB
|
||
|
must be adjusted to point to a different task. */
|
||
|
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
|
||
|
{
|
||
|
/* No other tasks are ready, so set pxCurrentTCB back to
|
||
|
NULL so when the next task is created pxCurrentTCB will
|
||
|
be set to point to it no matter what its relative priority
|
||
|
is. */
|
||
|
pxCurrentTCB = NULL;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
vTaskSwitchContext();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if( xSchedulerRunning != pdFALSE )
|
||
|
{
|
||
|
/* A task other than the currently running task was suspended,
|
||
|
reset the next expected unblock time in case it referred to the
|
||
|
task that is now in the Suspended state. */
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
prvResetNextTaskUnblockTime();
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_vTaskSuspend */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
|
||
|
static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
|
||
|
{
|
||
|
BaseType_t xReturn = pdFALSE;
|
||
|
const TCB_t * const pxTCB = ( TCB_t * ) xTask;
|
||
|
|
||
|
/* Accesses xPendingReadyList so must be called from a critical
|
||
|
section. */
|
||
|
|
||
|
/* It does not make sense to check if the calling task is suspended. */
|
||
|
configASSERT( xTask );
|
||
|
|
||
|
/* Is the task being resumed actually in the suspended list? */
|
||
|
if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ) != pdFALSE )
|
||
|
{
|
||
|
/* Has the task already been resumed from within an ISR? */
|
||
|
if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
|
||
|
{
|
||
|
/* Is it in the suspended list because it is in the Suspended
|
||
|
state, or because is is blocked with no timeout? */
|
||
|
if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
|
||
|
{
|
||
|
xReturn = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */
|
||
|
|
||
|
#endif /* INCLUDE_vTaskSuspend */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
|
||
|
void vTaskResume( TaskHandle_t xTaskToResume )
|
||
|
{
|
||
|
TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
|
||
|
|
||
|
/* It does not make sense to resume the calling task. */
|
||
|
configASSERT( xTaskToResume );
|
||
|
|
||
|
/* The parameter cannot be NULL as it is impossible to resume the
|
||
|
currently executing task. */
|
||
|
if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB ) )
|
||
|
{
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
|
||
|
{
|
||
|
traceTASK_RESUME( pxTCB );
|
||
|
|
||
|
/* As we are in a critical section we can access the ready
|
||
|
lists even if the scheduler is suspended. */
|
||
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
||
|
prvAddTaskToReadyList( pxTCB );
|
||
|
|
||
|
/* We may have just resumed a higher priority task. */
|
||
|
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
||
|
{
|
||
|
/* This yield may not cause the task just resumed to run,
|
||
|
but will leave the lists in the correct state for the
|
||
|
next yield. */
|
||
|
taskYIELD_IF_USING_PREEMPTION();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_vTaskSuspend */
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )
|
||
|
|
||
|
BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
|
||
|
{
|
||
|
BaseType_t xYieldRequired = pdFALSE;
|
||
|
TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;
|
||
|
UBaseType_t uxSavedInterruptStatus;
|
||
|
|
||
|
configASSERT( xTaskToResume );
|
||
|
|
||
|
/* RTOS ports that support interrupt nesting have the concept of a
|
||
|
maximum system call (or maximum API call) interrupt priority.
|
||
|
Interrupts that are above the maximum system call priority are keep
|
||
|
permanently enabled, even when the RTOS kernel is in a critical section,
|
||
|
but cannot make any calls to FreeRTOS API functions. If configASSERT()
|
||
|
is defined in FreeRTOSConfig.h then
|
||
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
||
|
failure if a FreeRTOS API function is called from an interrupt that has
|
||
|
been assigned a priority above the configured maximum system call
|
||
|
priority. Only FreeRTOS functions that end in FromISR can be called
|
||
|
from interrupts that have been assigned a priority at or (logically)
|
||
|
below the maximum system call interrupt priority. FreeRTOS maintains a
|
||
|
separate interrupt safe API to ensure interrupt entry is as fast and as
|
||
|
simple as possible. More information (albeit Cortex-M specific) is
|
||
|
provided on the following link:
|
||
|
http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
||
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
||
|
|
||
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
||
|
{
|
||
|
if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
|
||
|
{
|
||
|
traceTASK_RESUME_FROM_ISR( pxTCB );
|
||
|
|
||
|
/* Check the ready lists can be accessed. */
|
||
|
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
||
|
{
|
||
|
/* Ready lists can be accessed so move the task from the
|
||
|
suspended list to the ready list directly. */
|
||
|
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
||
|
{
|
||
|
xYieldRequired = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
||
|
prvAddTaskToReadyList( pxTCB );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The delayed or ready lists cannot be accessed so the task
|
||
|
is held in the pending ready list until the scheduler is
|
||
|
unsuspended. */
|
||
|
vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
||
|
|
||
|
return xYieldRequired;
|
||
|
}
|
||
|
|
||
|
#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vTaskStartScheduler( void )
|
||
|
{
|
||
|
BaseType_t xReturn;
|
||
|
|
||
|
/* Add the idle task at the lowest priority. */
|
||
|
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
||
|
{
|
||
|
#ifdef RTL_PLACE_IDLE_STACK_IN_SRAM
|
||
|
// it's same function call as original FreeRTOS source except that it use stack in SRAM
|
||
|
xReturn = xTaskGenericCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), &xIdleTaskHandle, (void *)&ucIdleTaskHeap, NULL);
|
||
|
#else
|
||
|
/* Create the idle task, storing its handle in xIdleTaskHandle so it can
|
||
|
be returned by the xTaskGetIdleTaskHandle() function. */
|
||
|
xReturn = xTaskCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
||
|
#endif
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
#ifdef RTL_PLACE_IDLE_STACK_IN_SRAM
|
||
|
// it's same function call as original FreeRTOS source except that it use stack in SRAM
|
||
|
xReturn = xTaskGenericCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL, (void *)&ucIdleTaskHeap, NULL );
|
||
|
#else
|
||
|
/* Create the idle task without storing its handle. */
|
||
|
xReturn = xTaskCreate( prvIdleTask, "IDLE", tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
|
||
|
#endif
|
||
|
}
|
||
|
#endif /* INCLUDE_xTaskGetIdleTaskHandle */
|
||
|
|
||
|
#if ( configUSE_TIMERS == 1 )
|
||
|
{
|
||
|
if( xReturn == pdPASS )
|
||
|
{
|
||
|
xReturn = xTimerCreateTimerTask();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
#endif /* configUSE_TIMERS */
|
||
|
|
||
|
if( xReturn == pdPASS )
|
||
|
{
|
||
|
/* Interrupts are turned off here, to ensure a tick does not occur
|
||
|
before or during the call to xPortStartScheduler(). The stacks of
|
||
|
the created tasks contain a status word with interrupts switched on
|
||
|
so interrupts will automatically get re-enabled when the first task
|
||
|
starts to run. */
|
||
|
portDISABLE_INTERRUPTS();
|
||
|
|
||
|
#if ( configUSE_NEWLIB_REENTRANT == 1 )
|
||
|
{
|
||
|
/* Switch Newlib's _impure_ptr variable to point to the _reent
|
||
|
structure specific to the task that will run first. */
|
||
|
_impure_ptr = &( pxCurrentTCB->xNewLib_reent );
|
||
|
}
|
||
|
#endif /* configUSE_NEWLIB_REENTRANT */
|
||
|
|
||
|
xSchedulerRunning = pdTRUE;
|
||
|
xTickCount = ( TickType_t ) 0U;
|
||
|
|
||
|
/* If configGENERATE_RUN_TIME_STATS is defined then the following
|
||
|
macro must be defined to configure the timer/counter used to generate
|
||
|
the run time counter time base. */
|
||
|
portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
|
||
|
|
||
|
/* Setting up the timer tick is hardware specific and thus in the
|
||
|
portable interface. */
|
||
|
if( xPortStartScheduler() != pdFALSE )
|
||
|
{
|
||
|
/* Should not reach here as if the scheduler is running the
|
||
|
function will not return. */
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Should only reach here if a task calls xTaskEndScheduler(). */
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* This line will only be reached if the kernel could not be started,
|
||
|
because there was not enough FreeRTOS heap to create the idle task
|
||
|
or the timer task. */
|
||
|
configASSERT( xReturn );
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vTaskEndScheduler( void )
|
||
|
{
|
||
|
/* Stop the scheduler interrupts and call the portable scheduler end
|
||
|
routine so the original ISRs can be restored if necessary. The port
|
||
|
layer must ensure interrupts enable bit is left in the correct state. */
|
||
|
portDISABLE_INTERRUPTS();
|
||
|
xSchedulerRunning = pdFALSE;
|
||
|
vPortEndScheduler();
|
||
|
}
|
||
|
/*----------------------------------------------------------*/
|
||
|
|
||
|
void vTaskSuspendAll( void )
|
||
|
{
|
||
|
/* A critical section is not required as the variable is of type
|
||
|
BaseType_t. Please read Richard Barry's reply in the following link to a
|
||
|
post in the FreeRTOS support forum before reporting this as a bug! -
|
||
|
http://goo.gl/wu4acr */
|
||
|
++uxSchedulerSuspended;
|
||
|
}
|
||
|
/*----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_TICKLESS_IDLE != 0 )
|
||
|
|
||
|
static TickType_t prvGetExpectedIdleTime( void )
|
||
|
{
|
||
|
TickType_t xReturn;
|
||
|
|
||
|
if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
|
||
|
{
|
||
|
xReturn = 0;
|
||
|
}
|
||
|
else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
|
||
|
{
|
||
|
/* There are other idle priority tasks in the ready state. If
|
||
|
time slicing is used then the very next tick interrupt must be
|
||
|
processed. */
|
||
|
xReturn = 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xReturn = xNextTaskUnblockTime - xTickCount;
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_TICKLESS_IDLE */
|
||
|
/*----------------------------------------------------------*/
|
||
|
|
||
|
BaseType_t xTaskResumeAll( void )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
BaseType_t xAlreadyYielded = pdFALSE;
|
||
|
|
||
|
/* If uxSchedulerSuspended is zero then this function does not match a
|
||
|
previous call to vTaskSuspendAll(). */
|
||
|
configASSERT( uxSchedulerSuspended );
|
||
|
|
||
|
/* It is possible that an ISR caused a task to be removed from an event
|
||
|
list while the scheduler was suspended. If this was the case then the
|
||
|
removed task will have been added to the xPendingReadyList. Once the
|
||
|
scheduler has been resumed it is safe to move all the pending ready
|
||
|
tasks from this list into their appropriate ready list. */
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
--uxSchedulerSuspended;
|
||
|
|
||
|
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
||
|
{
|
||
|
if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
|
||
|
{
|
||
|
/* Move any readied tasks from the pending list into the
|
||
|
appropriate ready list. */
|
||
|
while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
|
||
|
{
|
||
|
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) );
|
||
|
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
||
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
||
|
prvAddTaskToReadyList( pxTCB );
|
||
|
|
||
|
/* If we have moved a task that has a priority higher than
|
||
|
the current task then we should yield. */
|
||
|
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
||
|
{
|
||
|
xYieldPending = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* If any ticks occurred while the scheduler was suspended then
|
||
|
they should be processed now. This ensures the tick count does
|
||
|
not slip, and that any delayed tasks are resumed at the correct
|
||
|
time. */
|
||
|
if( uxPendedTicks > ( UBaseType_t ) 0U )
|
||
|
{
|
||
|
while( uxPendedTicks > ( UBaseType_t ) 0U )
|
||
|
{
|
||
|
if( xTaskIncrementTick() != pdFALSE )
|
||
|
{
|
||
|
xYieldPending = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
--uxPendedTicks;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
if( xYieldPending == pdTRUE )
|
||
|
{
|
||
|
#if( configUSE_PREEMPTION != 0 )
|
||
|
{
|
||
|
xAlreadyYielded = pdTRUE;
|
||
|
}
|
||
|
#endif
|
||
|
taskYIELD_IF_USING_PREEMPTION();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
|
||
|
return xAlreadyYielded;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
TickType_t xTaskGetTickCount( void )
|
||
|
{
|
||
|
TickType_t xTicks;
|
||
|
|
||
|
/* Critical section required if running on a 16 bit processor. */
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
xTicks = xTickCount;
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
|
||
|
return xTicks;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
TickType_t xTaskGetTickCountFromISR( void )
|
||
|
{
|
||
|
TickType_t xReturn;
|
||
|
UBaseType_t uxSavedInterruptStatus;
|
||
|
|
||
|
/* RTOS ports that support interrupt nesting have the concept of a maximum
|
||
|
system call (or maximum API call) interrupt priority. Interrupts that are
|
||
|
above the maximum system call priority are kept permanently enabled, even
|
||
|
when the RTOS kernel is in a critical section, but cannot make any calls to
|
||
|
FreeRTOS API functions. If configASSERT() is defined in FreeRTOSConfig.h
|
||
|
then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
|
||
|
failure if a FreeRTOS API function is called from an interrupt that has been
|
||
|
assigned a priority above the configured maximum system call priority.
|
||
|
Only FreeRTOS functions that end in FromISR can be called from interrupts
|
||
|
that have been assigned a priority at or (logically) below the maximum
|
||
|
system call interrupt priority. FreeRTOS maintains a separate interrupt
|
||
|
safe API to ensure interrupt entry is as fast and as simple as possible.
|
||
|
More information (albeit Cortex-M specific) is provided on the following
|
||
|
link: http://www.freertos.org/RTOS-Cortex-M3-M4.html */
|
||
|
portASSERT_IF_INTERRUPT_PRIORITY_INVALID();
|
||
|
|
||
|
uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
|
||
|
{
|
||
|
xReturn = xTickCount;
|
||
|
}
|
||
|
portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
UBaseType_t uxTaskGetNumberOfTasks( void )
|
||
|
{
|
||
|
/* A critical section is not required because the variables are of type
|
||
|
BaseType_t. */
|
||
|
return uxCurrentNumberOfTasks;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_pcTaskGetTaskName == 1 )
|
||
|
|
||
|
char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
|
||
|
/* If null is passed in here then the name of the calling task is being queried. */
|
||
|
pxTCB = prvGetTCBFromHandle( xTaskToQuery );
|
||
|
configASSERT( pxTCB );
|
||
|
return &( pxTCB->pcTaskName[ 0 ] );
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_pcTaskGetTaskName */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
|
||
|
UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime )
|
||
|
{
|
||
|
UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;
|
||
|
|
||
|
vTaskSuspendAll();
|
||
|
{
|
||
|
/* Is there a space in the array for each task in the system? */
|
||
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
||
|
ulDeltaTotalRunTime = 0;
|
||
|
#endif
|
||
|
if( uxArraySize >= uxCurrentNumberOfTasks )
|
||
|
{
|
||
|
/* Fill in an TaskStatus_t structure with information on each
|
||
|
task in the Ready state. */
|
||
|
do
|
||
|
{
|
||
|
uxQueue--;
|
||
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
|
||
|
|
||
|
} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||
|
|
||
|
/* Fill in an TaskStatus_t structure with information on each
|
||
|
task in the Blocked state. */
|
||
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
|
||
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );
|
||
|
|
||
|
#if( INCLUDE_vTaskDelete == 1 )
|
||
|
{
|
||
|
/* Fill in an TaskStatus_t structure with information on
|
||
|
each task that has been deleted but not yet cleaned up. */
|
||
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
{
|
||
|
/* Fill in an TaskStatus_t structure with information on
|
||
|
each task in the Suspended state. */
|
||
|
uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if ( configGENERATE_RUN_TIME_STATS == 1)
|
||
|
{
|
||
|
if( pulTotalRunTime != NULL )
|
||
|
{
|
||
|
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
||
|
portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
|
||
|
#else
|
||
|
*pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
if( pulTotalRunTime != NULL )
|
||
|
{
|
||
|
*pulTotalRunTime = 0;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
( void ) xTaskResumeAll();
|
||
|
|
||
|
return uxTask;
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_TRACE_FACILITY */
|
||
|
/*----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
|
||
|
|
||
|
TaskHandle_t xTaskGetIdleTaskHandle( void )
|
||
|
{
|
||
|
/* If xTaskGetIdleTaskHandle() is called before the scheduler has been
|
||
|
started, then xIdleTaskHandle will be NULL. */
|
||
|
configASSERT( ( xIdleTaskHandle != NULL ) );
|
||
|
return xIdleTaskHandle;
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_xTaskGetIdleTaskHandle */
|
||
|
/*----------------------------------------------------------*/
|
||
|
|
||
|
/* This conditional compilation should use inequality to 0, not equality to 1.
|
||
|
This is to ensure vTaskStepTick() is available when user defined low power mode
|
||
|
implementations require configUSE_TICKLESS_IDLE to be set to a value other than
|
||
|
1. */
|
||
|
#if ( configUSE_TICKLESS_IDLE != 0 )
|
||
|
|
||
|
void vTaskStepTick( const TickType_t xTicksToJump )
|
||
|
{
|
||
|
/* Correct the tick count value after a period during which the tick
|
||
|
was suppressed. Note this does *not* call the tick hook function for
|
||
|
each stepped tick. */
|
||
|
configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
|
||
|
xTickCount += xTicksToJump;
|
||
|
traceINCREASE_TICK_COUNT( xTicksToJump );
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_TICKLESS_IDLE */
|
||
|
/*----------------------------------------------------------*/
|
||
|
|
||
|
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) )
|
||
|
static void prvGenerateRunTimeOfPeroid(xList *pxList, portTickType tickTmp)
|
||
|
{
|
||
|
volatile tskTCB *pxNextTCB, *pxFirstTCB;
|
||
|
|
||
|
/* Write the run time stats of all the TCB's in pxList into the buffer. */
|
||
|
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
|
||
|
do
|
||
|
{
|
||
|
/* Get next TCB in from the list. */
|
||
|
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
|
||
|
|
||
|
/* Record start&end run time counter. */
|
||
|
if (tickTmp%(2*portCONFIGURE_STATS_PEROID_VALUE))
|
||
|
pxNextTCB->ulStartRunTimeCounterOfPeroid = pxNextTCB->ulRunTimeCounter;
|
||
|
else
|
||
|
pxNextTCB->ulEndRunTimeCounterOfPeroid = pxNextTCB->ulRunTimeCounter;
|
||
|
|
||
|
} while( pxNextTCB != pxFirstTCB );
|
||
|
}
|
||
|
|
||
|
static void prvGetRunTimeStatsOfPeroidForTasksInList(portTickType tickTmp)
|
||
|
{
|
||
|
unsigned portBASE_TYPE uxQueue;
|
||
|
|
||
|
if (tickTmp%portCONFIGURE_STATS_PEROID_VALUE){
|
||
|
return;//only portCONFIGURE_STATS_PEROID_VALUE
|
||
|
}
|
||
|
|
||
|
uxQueue = configMAX_PRIORITIES;
|
||
|
|
||
|
do
|
||
|
{
|
||
|
uxQueue--;
|
||
|
|
||
|
if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxQueue ] ) ) == pdFALSE )
|
||
|
{
|
||
|
prvGenerateRunTimeOfPeroid(( xList * ) &( pxReadyTasksLists[ uxQueue ] ), tickTmp );
|
||
|
}
|
||
|
}while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY );
|
||
|
|
||
|
if( listLIST_IS_EMPTY( pxDelayedTaskList ) == pdFALSE )
|
||
|
{
|
||
|
prvGenerateRunTimeOfPeroid(( xList * ) pxDelayedTaskList, tickTmp );
|
||
|
}
|
||
|
|
||
|
if( listLIST_IS_EMPTY( pxOverflowDelayedTaskList ) == pdFALSE )
|
||
|
{
|
||
|
prvGenerateRunTimeOfPeroid(( xList * ) pxOverflowDelayedTaskList, tickTmp );
|
||
|
}
|
||
|
|
||
|
#if ( INCLUDE_vTaskDelete == 1 )
|
||
|
{
|
||
|
if( listLIST_IS_EMPTY( &xTasksWaitingTermination ) == pdFALSE )
|
||
|
{
|
||
|
prvGenerateRunTimeOfPeroid(&xTasksWaitingTermination, tickTmp );
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
{
|
||
|
if( listLIST_IS_EMPTY( &xSuspendedTaskList ) == pdFALSE )
|
||
|
{
|
||
|
prvGenerateRunTimeOfPeroid(&xSuspendedTaskList, tickTmp );
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
BaseType_t xTaskIncrementTick( void )
|
||
|
{
|
||
|
TCB_t * pxTCB;
|
||
|
TickType_t xItemValue;
|
||
|
BaseType_t xSwitchRequired = pdFALSE;
|
||
|
|
||
|
/* Called by the portable layer each time a tick interrupt occurs.
|
||
|
Increments the tick then checks to see if the new tick value will cause any
|
||
|
tasks to be unblocked. */
|
||
|
traceTASK_INCREMENT_TICK( xTickCount );
|
||
|
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
||
|
{
|
||
|
/* Increment the RTOS tick, switching the delayed and overflowed
|
||
|
delayed lists if it wraps to 0. */
|
||
|
++xTickCount;
|
||
|
|
||
|
{
|
||
|
/* Minor optimisation. The tick count cannot change in this
|
||
|
block. */
|
||
|
const TickType_t xConstTickCount = xTickCount;
|
||
|
|
||
|
if( xConstTickCount == ( TickType_t ) 0U )
|
||
|
{
|
||
|
taskSWITCH_DELAYED_LISTS();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* See if this tick has made a timeout expire. Tasks are stored in
|
||
|
the queue in the order of their wake time - meaning once one task
|
||
|
has been found whose block time has not expired there is no need to
|
||
|
look any further down the list. */
|
||
|
if( xConstTickCount >= xNextTaskUnblockTime )
|
||
|
{
|
||
|
for( ;; )
|
||
|
{
|
||
|
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
||
|
{
|
||
|
/* The delayed list is empty. Set xNextTaskUnblockTime
|
||
|
to the maximum possible value so it is extremely
|
||
|
unlikely that the
|
||
|
if( xTickCount >= xNextTaskUnblockTime ) test will pass
|
||
|
next time through. */
|
||
|
xNextTaskUnblockTime = portMAX_DELAY;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The delayed list is not empty, get the value of the
|
||
|
item at the head of the delayed list. This is the time
|
||
|
at which the task at the head of the delayed list must
|
||
|
be removed from the Blocked state. */
|
||
|
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
|
||
|
xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem ) );
|
||
|
|
||
|
if( xConstTickCount < xItemValue )
|
||
|
{
|
||
|
/* It is not time to unblock this item yet, but the
|
||
|
item value is the time at which the task at the head
|
||
|
of the blocked list must be removed from the Blocked
|
||
|
state - so record the item value in
|
||
|
xNextTaskUnblockTime. */
|
||
|
xNextTaskUnblockTime = xItemValue;
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* It is time to remove the item from the Blocked state. */
|
||
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
||
|
|
||
|
/* Is the task waiting on an event also? If so remove
|
||
|
it from the event list. */
|
||
|
if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
|
||
|
{
|
||
|
( void ) uxListRemove( &( pxTCB->xEventListItem ) );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Place the unblocked task into the appropriate ready
|
||
|
list. */
|
||
|
prvAddTaskToReadyList( pxTCB );
|
||
|
|
||
|
/* A task being unblocked cannot cause an immediate
|
||
|
context switch if preemption is turned off. */
|
||
|
#if ( configUSE_PREEMPTION == 1 )
|
||
|
{
|
||
|
/* Preemption is on, but a context switch should
|
||
|
only be performed if the unblocked task has a
|
||
|
priority that is equal to or higher than the
|
||
|
currently executing task. */
|
||
|
if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )
|
||
|
{
|
||
|
xSwitchRequired = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
#endif /* configUSE_PREEMPTION */
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Tasks of equal priority to the currently running task will share
|
||
|
processing time (time slice) if preemption is on, and the application
|
||
|
writer has not explicitly turned time slicing off. */
|
||
|
#if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
|
||
|
{
|
||
|
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )
|
||
|
{
|
||
|
xSwitchRequired = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */
|
||
|
|
||
|
#if ( configUSE_TICK_HOOK == 1 )
|
||
|
{
|
||
|
/* Guard against the tick hook being called when the pended tick
|
||
|
count is being unwound (when the scheduler is being unlocked). */
|
||
|
if( uxPendedTicks == ( UBaseType_t ) 0U )
|
||
|
{
|
||
|
vApplicationTickHook();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
#endif /* configUSE_TICK_HOOK */
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
++uxPendedTicks;
|
||
|
|
||
|
/* The tick hook gets called at regular intervals, even if the
|
||
|
scheduler is locked. */
|
||
|
#if ( configUSE_TICK_HOOK == 1 )
|
||
|
{
|
||
|
vApplicationTickHook();
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
||
|
prvGetRunTimeStatsOfPeroidForTasksInList(xTickCount);
|
||
|
#endif
|
||
|
|
||
|
#if ( configUSE_PREEMPTION == 1 )
|
||
|
{
|
||
|
if( xYieldPending != pdFALSE )
|
||
|
{
|
||
|
xSwitchRequired = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
#endif /* configUSE_PREEMPTION */
|
||
|
|
||
|
return xSwitchRequired;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
||
|
|
||
|
void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction )
|
||
|
{
|
||
|
TCB_t *xTCB;
|
||
|
|
||
|
/* If xTask is NULL then it is the task hook of the calling task that is
|
||
|
getting set. */
|
||
|
if( xTask == NULL )
|
||
|
{
|
||
|
xTCB = ( TCB_t * ) pxCurrentTCB;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xTCB = ( TCB_t * ) xTask;
|
||
|
}
|
||
|
|
||
|
/* Save the hook function in the TCB. A critical section is required as
|
||
|
the value can be accessed from an interrupt. */
|
||
|
taskENTER_CRITICAL();
|
||
|
xTCB->pxTaskTag = pxHookFunction;
|
||
|
taskEXIT_CRITICAL();
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_APPLICATION_TASK_TAG */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
||
|
|
||
|
TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
|
||
|
{
|
||
|
TCB_t *xTCB;
|
||
|
TaskHookFunction_t xReturn;
|
||
|
|
||
|
/* If xTask is NULL then we are setting our own task hook. */
|
||
|
if( xTask == NULL )
|
||
|
{
|
||
|
xTCB = ( TCB_t * ) pxCurrentTCB;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xTCB = ( TCB_t * ) xTask;
|
||
|
}
|
||
|
|
||
|
/* Save the hook function in the TCB. A critical section is required as
|
||
|
the value can be accessed from an interrupt. */
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
xReturn = xTCB->pxTaskTag;
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_APPLICATION_TASK_TAG */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
||
|
|
||
|
BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter )
|
||
|
{
|
||
|
TCB_t *xTCB;
|
||
|
BaseType_t xReturn;
|
||
|
|
||
|
/* If xTask is NULL then we are calling our own task hook. */
|
||
|
if( xTask == NULL )
|
||
|
{
|
||
|
xTCB = ( TCB_t * ) pxCurrentTCB;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xTCB = ( TCB_t * ) xTask;
|
||
|
}
|
||
|
|
||
|
if( xTCB->pxTaskTag != NULL )
|
||
|
{
|
||
|
xReturn = xTCB->pxTaskTag( pvParameter );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xReturn = pdFAIL;
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_APPLICATION_TASK_TAG */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vTaskSwitchContext( void )
|
||
|
{
|
||
|
if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
|
||
|
{
|
||
|
/* The scheduler is currently suspended - do not allow a context
|
||
|
switch. */
|
||
|
xYieldPending = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xYieldPending = pdFALSE;
|
||
|
traceTASK_SWITCHED_OUT();
|
||
|
|
||
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
||
|
{
|
||
|
#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
|
||
|
portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
|
||
|
#else
|
||
|
ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
|
||
|
#endif
|
||
|
|
||
|
/* Add the amount of time the task has been running to the
|
||
|
accumulated time so far. The time the task started running was
|
||
|
stored in ulTaskSwitchedInTime. Note that there is no overflow
|
||
|
protection here so count values are only valid until the timer
|
||
|
overflows. The guard against negative values is to protect
|
||
|
against suspect run time stat counter implementations - which
|
||
|
are provided by the application, not the kernel. */
|
||
|
if( ulTotalRunTime > ulTaskSwitchedInTime )
|
||
|
{
|
||
|
pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
ulTaskSwitchedInTime = ulTotalRunTime;
|
||
|
}
|
||
|
#endif /* configGENERATE_RUN_TIME_STATS */
|
||
|
|
||
|
/* Check for stack overflow, if configured. */
|
||
|
taskFIRST_CHECK_FOR_STACK_OVERFLOW();
|
||
|
taskSECOND_CHECK_FOR_STACK_OVERFLOW();
|
||
|
|
||
|
/* Select a new task to run using either the generic C or port
|
||
|
optimised asm code. */
|
||
|
taskSELECT_HIGHEST_PRIORITY_TASK();
|
||
|
traceTASK_SWITCHED_IN();
|
||
|
|
||
|
#if ( configUSE_NEWLIB_REENTRANT == 1 )
|
||
|
{
|
||
|
/* Switch Newlib's _impure_ptr variable to point to the _reent
|
||
|
structure specific to this task. */
|
||
|
_impure_ptr = &( pxCurrentTCB->xNewLib_reent );
|
||
|
}
|
||
|
#endif /* configUSE_NEWLIB_REENTRANT */
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait )
|
||
|
{
|
||
|
TickType_t xTimeToWake;
|
||
|
|
||
|
configASSERT( pxEventList );
|
||
|
|
||
|
/* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
|
||
|
SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */
|
||
|
|
||
|
/* Place the event list item of the TCB in the appropriate event list.
|
||
|
This is placed in the list in priority order so the highest priority task
|
||
|
is the first to be woken by the event. The queue that contains the event
|
||
|
list is locked, preventing simultaneous access from interrupts. */
|
||
|
vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
||
|
|
||
|
/* The task must be removed from from the ready list before it is added to
|
||
|
the blocked list as the same list item is used for both lists. Exclusive
|
||
|
access to the ready lists guaranteed because the scheduler is locked. */
|
||
|
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
/* The current task must be in a ready list, so there is no need to
|
||
|
check, and the port reset macro can be called directly. */
|
||
|
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
{
|
||
|
if( xTicksToWait == portMAX_DELAY )
|
||
|
{
|
||
|
/* Add the task to the suspended task list instead of a delayed task
|
||
|
list to ensure the task is not woken by a timing event. It will
|
||
|
block indefinitely. */
|
||
|
vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Calculate the time at which the task should be woken if the event
|
||
|
does not occur. This may overflow but this doesn't matter, the
|
||
|
scheduler will handle it. */
|
||
|
xTimeToWake = xTickCount + xTicksToWait;
|
||
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
||
|
}
|
||
|
}
|
||
|
#else /* INCLUDE_vTaskSuspend */
|
||
|
{
|
||
|
/* Calculate the time at which the task should be woken if the event does
|
||
|
not occur. This may overflow but this doesn't matter, the scheduler
|
||
|
will handle it. */
|
||
|
xTimeToWake = xTickCount + xTicksToWait;
|
||
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
||
|
}
|
||
|
#endif /* INCLUDE_vTaskSuspend */
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait )
|
||
|
{
|
||
|
TickType_t xTimeToWake;
|
||
|
|
||
|
configASSERT( pxEventList );
|
||
|
|
||
|
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
||
|
the event groups implementation. */
|
||
|
configASSERT( uxSchedulerSuspended != 0 );
|
||
|
|
||
|
/* Store the item value in the event list item. It is safe to access the
|
||
|
event list item here as interrupts won't access the event list item of a
|
||
|
task that is not in the Blocked state. */
|
||
|
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
||
|
|
||
|
/* Place the event list item of the TCB at the end of the appropriate event
|
||
|
list. It is safe to access the event list here because it is part of an
|
||
|
event group implementation - and interrupts don't access event groups
|
||
|
directly (instead they access them indirectly by pending function calls to
|
||
|
the task level). */
|
||
|
vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
||
|
|
||
|
/* The task must be removed from the ready list before it is added to the
|
||
|
blocked list. Exclusive access can be assured to the ready list as the
|
||
|
scheduler is locked. */
|
||
|
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
/* The current task must be in a ready list, so there is no need to
|
||
|
check, and the port reset macro can be called directly. */
|
||
|
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
{
|
||
|
if( xTicksToWait == portMAX_DELAY )
|
||
|
{
|
||
|
/* Add the task to the suspended task list instead of a delayed task
|
||
|
list to ensure it is not woken by a timing event. It will block
|
||
|
indefinitely. */
|
||
|
vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xGenericListItem ) );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Calculate the time at which the task should be woken if the event
|
||
|
does not occur. This may overflow but this doesn't matter, the
|
||
|
kernel will manage it correctly. */
|
||
|
xTimeToWake = xTickCount + xTicksToWait;
|
||
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
||
|
}
|
||
|
}
|
||
|
#else /* INCLUDE_vTaskSuspend */
|
||
|
{
|
||
|
/* Calculate the time at which the task should be woken if the event does
|
||
|
not occur. This may overflow but this doesn't matter, the kernel
|
||
|
will manage it correctly. */
|
||
|
xTimeToWake = xTickCount + xTicksToWait;
|
||
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
||
|
}
|
||
|
#endif /* INCLUDE_vTaskSuspend */
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if configUSE_TIMERS == 1
|
||
|
|
||
|
void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait )
|
||
|
{
|
||
|
TickType_t xTimeToWake;
|
||
|
|
||
|
configASSERT( pxEventList );
|
||
|
|
||
|
/* This function should not be called by application code hence the
|
||
|
'Restricted' in its name. It is not part of the public API. It is
|
||
|
designed for use by kernel code, and has special calling requirements -
|
||
|
it should be called from a critical section. */
|
||
|
|
||
|
|
||
|
/* Place the event list item of the TCB in the appropriate event list.
|
||
|
In this case it is assume that this is the only task that is going to
|
||
|
be waiting on this event list, so the faster vListInsertEnd() function
|
||
|
can be used in place of vListInsert. */
|
||
|
vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );
|
||
|
|
||
|
/* We must remove this task from the ready list before adding it to the
|
||
|
blocked list as the same list item is used for both lists. This
|
||
|
function is called form a critical section. */
|
||
|
if( uxListRemove( &( pxCurrentTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
/* The current task must be in a ready list, so there is no need to
|
||
|
check, and the port reset macro can be called directly. */
|
||
|
portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Calculate the time at which the task should be woken if the event does
|
||
|
not occur. This may overflow but this doesn't matter. */
|
||
|
xTimeToWake = xTickCount + xTicksToWait;
|
||
|
|
||
|
traceTASK_DELAY_UNTIL();
|
||
|
prvAddCurrentTaskToDelayedList( xTimeToWake );
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_TIMERS */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
|
||
|
{
|
||
|
TCB_t *pxUnblockedTCB;
|
||
|
BaseType_t xReturn;
|
||
|
|
||
|
/* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION. It can also be
|
||
|
called from a critical section within an ISR. */
|
||
|
|
||
|
/* The event list is sorted in priority order, so the first in the list can
|
||
|
be removed as it is known to be the highest priority. Remove the TCB from
|
||
|
the delayed list, and add it to the ready list.
|
||
|
|
||
|
If an event is for a queue that is locked then this function will never
|
||
|
get called - the lock count on the queue will get modified instead. This
|
||
|
means exclusive access to the event list is guaranteed here.
|
||
|
|
||
|
This function assumes that a check has already been made to ensure that
|
||
|
pxEventList is not empty. */
|
||
|
pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
|
||
|
configASSERT( pxUnblockedTCB );
|
||
|
( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
|
||
|
|
||
|
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
||
|
{
|
||
|
( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
|
||
|
prvAddTaskToReadyList( pxUnblockedTCB );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The delayed and ready lists cannot be accessed, so hold this task
|
||
|
pending until the scheduler is resumed. */
|
||
|
vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
|
||
|
}
|
||
|
|
||
|
if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
|
||
|
{
|
||
|
/* Return true if the task removed from the event list has a higher
|
||
|
priority than the calling task. This allows the calling task to know if
|
||
|
it should force a context switch now. */
|
||
|
xReturn = pdTRUE;
|
||
|
|
||
|
/* Mark that a yield is pending in case the user is not using the
|
||
|
"xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
|
||
|
xYieldPending = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xReturn = pdFALSE;
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue )
|
||
|
{
|
||
|
TCB_t *pxUnblockedTCB;
|
||
|
BaseType_t xReturn;
|
||
|
|
||
|
/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. It is used by
|
||
|
the event flags implementation. */
|
||
|
configASSERT( uxSchedulerSuspended != pdFALSE );
|
||
|
|
||
|
/* Store the new item value in the event list. */
|
||
|
listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );
|
||
|
|
||
|
/* Remove the event list form the event flag. Interrupts do not access
|
||
|
event flags. */
|
||
|
pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem );
|
||
|
configASSERT( pxUnblockedTCB );
|
||
|
( void ) uxListRemove( pxEventListItem );
|
||
|
|
||
|
/* Remove the task from the delayed list and add it to the ready list. The
|
||
|
scheduler is suspended so interrupts will not be accessing the ready
|
||
|
lists. */
|
||
|
( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
|
||
|
prvAddTaskToReadyList( pxUnblockedTCB );
|
||
|
|
||
|
if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )
|
||
|
{
|
||
|
/* Return true if the task removed from the event list has
|
||
|
a higher priority than the calling task. This allows
|
||
|
the calling task to know if it should force a context
|
||
|
switch now. */
|
||
|
xReturn = pdTRUE;
|
||
|
|
||
|
/* Mark that a yield is pending in case the user is not using the
|
||
|
"xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
|
||
|
xYieldPending = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xReturn = pdFALSE;
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
|
||
|
{
|
||
|
configASSERT( pxTimeOut );
|
||
|
pxTimeOut->xOverflowCount = xNumOfOverflows;
|
||
|
pxTimeOut->xTimeOnEntering = xTickCount;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait )
|
||
|
{
|
||
|
BaseType_t xReturn;
|
||
|
|
||
|
configASSERT( pxTimeOut );
|
||
|
configASSERT( pxTicksToWait );
|
||
|
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
/* Minor optimisation. The tick count cannot change in this block. */
|
||
|
const TickType_t xConstTickCount = xTickCount;
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
/* If INCLUDE_vTaskSuspend is set to 1 and the block time specified is
|
||
|
the maximum block time then the task should block indefinitely, and
|
||
|
therefore never time out. */
|
||
|
if( *pxTicksToWait == portMAX_DELAY )
|
||
|
{
|
||
|
xReturn = pdFALSE;
|
||
|
}
|
||
|
else /* We are not blocking indefinitely, perform the checks below. */
|
||
|
#endif
|
||
|
|
||
|
if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
|
||
|
{
|
||
|
/* The tick count is greater than the time at which vTaskSetTimeout()
|
||
|
was called, but has also overflowed since vTaskSetTimeOut() was called.
|
||
|
It must have wrapped all the way around and gone past us again. This
|
||
|
passed since vTaskSetTimeout() was called. */
|
||
|
xReturn = pdTRUE;
|
||
|
}
|
||
|
else if( ( xConstTickCount - pxTimeOut->xTimeOnEntering ) < *pxTicksToWait )
|
||
|
{
|
||
|
/* Not a genuine timeout. Adjust parameters for time remaining. */
|
||
|
*pxTicksToWait -= ( xConstTickCount - pxTimeOut->xTimeOnEntering );
|
||
|
vTaskSetTimeOutState( pxTimeOut );
|
||
|
xReturn = pdFALSE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xReturn = pdTRUE;
|
||
|
}
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vTaskMissedYield( void )
|
||
|
{
|
||
|
xYieldPending = pdTRUE;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
|
||
|
UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
|
||
|
{
|
||
|
UBaseType_t uxReturn;
|
||
|
TCB_t *pxTCB;
|
||
|
|
||
|
if( xTask != NULL )
|
||
|
{
|
||
|
pxTCB = ( TCB_t * ) xTask;
|
||
|
uxReturn = pxTCB->uxTaskNumber;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
uxReturn = 0U;
|
||
|
}
|
||
|
|
||
|
return uxReturn;
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_TRACE_FACILITY */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
|
||
|
void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
|
||
|
if( xTask != NULL )
|
||
|
{
|
||
|
pxTCB = ( TCB_t * ) xTask;
|
||
|
pxTCB->uxTaskNumber = uxHandle;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_TRACE_FACILITY */
|
||
|
|
||
|
/*
|
||
|
* -----------------------------------------------------------
|
||
|
* The Idle task.
|
||
|
* ----------------------------------------------------------
|
||
|
*
|
||
|
* The portTASK_FUNCTION() macro is used to allow port/compiler specific
|
||
|
* language extensions. The equivalent prototype for this function is:
|
||
|
*
|
||
|
* void prvIdleTask( void *pvParameters );
|
||
|
*
|
||
|
*/
|
||
|
static portTASK_FUNCTION( prvIdleTask, pvParameters )
|
||
|
{
|
||
|
/* Stop warnings. */
|
||
|
( void ) pvParameters;
|
||
|
|
||
|
for( ;; )
|
||
|
{
|
||
|
/* See if any tasks have been deleted. */
|
||
|
prvCheckTasksWaitingTermination();
|
||
|
|
||
|
#if ( configUSE_PREEMPTION == 0 )
|
||
|
{
|
||
|
/* If we are not using preemption we keep forcing a task switch to
|
||
|
see if any other task has become available. If we are using
|
||
|
preemption we don't need to do this as any task becoming available
|
||
|
will automatically get the processor anyway. */
|
||
|
taskYIELD();
|
||
|
}
|
||
|
#endif /* configUSE_PREEMPTION */
|
||
|
|
||
|
#if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
|
||
|
{
|
||
|
/* When using preemption tasks of equal priority will be
|
||
|
timesliced. If a task that is sharing the idle priority is ready
|
||
|
to run then the idle task should yield before the end of the
|
||
|
timeslice.
|
||
|
|
||
|
A critical region is not required here as we are just reading from
|
||
|
the list, and an occasional incorrect value will not matter. If
|
||
|
the ready list at the idle priority contains more than one task
|
||
|
then a task other than the idle task is ready to execute. */
|
||
|
if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
|
||
|
{
|
||
|
taskYIELD();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */
|
||
|
|
||
|
#if ( configUSE_IDLE_HOOK == 1 )
|
||
|
{
|
||
|
extern void vApplicationIdleHook( void );
|
||
|
|
||
|
/* Call the user defined function from within the idle task. This
|
||
|
allows the application designer to add background functionality
|
||
|
without the overhead of a separate task.
|
||
|
NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
|
||
|
CALL A FUNCTION THAT MIGHT BLOCK. */
|
||
|
vApplicationIdleHook();
|
||
|
}
|
||
|
#endif /* configUSE_IDLE_HOOK */
|
||
|
|
||
|
/* This conditional compilation should use inequality to 0, not equality
|
||
|
to 1. This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
|
||
|
user defined low power mode implementations require
|
||
|
configUSE_TICKLESS_IDLE to be set to a value other than 1. */
|
||
|
#if ( configUSE_TICKLESS_IDLE != 0 )
|
||
|
{
|
||
|
TickType_t xExpectedIdleTime;
|
||
|
|
||
|
/* It is not desirable to suspend then resume the scheduler on
|
||
|
each iteration of the idle task. Therefore, a preliminary
|
||
|
test of the expected idle time is performed without the
|
||
|
scheduler suspended. The result here is not necessarily
|
||
|
valid. */
|
||
|
xExpectedIdleTime = prvGetExpectedIdleTime();
|
||
|
|
||
|
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
||
|
{
|
||
|
vTaskSuspendAll();
|
||
|
{
|
||
|
/* Now the scheduler is suspended, the expected idle
|
||
|
time can be sampled again, and this time its value can
|
||
|
be used. */
|
||
|
configASSERT( xNextTaskUnblockTime >= xTickCount );
|
||
|
xExpectedIdleTime = prvGetExpectedIdleTime();
|
||
|
|
||
|
if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
|
||
|
{
|
||
|
traceLOW_POWER_IDLE_BEGIN();
|
||
|
portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
|
||
|
traceLOW_POWER_IDLE_END();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
( void ) xTaskResumeAll();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
#endif /* configUSE_TICKLESS_IDLE */
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if configUSE_TICKLESS_IDLE != 0
|
||
|
|
||
|
eSleepModeStatus eTaskConfirmSleepModeStatus( void )
|
||
|
{
|
||
|
eSleepModeStatus eReturn = eStandardSleep;
|
||
|
|
||
|
if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
|
||
|
{
|
||
|
/* A task was made ready while the scheduler was suspended. */
|
||
|
eReturn = eAbortSleep;
|
||
|
}
|
||
|
else if( xYieldPending != pdFALSE )
|
||
|
{
|
||
|
/* A yield was pended while the scheduler was suspended. */
|
||
|
eReturn = eAbortSleep;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
#if configUSE_TIMERS == 0
|
||
|
{
|
||
|
/* The idle task exists in addition to the application tasks. */
|
||
|
const UBaseType_t uxNonApplicationTasks = 1;
|
||
|
|
||
|
/* If timers are not being used and all the tasks are in the
|
||
|
suspended list (which might mean they have an infinite block
|
||
|
time rather than actually being suspended) then it is safe to
|
||
|
turn all clocks off and just wait for external interrupts. */
|
||
|
if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
|
||
|
{
|
||
|
eReturn = eNoTasksWaitingTimeout;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
#endif /* configUSE_TIMERS */
|
||
|
}
|
||
|
|
||
|
return eReturn;
|
||
|
}
|
||
|
#endif /* configUSE_TICKLESS_IDLE */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvInitialiseTCBVariables( TCB_t * const pxTCB, const char * const pcName, UBaseType_t uxPriority, const MemoryRegion_t * const xRegions, const uint16_t usStackDepth ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
|
||
|
{
|
||
|
UBaseType_t x;
|
||
|
|
||
|
/* Store the task name in the TCB. */
|
||
|
for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
|
||
|
{
|
||
|
pxTCB->pcTaskName[ x ] = pcName[ x ];
|
||
|
|
||
|
/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
|
||
|
configMAX_TASK_NAME_LEN characters just in case the memory after the
|
||
|
string is not accessible (extremely unlikely). */
|
||
|
if( pcName[ x ] == 0x00 )
|
||
|
{
|
||
|
break;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Ensure the name string is terminated in the case that the string length
|
||
|
was greater or equal to configMAX_TASK_NAME_LEN. */
|
||
|
pxTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
|
||
|
|
||
|
/* This is used as an array index so must ensure it's not too large. First
|
||
|
remove the privilege bit if one is present. */
|
||
|
if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
|
||
|
{
|
||
|
uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
pxTCB->uxPriority = uxPriority;
|
||
|
#if ( configUSE_MUTEXES == 1 )
|
||
|
{
|
||
|
pxTCB->uxBasePriority = uxPriority;
|
||
|
pxTCB->uxMutexesHeld = 0;
|
||
|
}
|
||
|
#endif /* configUSE_MUTEXES */
|
||
|
|
||
|
vListInitialiseItem( &( pxTCB->xGenericListItem ) );
|
||
|
vListInitialiseItem( &( pxTCB->xEventListItem ) );
|
||
|
|
||
|
/* Set the pxTCB as a link back from the ListItem_t. This is so we can get
|
||
|
back to the containing TCB from a generic item in a list. */
|
||
|
listSET_LIST_ITEM_OWNER( &( pxTCB->xGenericListItem ), pxTCB );
|
||
|
|
||
|
/* Event lists are always in priority order. */
|
||
|
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||
|
listSET_LIST_ITEM_OWNER( &( pxTCB->xEventListItem ), pxTCB );
|
||
|
|
||
|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
||
|
{
|
||
|
pxTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
|
||
|
}
|
||
|
#endif /* portCRITICAL_NESTING_IN_TCB */
|
||
|
|
||
|
#if ( configUSE_APPLICATION_TASK_TAG == 1 )
|
||
|
{
|
||
|
pxTCB->pxTaskTag = NULL;
|
||
|
}
|
||
|
#endif /* configUSE_APPLICATION_TASK_TAG */
|
||
|
|
||
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
||
|
{
|
||
|
pxTCB->ulRunTimeCounter = 0UL;
|
||
|
pxTCB->ulStartRunTimeCounterOfPeroid = 0UL;
|
||
|
pxTCB->ulEndRunTimeCounterOfPeroid = 0UL;
|
||
|
}
|
||
|
#endif /* configGENERATE_RUN_TIME_STATS */
|
||
|
|
||
|
#if ( portUSING_MPU_WRAPPERS == 1 )
|
||
|
{
|
||
|
vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, pxTCB->pxStack, usStackDepth );
|
||
|
}
|
||
|
#else /* portUSING_MPU_WRAPPERS */
|
||
|
{
|
||
|
( void ) xRegions;
|
||
|
( void ) usStackDepth;
|
||
|
}
|
||
|
#endif /* portUSING_MPU_WRAPPERS */
|
||
|
|
||
|
#if ( configUSE_NEWLIB_REENTRANT == 1 )
|
||
|
{
|
||
|
/* Initialise this task's Newlib reent structure. */
|
||
|
_REENT_INIT_PTR( ( &( pxTCB->xNewLib_reent ) ) );
|
||
|
}
|
||
|
#endif /* configUSE_NEWLIB_REENTRANT */
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( portUSING_MPU_WRAPPERS == 1 )
|
||
|
|
||
|
void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
|
||
|
/* If null is passed in here then we are deleting ourselves. */
|
||
|
pxTCB = prvGetTCBFromHandle( xTaskToModify );
|
||
|
|
||
|
vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
|
||
|
}
|
||
|
|
||
|
#endif /* portUSING_MPU_WRAPPERS */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvInitialiseTaskLists( void )
|
||
|
{
|
||
|
UBaseType_t uxPriority;
|
||
|
|
||
|
for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
|
||
|
{
|
||
|
vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
|
||
|
}
|
||
|
|
||
|
vListInitialise( &xDelayedTaskList1 );
|
||
|
vListInitialise( &xDelayedTaskList2 );
|
||
|
vListInitialise( &xPendingReadyList );
|
||
|
|
||
|
#if ( INCLUDE_vTaskDelete == 1 )
|
||
|
{
|
||
|
vListInitialise( &xTasksWaitingTermination );
|
||
|
}
|
||
|
#endif /* INCLUDE_vTaskDelete */
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
{
|
||
|
vListInitialise( &xSuspendedTaskList );
|
||
|
}
|
||
|
#endif /* INCLUDE_vTaskSuspend */
|
||
|
|
||
|
/* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
|
||
|
using list2. */
|
||
|
pxDelayedTaskList = &xDelayedTaskList1;
|
||
|
pxOverflowDelayedTaskList = &xDelayedTaskList2;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvCheckTasksWaitingTermination( void )
|
||
|
{
|
||
|
#if ( INCLUDE_vTaskDelete == 1 )
|
||
|
{
|
||
|
BaseType_t xListIsEmpty;
|
||
|
|
||
|
/* ucTasksDeleted is used to prevent vTaskSuspendAll() being called
|
||
|
too often in the idle task. */
|
||
|
while( uxTasksDeleted > ( UBaseType_t ) 0U )
|
||
|
{
|
||
|
vTaskSuspendAll();
|
||
|
{
|
||
|
xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination );
|
||
|
}
|
||
|
( void ) xTaskResumeAll();
|
||
|
|
||
|
if( xListIsEmpty == pdFALSE )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
|
||
|
taskENTER_CRITICAL();
|
||
|
{
|
||
|
pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) );
|
||
|
( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
|
||
|
--uxCurrentNumberOfTasks;
|
||
|
--uxTasksDeleted;
|
||
|
}
|
||
|
taskEXIT_CRITICAL();
|
||
|
|
||
|
prvDeleteTCB( pxTCB );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif /* vTaskDelete */
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvAddCurrentTaskToDelayedList( const TickType_t xTimeToWake )
|
||
|
{
|
||
|
/* The list item will be inserted in wake time order. */
|
||
|
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xGenericListItem ), xTimeToWake );
|
||
|
|
||
|
if( xTimeToWake < xTickCount )
|
||
|
{
|
||
|
/* Wake time has overflowed. Place this item in the overflow list. */
|
||
|
vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The wake time has not overflowed, so the current block list is used. */
|
||
|
vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xGenericListItem ) );
|
||
|
|
||
|
/* If the task entering the blocked state was placed at the head of the
|
||
|
list of blocked tasks then xNextTaskUnblockTime needs to be updated
|
||
|
too. */
|
||
|
if( xTimeToWake < xNextTaskUnblockTime )
|
||
|
{
|
||
|
xNextTaskUnblockTime = xTimeToWake;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static TCB_t *prvAllocateTCBAndStack( const uint16_t usStackDepth, StackType_t * const puxStackBuffer )
|
||
|
{
|
||
|
TCB_t *pxNewTCB;
|
||
|
|
||
|
/* Allocate space for the TCB. Where the memory comes from depends on
|
||
|
the implementation of the port malloc function. */
|
||
|
pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );
|
||
|
|
||
|
if( pxNewTCB != NULL )
|
||
|
{
|
||
|
/* Allocate space for the stack used by the task being created.
|
||
|
The base of the stack memory stored in the TCB so the task can
|
||
|
be deleted later if required. */
|
||
|
//pvvx
|
||
|
#if CONFIG_USE_TCM_HEAP
|
||
|
if(puxStackBuffer == NULL) {
|
||
|
pxNewTCB->pxStack = ( StackType_t * ) tcm_heap_malloc((( size_t ) puxStackBuffer) * sizeof(StackType_t));
|
||
|
if(pxNewTCB->pxStack == NULL) pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc((( size_t ) puxStackBuffer) * sizeof(StackType_t));
|
||
|
}
|
||
|
#else
|
||
|
pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocAligned( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ), puxStackBuffer ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||
|
#endif
|
||
|
|
||
|
if( pxNewTCB->pxStack == NULL )
|
||
|
{
|
||
|
/* Could not allocate the stack. Delete the allocated TCB. */
|
||
|
vPortFree( pxNewTCB );
|
||
|
pxNewTCB = NULL;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Avoid dependency on memset() if it is not required. */
|
||
|
#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
|
||
|
{
|
||
|
/* Just to help debugging. */
|
||
|
( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) usStackDepth * sizeof( StackType_t ) );
|
||
|
}
|
||
|
#endif /* ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) ) */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return pxNewTCB;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_TRACE_FACILITY == 1 )
|
||
|
|
||
|
static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState )
|
||
|
{
|
||
|
volatile TCB_t *pxNextTCB, *pxFirstTCB;
|
||
|
UBaseType_t uxTask = 0;
|
||
|
|
||
|
if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
|
||
|
|
||
|
/* Populate an TaskStatus_t structure within the
|
||
|
pxTaskStatusArray array for each task that is referenced from
|
||
|
pxList. See the definition of TaskStatus_t in task.h for the
|
||
|
meaning of each TaskStatus_t structure member. */
|
||
|
do
|
||
|
{
|
||
|
listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
|
||
|
|
||
|
pxTaskStatusArray[ uxTask ].xHandle = ( TaskHandle_t ) pxNextTCB;
|
||
|
pxTaskStatusArray[ uxTask ].pcTaskName = ( const char * ) &( pxNextTCB->pcTaskName [ 0 ] );
|
||
|
pxTaskStatusArray[ uxTask ].xTaskNumber = pxNextTCB->uxTCBNumber;
|
||
|
pxTaskStatusArray[ uxTask ].eCurrentState = eState;
|
||
|
pxTaskStatusArray[ uxTask ].uxCurrentPriority = pxNextTCB->uxPriority;
|
||
|
|
||
|
#if ( INCLUDE_vTaskSuspend == 1 )
|
||
|
{
|
||
|
/* If the task is in the suspended list then there is a chance
|
||
|
it is actually just blocked indefinitely - so really it should
|
||
|
be reported as being in the Blocked state. */
|
||
|
if( eState == eSuspended )
|
||
|
{
|
||
|
if( listLIST_ITEM_CONTAINER( &( pxNextTCB->xEventListItem ) ) != NULL )
|
||
|
{
|
||
|
pxTaskStatusArray[ uxTask ].eCurrentState = eBlocked;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif /* INCLUDE_vTaskSuspend */
|
||
|
|
||
|
#if ( configUSE_MUTEXES == 1 )
|
||
|
{
|
||
|
pxTaskStatusArray[ uxTask ].uxBasePriority = pxNextTCB->uxBasePriority;
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
pxTaskStatusArray[ uxTask ].uxBasePriority = 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if ( configGENERATE_RUN_TIME_STATS == 1 )
|
||
|
{
|
||
|
pxTaskStatusArray[ uxTask ].ulRunTimeCounter = pxNextTCB->ulRunTimeCounter;
|
||
|
if (pxNextTCB->ulEndRunTimeCounterOfPeroid > pxNextTCB->ulStartRunTimeCounterOfPeroid)
|
||
|
pxTaskStatusArray[ uxTask ].ulDelataRunTimeCounterOfPeroid = pxNextTCB->ulEndRunTimeCounterOfPeroid - pxNextTCB->ulStartRunTimeCounterOfPeroid;
|
||
|
else
|
||
|
pxTaskStatusArray[ uxTask ].ulDelataRunTimeCounterOfPeroid = pxNextTCB->ulStartRunTimeCounterOfPeroid - pxNextTCB->ulEndRunTimeCounterOfPeroid;
|
||
|
ulDeltaTotalRunTime += pxTaskStatusArray[ uxTask ].ulDelataRunTimeCounterOfPeroid;
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
pxTaskStatusArray[ uxTask ].ulRunTimeCounter = 0;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#if ( portSTACK_GROWTH > 0 )
|
||
|
{
|
||
|
pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxEndOfStack );
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxStack );
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
uxTask++;
|
||
|
|
||
|
} while( pxNextTCB != pxFirstTCB );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
return uxTask;
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_TRACE_FACILITY */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
|
||
|
|
||
|
static uint16_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
|
||
|
{
|
||
|
uint32_t ulCount = 0U;
|
||
|
|
||
|
while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
|
||
|
{
|
||
|
pucStackByte -= portSTACK_GROWTH;
|
||
|
ulCount++;
|
||
|
}
|
||
|
|
||
|
ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */
|
||
|
|
||
|
return ( uint16_t ) ulCount;
|
||
|
}
|
||
|
|
||
|
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )
|
||
|
|
||
|
UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
uint8_t *pucEndOfStack;
|
||
|
UBaseType_t uxReturn;
|
||
|
|
||
|
pxTCB = prvGetTCBFromHandle( xTask );
|
||
|
|
||
|
#if portSTACK_GROWTH < 0
|
||
|
{
|
||
|
pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );
|
||
|
|
||
|
return uxReturn;
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( INCLUDE_vTaskDelete == 1 )
|
||
|
|
||
|
static void prvDeleteTCB( TCB_t *pxTCB )
|
||
|
{
|
||
|
/* This call is required specifically for the TriCore port. It must be
|
||
|
above the vPortFree() calls. The call is also used by ports/demos that
|
||
|
want to allocate and clean RAM statically. */
|
||
|
portCLEAN_UP_TCB( pxTCB );
|
||
|
|
||
|
/* Free up the memory allocated by the scheduler for the task. It is up
|
||
|
to the task to free any memory allocated at the application level. */
|
||
|
#if ( configUSE_NEWLIB_REENTRANT == 1 )
|
||
|
{
|
||
|
_reclaim_reent( &( pxTCB->xNewLib_reent ) );
|
||
|
}
|
||
|
#endif /* configUSE_NEWLIB_REENTRANT */
|
||
|
vPortFreeAligned( pxTCB->pxStack );
|
||
|
vPortFree( pxTCB );
|
||
|
}
|
||
|
|
||
|
#endif /* INCLUDE_vTaskDelete */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvResetNextTaskUnblockTime( void )
|
||
|
{
|
||
|
TCB_t *pxTCB;
|
||
|
|
||
|
if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
|
||
|
{
|
||
|
/* The new current delayed list is empty. Set
|
||
|
xNextTaskUnblockTime to the maximum possible value so it is
|
||
|
extremely unlikely that the
|
||
|
if( xTickCount >= xNextTaskUnblockTime ) test will pass until
|
||
|
there is an item in the delayed list. */
|
||
|
xNextTaskUnblockTime = portMAX_DELAY;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The new current delayed list is not empty, get the value of
|
||
|
the item at the head of the delayed list. This is the time at
|
||
|
which the task at the head of the delayed list should be removed
|
||
|
from the Blocked state. */
|
||
|
( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
|
||
|
xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xGenericListItem ) );
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )
|
||
|
|
||
|
TaskHandle_t xTaskGetCurrentTaskHandle( void )
|
||
|
{
|
||
|
TaskHandle_t xReturn;
|
||
|
|
||
|
/* A critical section is not required as this is not called from
|
||
|
an interrupt and the current TCB will always be the same for any
|
||
|
individual execution thread. */
|
||
|
xReturn = pxCurrentTCB;
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
|
||
|
#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )
|
||
|
|
||
|
BaseType_t xTaskGetSchedulerState( void )
|
||
|
{
|
||
|
BaseType_t xReturn;
|
||
|
|
||
|
if( xSchedulerRunning == pdFALSE )
|
||
|
{
|
||
|
xReturn = taskSCHEDULER_NOT_STARTED;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
|
||
|
{
|
||
|
xReturn = taskSCHEDULER_RUNNING;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xReturn = taskSCHEDULER_SUSPENDED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
|
||
|
#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_MUTEXES == 1 )
|
||
|
|
||
|
void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
|
||
|
{
|
||
|
TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
|
||
|
|
||
|
/* If the mutex was given back by an interrupt while the queue was
|
||
|
locked then the mutex holder might now be NULL. */
|
||
|
if( pxMutexHolder != NULL )
|
||
|
{
|
||
|
if( pxTCB->uxPriority < pxCurrentTCB->uxPriority )
|
||
|
{
|
||
|
/* Adjust the mutex holder state to account for its new
|
||
|
priority. Only reset the event list item value if the value is
|
||
|
not being used for anything else. */
|
||
|
if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
|
||
|
{
|
||
|
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* If the task being modified is in the ready state it will need to
|
||
|
be moved into a new list. */
|
||
|
if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
|
||
|
{
|
||
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Inherit the priority before being moved into the new list. */
|
||
|
pxTCB->uxPriority = pxCurrentTCB->uxPriority;
|
||
|
prvAddTaskToReadyList( pxTCB );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Just inherit the priority. */
|
||
|
pxTCB->uxPriority = pxCurrentTCB->uxPriority;
|
||
|
}
|
||
|
|
||
|
traceTASK_PRIORITY_INHERIT( pxTCB, pxCurrentTCB->uxPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_MUTEXES */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_MUTEXES == 1 )
|
||
|
|
||
|
BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
|
||
|
{
|
||
|
TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
|
||
|
BaseType_t xReturn = pdFALSE;
|
||
|
|
||
|
if( pxMutexHolder != NULL )
|
||
|
{
|
||
|
configASSERT( pxTCB->uxMutexesHeld );
|
||
|
( pxTCB->uxMutexesHeld )--;
|
||
|
|
||
|
if( pxTCB->uxPriority != pxTCB->uxBasePriority )
|
||
|
{
|
||
|
/* Only disinherit if no other mutexes are held. */
|
||
|
if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
/* The holding task must be the running task to be able to give
|
||
|
the mutex back. Remove the holding task from the ready list. */
|
||
|
if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
|
||
|
{
|
||
|
taskRESET_READY_PRIORITY( pxTCB->uxPriority );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Disinherit the priority before adding the task into the new
|
||
|
ready list. */
|
||
|
traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
|
||
|
pxTCB->uxPriority = pxTCB->uxBasePriority;
|
||
|
|
||
|
/* Reset the event list item value. It cannot be in use for
|
||
|
any other purpose if this task is running, and it must be
|
||
|
running to give back the mutex. */
|
||
|
listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||
|
prvAddTaskToReadyList( pxTCB );
|
||
|
|
||
|
/* Return true to indicate that a context switch is required.
|
||
|
This is only actually required in the corner case whereby
|
||
|
multiple mutexes were held and the mutexes were given back
|
||
|
in an order different to that in which they were taken. */
|
||
|
xReturn = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_MUTEXES */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
||
|
|
||
|
void vTaskEnterCritical( void )
|
||
|
{
|
||
|
portDISABLE_INTERRUPTS();
|
||
|
|
||
|
if( xSchedulerRunning != pdFALSE )
|
||
|
{
|
||
|
( pxCurrentTCB->uxCriticalNesting )++;
|
||
|
|
||
|
/* This is not the interrupt safe version of the enter critical
|
||
|
function so assert() if it is being called from an interrupt
|
||
|
context. Only API functions that end in "FromISR" can be used in an
|
||
|
interrupt. Only assert if the critical nesting count is 1 to
|
||
|
protect against recursive calls if the assert function also uses a
|
||
|
critical section. */
|
||
|
if( pxCurrentTCB->uxCriticalNesting == 1 )
|
||
|
{
|
||
|
portASSERT_IF_IN_ISR();
|
||
|
}
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* portCRITICAL_NESTING_IN_TCB */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( portCRITICAL_NESTING_IN_TCB == 1 )
|
||
|
|
||
|
void vTaskExitCritical( void )
|
||
|
{
|
||
|
if( xSchedulerRunning != pdFALSE )
|
||
|
{
|
||
|
if( pxCurrentTCB->uxCriticalNesting > 0U )
|
||
|
{
|
||
|
( pxCurrentTCB->uxCriticalNesting )--;
|
||
|
|
||
|
if( pxCurrentTCB->uxCriticalNesting == 0U )
|
||
|
{
|
||
|
portENABLE_INTERRUPTS();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* portCRITICAL_NESTING_IN_TCB */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) )
|
||
|
|
||
|
void vTaskList( char * pcWriteBuffer )
|
||
|
{
|
||
|
TaskStatus_t *pxTaskStatusArray;
|
||
|
volatile UBaseType_t uxArraySize, x;
|
||
|
char cStatus;
|
||
|
|
||
|
/*
|
||
|
* PLEASE NOTE:
|
||
|
*
|
||
|
* This function is provided for convenience only, and is used by many
|
||
|
* of the demo applications. Do not consider it to be part of the
|
||
|
* scheduler.
|
||
|
*
|
||
|
* vTaskList() calls uxTaskGetSystemState(), then formats part of the
|
||
|
* uxTaskGetSystemState() output into a human readable table that
|
||
|
* displays task names, states and stack usage.
|
||
|
*
|
||
|
* vTaskList() has a dependency on the sprintf() C library function that
|
||
|
* might bloat the code size, use a lot of stack, and provide different
|
||
|
* results on different platforms. An alternative, tiny, third party,
|
||
|
* and limited functionality implementation of sprintf() is provided in
|
||
|
* many of the FreeRTOS/Demo sub-directories in a file called
|
||
|
* printf-stdarg.c (note printf-stdarg.c does not provide a full
|
||
|
* snprintf() implementation!).
|
||
|
*
|
||
|
* It is recommended that production systems call uxTaskGetSystemState()
|
||
|
* directly to get access to raw stats data, rather than indirectly
|
||
|
* through a call to vTaskList().
|
||
|
*/
|
||
|
|
||
|
|
||
|
/* Make sure the write buffer does not contain a string. */
|
||
|
*pcWriteBuffer = 0x00;
|
||
|
|
||
|
/* Take a snapshot of the number of tasks in case it changes while this
|
||
|
function is executing. */
|
||
|
uxArraySize = uxCurrentNumberOfTasks;
|
||
|
|
||
|
/* Allocate an array index for each task. */
|
||
|
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
|
||
|
|
||
|
if( pxTaskStatusArray != NULL )
|
||
|
{
|
||
|
/* Generate the (binary) data. */
|
||
|
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );
|
||
|
|
||
|
/* Create a human readable table from the binary data. */
|
||
|
for( x = 0; x < uxArraySize; x++ )
|
||
|
{
|
||
|
switch( pxTaskStatusArray[ x ].eCurrentState )
|
||
|
{
|
||
|
case eReady: cStatus = tskREADY_CHAR;
|
||
|
break;
|
||
|
|
||
|
case eBlocked: cStatus = tskBLOCKED_CHAR;
|
||
|
break;
|
||
|
|
||
|
case eSuspended: cStatus = tskSUSPENDED_CHAR;
|
||
|
break;
|
||
|
|
||
|
case eDeleted: cStatus = tskDELETED_CHAR;
|
||
|
break;
|
||
|
|
||
|
default: /* Should not get here, but it is included
|
||
|
to prevent static checking errors. */
|
||
|
cStatus = 0x00;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
sprintf( pcWriteBuffer, "%s\t\t%c\t%u\t%u\t%u\r\n", pxTaskStatusArray[ x ].pcTaskName, cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
|
||
|
pcWriteBuffer += strlen( pcWriteBuffer );
|
||
|
}
|
||
|
|
||
|
/* Free the array again. */
|
||
|
vPortFree( pxTaskStatusArray );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) ) */
|
||
|
/*----------------------------------------------------------*/
|
||
|
|
||
|
#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) )
|
||
|
|
||
|
void vTaskGetRunTimeStats( char *pcWriteBuffer )
|
||
|
{
|
||
|
TaskStatus_t *pxTaskStatusArray;
|
||
|
volatile UBaseType_t uxArraySize, x;
|
||
|
uint32_t ulTotalTime, ulStatsAsPercentage, ulDeltaRunTimeCounter;
|
||
|
|
||
|
#if( configUSE_TRACE_FACILITY != 1 )
|
||
|
{
|
||
|
#error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* PLEASE NOTE:
|
||
|
*
|
||
|
* This function is provided for convenience only, and is used by many
|
||
|
* of the demo applications. Do not consider it to be part of the
|
||
|
* scheduler.
|
||
|
*
|
||
|
* vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
|
||
|
* of the uxTaskGetSystemState() output into a human readable table that
|
||
|
* displays the amount of time each task has spent in the Running state
|
||
|
* in both absolute and percentage terms.
|
||
|
*
|
||
|
* vTaskGetRunTimeStats() has a dependency on the sprintf() C library
|
||
|
* function that might bloat the code size, use a lot of stack, and
|
||
|
* provide different results on different platforms. An alternative,
|
||
|
* tiny, third party, and limited functionality implementation of
|
||
|
* sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
|
||
|
* a file called printf-stdarg.c (note printf-stdarg.c does not provide
|
||
|
* a full snprintf() implementation!).
|
||
|
*
|
||
|
* It is recommended that production systems call uxTaskGetSystemState()
|
||
|
* directly to get access to raw stats data, rather than indirectly
|
||
|
* through a call to vTaskGetRunTimeStats().
|
||
|
*/
|
||
|
|
||
|
/* Make sure the write buffer does not contain a string. */
|
||
|
*pcWriteBuffer = 0x00;
|
||
|
|
||
|
/* Take a snapshot of the number of tasks in case it changes while this
|
||
|
function is executing. */
|
||
|
uxArraySize = uxCurrentNumberOfTasks;
|
||
|
|
||
|
/* Allocate an array index for each task. */
|
||
|
pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );
|
||
|
|
||
|
if( pxTaskStatusArray != NULL )
|
||
|
{
|
||
|
/* Generate the (binary) data. */
|
||
|
uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );
|
||
|
printf("CPU total run time is %u\n", ulTotalTime);
|
||
|
printf("TaskName\tDeltaRunTime\tpercentage\n");
|
||
|
|
||
|
/* For percentage calculations. */
|
||
|
ulTotalTime /= 100UL;
|
||
|
|
||
|
/* Avoid divide by zero errors. */
|
||
|
if( ulTotalTime > 0 )
|
||
|
{
|
||
|
/* Create a human readable table from the binary data. */
|
||
|
for( x = 0; x < uxArraySize; x++ )
|
||
|
{
|
||
|
/* What percentage of the total run time has the task used?
|
||
|
This will always be rounded down to the nearest integer.
|
||
|
ulTotalRunTimeDiv100 has already been divided by 100. */
|
||
|
#if 0
|
||
|
ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;
|
||
|
#else
|
||
|
ulStatsAsPercentage = (100*pxTaskStatusArray[ x ].ulDelataRunTimeCounterOfPeroid) / ulDeltaTotalRunTime;
|
||
|
/* just make run time counter looks like more precise*/
|
||
|
if (100*(100*pxTaskStatusArray[ x ].ulDelataRunTimeCounterOfPeroid) % ulDeltaTotalRunTime >=50)
|
||
|
ulDeltaRunTimeCounter = portCONFIGURE_STATS_PEROID_VALUE*(ulStatsAsPercentage+1)/100;
|
||
|
else
|
||
|
ulDeltaRunTimeCounter = portCONFIGURE_STATS_PEROID_VALUE*ulStatsAsPercentage/100;
|
||
|
#endif
|
||
|
|
||
|
if( ulStatsAsPercentage > 0UL )
|
||
|
{
|
||
|
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
||
|
{
|
||
|
#if 0
|
||
|
sprintf( pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
|
||
|
#else
|
||
|
sprintf( pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\n", pxTaskStatusArray[ x ].pcTaskName, ulDeltaRunTimeCounter, ulStatsAsPercentage );
|
||
|
#endif
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
/* sizeof( int ) == sizeof( long ) so a smaller
|
||
|
printf() library can be used. */
|
||
|
#if 0
|
||
|
sprintf( pcWriteBuffer, "%s\t\t%u\t\t%u%%\n", pxTaskStatusArray[ x ].pcTaskName, ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage );
|
||
|
#else
|
||
|
sprintf( pcWriteBuffer, "%s\t\t%u\t\t%u%%\n", pxTaskStatusArray[ x ].pcTaskName, ( unsigned int ) ulDeltaRunTimeCounter, ( unsigned int ) ulStatsAsPercentage );
|
||
|
#endif
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* If the percentage is zero here then the task has
|
||
|
consumed less than 1% of the total run time. */
|
||
|
#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
|
||
|
{
|
||
|
#if 0
|
||
|
sprintf( pcWriteBuffer, "%s\t\t%lu\t\t<1%%\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter );
|
||
|
#else
|
||
|
sprintf( pcWriteBuffer, "%s\t\t%lu\t\t<1%%\n", pxTaskStatusArray[ x ].pcTaskName, ulDeltaRunTimeCounter );
|
||
|
#endif
|
||
|
}
|
||
|
#else
|
||
|
{
|
||
|
/* sizeof( int ) == sizeof( long ) so a smaller
|
||
|
printf() library can be used. */
|
||
|
#if 0
|
||
|
sprintf( pcWriteBuffer, "%s\t\t%u\t\t<1%%\n", pxTaskStatusArray[ x ].pcTaskName, ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
|
||
|
#else
|
||
|
sprintf( pcWriteBuffer, "%s\t\t%u\t\t<1%%\n", pxTaskStatusArray[ x ].pcTaskName, ( unsigned int ) ulDeltaRunTimeCounter );
|
||
|
#endif
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
pcWriteBuffer += strlen( pcWriteBuffer );
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
|
||
|
/* Free the array again. */
|
||
|
vPortFree( pxTaskStatusArray );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
mtCOVERAGE_TEST_MARKER();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) ) */
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
TickType_t uxTaskResetEventItemValue( void )
|
||
|
{
|
||
|
TickType_t uxReturn;
|
||
|
|
||
|
uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );
|
||
|
|
||
|
/* Reset the event list item to its normal value - so it can be used with
|
||
|
queues and semaphores. */
|
||
|
listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
|
||
|
|
||
|
return uxReturn;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
#if ( configUSE_MUTEXES == 1 )
|
||
|
|
||
|
void *pvTaskIncrementMutexHeldCount( void )
|
||
|
{
|
||
|
/* If xSemaphoreCreateMutex() is called before any tasks have been created
|
||
|
then pxCurrentTCB will be NULL. */
|
||
|
if( pxCurrentTCB != NULL )
|
||
|
{
|
||
|
( pxCurrentTCB->uxMutexesHeld )++;
|
||
|
}
|
||
|
|
||
|
return pxCurrentTCB;
|
||
|
}
|
||
|
|
||
|
#endif /* configUSE_MUTEXES */
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
void * vTaskGetCurrentTCB( void )
|
||
|
{
|
||
|
return (void*)pxCurrentTCB;
|
||
|
}
|
||
|
|
||
|
#ifdef FREERTOS_MODULE_TEST
|
||
|
#include "tasks_test_access_functions.h"
|
||
|
#endif
|
||
|
|